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Abstract 
 

Formal verification of Function Block Diagram 
(FBD) based software is an essential task when 
replacing traditional relay-based analog system with 
PLC-based software in nuclear reactor protection 
system (RPS). FBD programs are developed manually 
and revised frequently in process of development. 
There are a set of properties to be verified formally, 
which all FBD releases should satisfy. Whenever FBDs 
are modified, there is also a need to verify behavioral 
equivalence of subsequently modified FBDs. This 
paper proposes a software verification framework for 
FBD software in nuclear power plants. It uses SMV 
model checker for verifying whether an FBD meets its 
required properties, and VIS verification system for 
checking behavioral equivalence between modified 
FBDs. A case study, conducted using a nuclear power 
plant shutdown system being developed in Korea, 
demonstrated that the proposed verification framework 
is effective and useful.  
 
 
1. Introduction 
 

Software safety [1] became an important issue for 
embedded real-time control systems. When verifying 
safety-critical software, formal methods [2] play 
critical roles in demonstrating compliance to several 
regulatory requirements. KNICS 1  [3] project used 
NuSCR [4], a formal specification language and toolset 
based on SCR [5,6], to formally specify and verify 
software requirements for nuclear reactor protection 
system (RPS) of APR-1400 nuclear power reactor. 
Formal verification techniques such as model checking 

                                                           
1 Goal of KNICS consortium project (2001~2008) is to develop a 
suite of I&C software for use in the next generation Korean nuclear 
power plants. 

[7, 8] were also used to verify critical system 
properties [21]. 

PLCs (Programmable Logic Controllers) are widely 
used to implement safety-critical control software, and 
IEC [9] defined five programming languages as 
international standards for PLCs. KNICS decided to 
use FBD as a standard representation of software 
design, because it can visually expresses controller 
behavior as interconnected operation of function 
blocks. It is common for FBD engineers to develop it 
manually from requirements specification and to revise 
it frequently to reflect new or modified requirements in 
process of development. 

Safety demonstration is the most important quality 
aspect that must be rigorously demonstrated 
throughout entire life-cycle phases of safety-critical 
software systems. Therefore all modifications made to 
FBDs require safety demonstration. RPS software of 
APR-1400 advanced nuclear power reactor, in 
development in Korea, is such an example. While 
inspection technique is useful, it alone is inadequate to 
meet rigorous regulatory requirements. This paper 
proposes a software verification framework for FBD 
software used in nuclear power plant’s reactor 
protection systems.  

The software verification framework uses two 
different verification techniques to verify FBD 
software thoroughly. It uses Cadence SMV model 
checker [10] for verifying whether an FBD meets its 
required properties, and also uses VIS verification 
system [11] for checking behavioral equivalence 
between subsequently modified FBDs. For these we 
first translate FBD programs into Verilog [12] 
programs according to the translation rules proposed in 
[13, 14] and using automatic translation program we 
developed in [26]. 
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The remainder of the paper is organized as follows: 
Section 2 introduces background information on FBD 
programming, Verilog, SMV model checking, and VIS 
equivalence checking. Section 3 shows the software 
verification framework for FBD software in nuclear 
power plants. Application of the proposed technique is 
demonstrated in Section 4. Section 5 presents related 
work, and we conclude the paper at Section 6. 
 
2. Background 
2.1. FBD Programming in PLC 
 

Programmable Logic Controller (PLC), widely used 
in real-time and embedded control applications [16], 
has relatively simple architecture. Sensors and 
actuators are plugged in via input and output channels, 
relatively. Operating system manages periodic 
execution of PLC applications by reading all input 
values at the beginning of each execution cycle and 
updating values of system variables. It then performs 
predefined computation and generates output values at 
the end of the cycle. Simplified architecture and 
processing mechanism make PLC an attractive 
platform for implementing embedded application 
software, i.e. chemical processing plants, nuclear 
power plants and traffic control systems. 

 

Figure 1. Representative function blocks 
defined in IEC 61131-3 

 
There are several PLC programming languages. The 

IEC 61131-3 [9] standard includes five languages: 
Structured Text (ST), Function Block Diagram (FBD), 
Ladder Diagram (LD), Instruction List (IL) and 
Sequential Function Chart (SFC). FBD is frequently 
used due to its graphical notations and support for a 
network of function blocks “wired” together in a 
manner similar to a circuit diagram. Function blocks, 
each of which is depicted as a rectangle and connected 
to input/output variables, are classified into several 

categories as shown in Fig.1. We present five in ten 
categories, which are pertinent to our discussion. 

