A Translator Verification Technique for FPGA Software Development in Nuclear Power Plants

Jaeyeob Kim, Eui-Sub Kim, Junbeom Yoo

Konkuk University
Outline

1. Introduction
2. Background
3. The Integrated Tool for Demonstrating the Correctness of Translator
 1. Overall Process
 2. Input programs
 3. Scenario Generation
 4. Simulation & Comparison
4. Case Study
5. Conclusion & future work
Introduction (1/2)

NuDE 2.0
Introduction (2/2)

Verifying ‘FBDtoVerilog’

• Co-Simulation technique can be used for demonstrating the correctness of translator such as ‘FBDtoVerilog’
• For this co-simulation technique, many tools run separately such as ‘Scenario Generator’, ‘FBD Simulator’
• We had develop integrated tool to support the co-simulation
Background (1/3)

FBD Simulator

- Simulator for FBD
- Automatically classifies the POU (Program of Unit) in the FBD
- It presents input, output and local variable lists
Background (2/3)

Scenario Generator

• A tool that automatically generate an infinite number of scenarios
• Input is FBD
• It reflects the features of the domain such as range of value
Co-Simulation

- Indirect verification technique
- It simulates programs with same scenario and compares results of simulation for confirming correctness
- Confirmation of correctness with co-simulation can make to enhance the reliability of the program
The Integrated Tool for Demonstrating the Correctness of Translator

Overall Process – Before Using Integrated Tool

<table>
<thead>
<tr>
<th>Translators</th>
<th>Programs</th>
<th>Scenario Generation</th>
<th>Simulation Tools</th>
<th>Simulation Results</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBDtoVerilog2.0</td>
<td>FBD</td>
<td>Scenario Generator</td>
<td>FBD Simulator</td>
<td>FBD Simulation Result</td>
<td>Correct</td>
</tr>
<tr>
<td>Verilog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Synthesis Tools</td>
<td>EDIF</td>
<td></td>
<td>ModelSim</td>
<td></td>
<td>Counter Example</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EDIF Simulation Result</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Verilog Simulation Result</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Comparator</td>
<td></td>
</tr>
</tbody>
</table>

8
The Integrated Tool for Demonstrating the Correctness of Translator

Overall Process – Using Integrated Tool
The Integrated Tool for Demonstrating the Correctness of Translator

Input programs

- FBD
- Verilog
- EDIF
The Integrated Tool for Demonstrating the Correctness of Translator

Scenario Generation

- Use ‘Scenario Generator’
- Create script (.do file) for automatically use of ModelSim
The Integrated Tool for Demonstrating the Correctness of Translator

- ModelSim Script (.do file)
The Integrated Tool for Demonstrating the Correctness of Translator

Simulation & Comparison

- Simulation

- Comparison

- Result
 - Correct
 - Not Correct

→ Counter example
The Integrated Tool for Demonstrating the Correctness of Translator

- Simulation result file
Case Study

- KNICS RPS BP

<table>
<thead>
<tr>
<th></th>
<th>FIX_FALLING</th>
<th>FIX_RISING</th>
<th>MANUAL_RATE_FALLING</th>
<th>VARIABLE_FALLING</th>
<th>VARIABLE_RISING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Initial Values</td>
<td>12000</td>
<td>26000</td>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>Rate of Change</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cycles</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Time</td>
<td>57:07</td>
<td>56:50</td>
<td>1:08:13</td>
<td>59:03</td>
<td>58:56</td>
</tr>
</tbody>
</table>

Total 5000 scenario / All Correct
Conclusion and future work

• We developed the integrated tool in order to automatically perform the co-simulation
• We demonstrated the correctness of translator
 • ‘FBDtoVerilog2.0’
 • ‘Synplify Pro’

• We plan to extend the integrated tool to verify VHDL
• And plan to elaborate the scenarios on the basis of adequate coverage criteria in order to increase the confidence of verification
THANK YOU