Fig.2 shows a partial implementation of RPS BP 
(Bistable Processor) logic for APR-1400. It creates a 
warning signal th_X_pretrip when any safety-
threatening situation occurs. Sequential combination of 
seven function blocks produces an output 
th_X_Pretrip, and the number in parenthesis above 
each function block denotes execution order. For 
example, GE_INT function block, numbered (11) is 
executed first and produces 1 as its block output if 
input value f_X is greater than or equal to 
k_X_Pretrip_Setpoint. Otherwise, 0 is the block’s 
output value. The output is then negated as denoted as 
small circle attached to input of the SEL block 
numbered 14. Next, SUB_INT numbered (12) subtracts 
k_X_Pretrip_Hys value from k_X_Pretrip_Setpoint 
and the result is compared against f_X in the LE_INT 
numbered (13). Computations take place sequentially 
according to the defined behavior of each block (see 
Fig.1). Of the two FBD outputs, th_Prev_X_Pretrip 
value is used to store current value of th_X_Pretrip.  

 

Figure 2. An FBD for th_X_Pretrip logic2 
 

2.2. Verilog 
 
Verilog [12] is one of the most popular HDL 
(Hardware Description Language) used by IC 
(Integrated Circuit) designers. Verilog allows software 
design to be simulated earlier in design cycle to correct 
errors and experiment with different hardware 
architecture. Several characteristics of Verilog make it 
possible to use it easily in software design too. 
Procedural assignment statements, module and 
function calls, and the manner of I/O of Verilog are 
very similar to those of C/C++, basic software design 
languages. These characteristics make software 
engineers who design and verify FBD programs feel 
more comfortable with learning and training. Software 
engineers familiar with procedural programming 
                                                           
2 The FBD in Fig. 2 was developed using Concept ver. 2.2 XL SR2, 
a PLC programming assistant tool marketed by Schneider 
Automation GmbH. 
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languages like C/C++ can use the Verilog without 
much effort. It is one of major advantage of Verilog 
compared to other HDLs. 

 
2.3. SMV Model Checking 
 

The proposed verification framework uses model 
checking technique to verify FBD programs formally. 
Model checking is a technique to prove whether a 
formal specification satisfies required properties or not. 
Cadence SMV [10] is a model checker based on 
symbolic model checking technique [17]. It can verify 
a model programmed in Synchronous Verilog (SV) 
[18], a slight variation of the Verilog language with 
cycle-based behavior. Cadence SMV’s vl2smv function 
converts the Synchronous Verilog into SMV input 
language, and then performs model checking. True is 
returned if Verilog model meets given properties, 
otherwise, a counter-example is produced to 
demonstrate the existence of errors in the Verilog 
model. 

 
2.4. VIS Equivalence Checking 
 

VIS (Verification Interacting with Synthesis) [11] is 
a tool that integrates verification, simulation and 
synthesis of finite state hardware system. It uses 
Verilog as a front end and supports fair Computational 
Tree Logic (CTL) model checking, language emptiness 
checking, combinational and sequential equivalence 
checking, cycle-based simulation, and hierarchical 
synthesis. As VIS has the capability to interface with 
SIS [19] to optimize logic modules, it is an integrated 
system for hierarchical synthesis as well as 
verification. More detailed introduction to its structure 
and functions goes out of scope, so we introduce 
equivalence checking briefly what we concern in this 
paper. 

VIS provides the capability to test sequential and 
combinational equivalence of two designs. An 
important usage of combinational equivalence is to 
provide a sanity check for re-synthesizing portions of a 
combinational logic. Sequential equivalence checking 
is done by building the product of finite state machine, 
and checking whether a state where the values of two 
corresponding outputs differ can be reached from the 
set of initial states of the product machine. If this 
happens, a debug trace is provided. Unfortunately, VIS 
has no graphical UI support yet. 

 

3. A Verification Framework 
 

This section introduces a software verification 
framework for FBD software in nuclear power plant’s 
reactor protection system. A typical safety-critical 
system, RPS in APR-1400 advanced power reactor, is 
being developed and implemented on PLCs by KNICS 
project. Its whole software development process is 
described in Fig.3. Details are introduced in [20, 14]. 

Figure 3. A software development process for 
KNCIS’s APR-1400 RPS 

In the software development process for APR-1400 
RPS, software requirements are derived from an 
informal natural language specification first and then 
rewritten in NuSCR formal specification language [4]. 
Formal specification mandates developers to specify 
all requirements explicitly and completely without any 
assumptions or omissions, so use of formal 
specification is strongly recommended by government 
authorities like KINS [24]. A formal verification, 
model checking was performed on NuSCR formal 
specification to verify important properties as 
presented in [21].  

In design phase, FBD programs are manually 
developed by FBD engineers from the requirement 
specification. A synthesis technique proposed in [22] 
could support mechanical synthesis of FBD programs 
from NuSCR formal specification, but its lack of 
automatic tool-support made it difficult to be used in 
the development process.  

In implementation phase, an engineering tool named 
pSET [15] translates FBD programs into executable 
codes for PLC. The engineering tool also generates 
intermediate C code for testing purposes. There is our 
on-going research on direct FBD testing [25]. PLC-
based software development is finished when FBD 
program has been adequately tested using the 
generated C code.  

Initial FBD design is revised when additional 
requirements are introduced or optimization is 
performed to avoid redundant implementation. 
Although FBD modifications might be minor in scope, 
they might still give rise to subtle behavioral changes 
and result in safety critical errors. Therefore, one must 
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always demonstrate that required behavior is preserved 
as illustrated in Fig.4. The proposed verification 
framework depicted in Fig.4 uses two different formal 
verification techniques. While VIS verification system 
can check behavioral equivalence of subsequently 
modified FBD programs, SMV model checker verifies 
the FBD program whether it satisfies properties or not. 
These different verification techniques works together 
to demonstrate safety of the final FBD program, FBDN. 

 

Figure 4. A verification framework for FBD 
software 

 

3.1. VIS Equivalence Checking 
 

The verification framework uses VIS’s equivalence 
checking to preserve behavioral equivalence between 
subsequently modified FBD programs. For this 
purpose, first we translate FBDs into equivalent 
Verilog programs, and perform equivalence checking 
using VIS as described in Fig.5 below. 

FBD programs are stored in .ld format in the 
engineering tool pSET, and FBD Verifier 1.0 [26] we 
developed translates them into equivalent Verilog 
programs in .v format. As VIS verification system has 
no graphical user interface, we execute the VIS in 
Cygwin environment and check their equivalence. A 
program named vl2mv [27] in VIS verification system 
translates Verilog program in .v into .mv format which 
VIS can read and analyze. 

If any “NOT equivalence” occurs, VIS shows a 
counter example describing the situation - sequences of 
changed value of variables. Up to now, we analyze the 
counter-examples manually with FBD engineers to 
find a precise cause of the not equivalence. However, 
the automation and visualization of VIS analysis on 
which we are currently focusing will promote 
efficiency of the manual analysis. 

 

Figure 5. An overview of VIS equivalence 
checking 

 

3.2. SMV Model Checking 
 

SMV model checking in the verification framework 
verifies Verilog program translated from FBD program 
whether it satisfies important properties or not. FBD 
Verifier 1.1 reads FBD programs in .ld format and 
translates them into Verilog programs in .v format. 
FBD Verifier 1.1 also translates the Verilog program 
into SMV input program (.smv) automatically using 
vl2smv program in Cadence SMV. Fig.6 describes the 
SMV model checking process in the framework. 

Figure 6. An overview of SMV model checking 

Properties to be checked are written in LTL formula 
within translated Verilog programs. The Cadence SMV 
returns TRUE if Verilog meets give properties, 
otherwise, returns a counter- example. In addition to 
translation function, FBD Verifier 1.1 also supports 
analysis of counter examples by visualizing graphically 
changing status of variables [26].  

 
4. Case Study 
 

We applied the proposed verification technique to 
APR-1400 RPS [23] which is being developed in 
Korea. The RPS is composed of Bistable Processor 
(BP) and Coincidence Processor (CP). While we 
applied VIS equivalence checking to a part of BP, we 
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applied SMV model checking to whole FBDs of RPS 
BP and CP. 

4.1. VIS Equivalence Checking 
 

VIS Equivalence checking aims for verifying 
behavioral equivalence between two different FBDs. 
Therefore, there is no official experimental result left 
for demonstrating its usefulness, unfortunately. VIS’s 
non-graphical interface also made it difficult for FBD 
engineers to use the technique easily and efficiently. In 
spite of its lack of official experimental result, VIS 
equivalence checking technique’s usefulness was well 
recognized by domain engineers.  

 

Figure 7. A mechanically synthesized FBD for 
th_X_Pretrip logic 

 

In this subsection, we introduce some experiments 
on early version of BP FBDs, Rev.00 draft [36]. The 
VIS equivalence checking technique was originally 
developed for the purpose of supporting FBD synthesis 
technique proposed in [22]. We could synthesize FBDs 
mechanically from NuSCR formal specification, but it 

was not applied to the actual development of RPS yet. 
No automatic tool support for the FBD synthesis 
technique was a huge obstacle to apply it in earnest. 
Therefore, there were two kinds of FBDs, manually 
developed FBDs and mechanically synthesized FBDs, 
from the same NuSCR formal requirements 
specification. Fig.7 depicts an FBD which was 
synthesized mechanically from the same NuSCR 
requirement specification as the manually developed 
FBD depicted in Fig.2. The FBD in Fig.2 is an 
optimized one which was manually modified by 
domain experts. While the mechanically synthesized 
FBD in Fig.7 is composed of 15 function blocks, the 
optimized FBD in Fig.2 has only 7 function blocks. 

 

Figure 8. A counter-example of VIS 
equivalence checking 

As VIS counter-example does not show the different 
output values explicitly in final state, we must use 
simulation facility of VIS to investigate the cause more 
precisely and fix the errors. We are expecting that the 
VIS analysis supporting tool which we are currently 
focusing will solve the inefficiency and inconvenience 
well. Details are beyond the scope of this paper, but 
domain engineers found an error in the position of TOF 
function block, and modified it as shown in Fig.9. VIS 
equivalence checking proved that these two FBDs have 
the same behavior. 

 

Figure 9. A modified FBD for th_X_Pretrip 
logic 
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We applied the VIS equivalence checking to several 
kinds of trip (shutdown of nuclear reactor) logic in 
RPS BP, early version of BP FBDs Rev.00 draft [36], 
and Table 1 depicts the result. We, surprisingly, found 
several critical logic errors in both the manual and 
synthesized FBDs.� Such errors might be difficult to 
detect using other techniques such as testing or 
inspection, and later releases of specification were 
corrected. Domain engineers felt that FBD verification 
made an important contribution in ensuring safety of 
PRS implementation. 

TABLE 1. VIS equivalence checking result for 
parts of BP 

Trip Logic for BP Error 
Type 

Mechanically 
Synthesized 

FBDs 

Manually 
Developed 

FBDs 
Fixed set-point rising 
trip without operating 
bypass 

Syntax 0 0 

Logic 0 1 
Manual reset variable 
set-point trip with 
operating bypass 

Syntax 0 3 

Logic 6 2 

 

4.2. SMV Model Checking 
 

In contrast to VIS equivalence checking, we applied 
SMV model checking to the whole RPS BP and CP, 
FBD Rev.02 [23]. Table 2 describes their size and 
complexity. We used Cadence SMV model checker to 
verify whether the Verilog program meets important 
properties or not. FBD Verifier 1.1 translates FBD 
programs (.ld) in pSET into Verilog programs (.v), and 
then executes vl2smv function in Cadence SMV to 
translate it into SMV input programs (.smv). FBD 
Verifier 1.1 also executes Cadence SMV automatically 
using the translated SMV programs as inputs. 
Properties to be verified for RPS were developed by 
cooperation of nuclear engineers and software 
engineering engineers. Domain experts provided 
important properties specified in natural language, and 
software engineering engineers encoded them into 
proper logical expressions. These properties belong to 
safety properties which can be specified with LTL 
easily as classified in Table 3. 

TABLE 2. RPS system information 

System 

# of pages of 
requirements 
specification 

(Natural lang.) 

# of 
function 
blocks 

# of 
variables 

# of 
lines in 
Verilog 
model 

BP 190 1,335 1,038 7,862 

CP 163 1,623 820 3,085 

 

TABLE 3. Examples of verification properties 
for RPS BP and CP 

No. Properties 

1 When the trip condition is satisfied, a trip should occur. 

2 When the trip release condition is satisfied, a trip should 
release. 

3 Trip set-point value should be in valid range. 

4 When trip and pretrip did not occur, trip set-point and 
pretrip set-point should keep the specified difference. 

5 When the processing value is in invalid range, a range 
error should occur. 

6 When the heartbeat of the other system is unsound, a 
heartbeat error should occur. 

 

We verified the BP thoroughly with suggested 
properties by domain engineers depicted in Table 3, 
and as a result, 47 errors were found. With the 
exclusion of repeated errors with the same cause, 10 
distinct errors were found. In addition to the BP system, 
we also verified the CP successfully. Table 4 
summarizes the verification result. Detailed analysis of 
the verification result is beyond the scope of this paper 
[37], but it is worth to introduce typical causes of 
errors analyzed from the verification result.  

TABLE 4. Verification result for RPS 
System BP CP 
# of Properties 216 83 

Found Errors 

Incorrect Logic 14 6 
Omission 0 2 
Ambiguous Logic 4 0 
Incorrect FBD 13 5 
Incorrect Design 16 0 

Total # of Errors 47 13 
Distinct # of Errors 10 3 

 

Typical causes of errors in RPS system were as 
follows: misused variable name (e.g. use of 
TRIP_LOGIC variable instead of 1_TRIP_LOGIC 
variable), misused operator (e.g. use of >= instead of 
>), omitted range check, undetermined values at initial 
phase, unmatched specification between natural 
language specification and FBDs, and not removed 
temporary test logic. Most of these errors had not been 
detected with other activities such as inspection, 
traceability analysis, and safety analysis. We reported 
found errors to RPS developing engineers, and they 
were satisfied with the verification result and modified 
the RPS program based on our verification result. 
Topical report for the RPS was submitted to the 
regulation authority KINS in order to get safety 
approval and the approval result is about to come out. 
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5. Related Work 
 

In recent years, demand for PLC program 
verification on safety has been growing. Several 
research projects addressed FBD verification issues, 
and [16, 28] provide surveys on verification of PLC 
programming languages LD and ST. 

[29] used higher order logic (HOL) to model 
specifications and implementations. Function blocks 
are modeled as relations on streams. According to the 
framework, there are no restrictions on data type, and 
time is treated implicitly on the contrary to the Verilog 
and VIS verification system. However, proofs are done 
with help of a theorem prover, Isabelle/HOL system 
[30], and it costs too much in comparison with 
automatic verification using VIS. 

IEC 61499 [31] defined interactions between 
controllers and overall systems (plants) using FBDs, 
and [32] formalized it with Single-Net Systems (SNS) 
[33] model. The controller code is defined in FBD 
format and the overall system is organized in IEC 
61499 function blocks. In this approach, the complete 
structure is automatically translated into Single-Net 
Systems (SNS) model using a tool, VEDA. On the 
combined model of plant and controller, model 
checking is performed using SESA (Signal/Event 
System Analyzer) [34]. 

In [35], a toolset called PLCTOOLS has been 
introduced. The FBD programs are modeled and 
described as High Level Timed Petri Nets (HLPTN), 
and HLTPN are used for validating the design and 
generating the code. MATLAB/SIMULINK provides 
means for specifying and simulating plants. 
PLCTOOLS focuses on designing, simulation, and 
PLC code generation, not formal verification. 

 
6. Conclusion and Future Work 
 

This paper proposed a verification framework for 
FBD-based software in nuclear power plant’s reactor 
protection systems. Proposed framework suggests two 
different formal verification techniques, Cadence SMV 
model checker for verifying whether an FBD meets its 
required properties and VIS verification system for 
checking behavioral equivalence between subsequently 
modified FBDs. They work together to demonstrate 
safety of FBD programs. 

We verified FBDs for KNICS APR-1400 RPS with 
proposed verification framework. A number of FBDs 
could be verified and analyzed effectively, and the 

verification result was successfully applied to official 
releases of FBDs. We are also currently focusing on 
developing VIS analysis automation tool for 
visualizing VIS equivalence checking process and 
result more efficiently. We have a plan to apply the 
proposed verification framework to other safety-critical 
systems too. 
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