
James J. (Jong Hyuk) Park et al. (eds.), EMC Technology and Service,
LNEE 181, pp. 293–300, DOI: 10.1007/978-94-007-5075-3_34,
© Springer Science+Business Media Dordrecht 2012

Translation from ECML to Linear Hybrid Automata

Jaeyeon Jo1, Junbeom Yoo1, Han Choi2, Sungdeok Cha2,
Hae Young Lee3, and Won-Tae Kim3

1 Konkuk University, Seoul, Republic of Korea
{tm77,jbyoo}@konkuk.ac.kr

2 Korea University, Seoul, Republic of Korea
{issubi,scha}@korea.ac.kr

3 Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
{haelee,wtkim}@etri.re.kr

Abstract. ECML (ETRI CPS Modeling Language) is a modeling formalism for
hybrid systems, recently proposed by a research institute - ETRI in Korea. It
extends a basic formalism DEV&DESS (Discrete EVent & Differential
Equation System Specification) with various conveniences in modeling and
simulation. The formal verification tool for ECML has not been provided yet.
This paper proposes translation rules from ECML to linear hybrid automata
which is an input front-end of HyTech. We can verify ECML models with the
HyTech model checker.

Keywords: Hybrid System, Formal Verification, Translation, ECML, Linear
Hybrid Automata.

1 Introduction

Hybrid system is a dynamical system whose behavior is a combination of continuous
and discrete dynamics. The discrete parts naturally model modes of operation of
system, while the continuous dynamic model physical interactions with themselves or
environment, such as automotive controllers, avionic, defense modeling and
simulation and medical equipment and controllers. Hybrid automata [1] has been
proposed as a formal model for hybrid systems. Linear hybrid automata (LHA) [2] is
restricted hybrid automata describing hybrid systems using linear dynamics. The
examples of verification tools for linear hybrid automata are HyTech [3], d/dt [4],
PHAver [5] and SpaceEx [6].

ECML [7] is an extension of the basic formalism DEV&DESS [8] with various
conveniences in modeling and simulation. It was recently proposed by ETRI in
Korea. It still needs algorithmic method for verifying ECML models against
important properties such as safety and reachability efficiently. In the previous studies
[10, 11], DEVS or DEV&DESS model are translated into other models for
performing formal verification. This paper proposes translation rules from ECML to
LHA, since LHA is a common front-end for formal verification tools such as HyTech.
We can perform the HyTech verification on the ECML models. It is worth noting that

294 J. Jo et al.

semantic gap between ECML and LHA requires restricting the ECML’s expressive
power. We only consider the ECML models which can be translated into LHA. The
paper is organized as follows. Section 2 introduces ECML and LHA briefly. Section 3
explains the translation algorithm from ECML to LHA. Section 4 concludes the paper
with our plan of future work.

2 Background

2.1 ECML

ECML (ETRI CPS Modeling Language) is a modeling language for hybrid systems,
recently proposed by ETRI (Electronics and Telecommunications Research Institute)
in Korea. It extends the basic formalism DEV&DESS with various conveniences such
as hierarchies and error modeling. ECML models have three different types of
inputs/outputs: discrete event, discrete value, continuous value. The basic model of
ECML is defined as

BM = < X, Y, S, TransE, TransS, CondS, Rate, OutC, OutD, OutE, OutS > (1)

Fig.1 shows an example of a Barrelfiller basic model(BM) written in ECML. The
Barrelfiller model is filling system that fills liquid to a barrel. Formal definition of
BM (1) is belows:

X = {On, Inflow}: a set of input variable. X=XC×XD×XE

- On : a discrete input variable in XD, switch phase.

- inflow : a continuous input variable in XC. flow of level.

- XC is set of discrete value inputs.

- XD is set of discrete value inputs.

- XE is set of discrete event inputs.

Y = {Barrel} : a set of output variable. Y= YC×YD×YE
- Barrel : a discrete output variable in YE.
- YC is set of continuous value outputs.
- YD is set of discrete value outputs.
- YE is set of discrete event outputs.

S = {Level} : a set of states, S=P×SC×SD.
- Level : a state variable in SC , observes a level of liquid.
- SC is set of continuous states.
- SD is set of discrete states.

P∈{Ready, Filling} : the set of phases
- Ready : a phase in P, Level is not changing.
- Filling : a phase in P, Level is changing at rate of Inflow.

TransE(p, Inflow, Level, On) : external event transition function
- (p=Ready, On=true) : p:=Filling
- (p=Filling, On=false) : p:=Ready

TransS(p, Inflow, Level, On) : state transition function
- (p=Filling, Level≥10) : p:=Filing, Level:=0

 Translation from ECML to Linear Hybrid Automata 295

OutS(p, Inflow, On) : discrete event output function for internal state transitions
- (p=Filling, Level≥10) : Barrel:=1 : while value of level is changing 10

to 0, output value of barrel is assigned 1.
CondS(p, Inflow, On)=(p=Filling∧Level≥10):state transition condition function
Rate(p, Inflow, On) : rate of change function

- (p=Ready) : dLevel/dt=0 : Level is not changing.
- (p=Filling) : dLevel/dt=Inflow; Level is changing at rate of Inflow.

Fig. 1. A graphical representation of the Barrelfiller system

2.2 Linear Hybrid Automata

The linear hybrid automata [3] integrate discrete behavior of digital computer systems
with continuous behavior of environment and hardware systems. Informally, it
annotates finite state automaton with conditions on real-valued variables. The linear
hybrid automata formalism is defined as follows [3]:

HA= <X, V, flow, inv, init, E, jump, ∑, syn> (2)

Fig.2 is a LHA model of the Barrelfiller, whose behavior is semantically similar to
Fig.1. Formal definition of linear hybrid automata (2) is belows:

X = {On, Level} : a variable set.

- On : a variable to switching locations.
- Level : a variable that show liquid level of barrel.

V = {Ready, Filling} : a control mode set.
- Ready : a control mode.
- Filling : a control mode to filling barrel.

flow(Ready) = dLevel/dt=0 : flow condition.
flow(Filling) = dLevel/dt=1 : flow condition.
inv(Filling) = (Level≤10) : invariant condition, while control is in mode Filling,

Level must be below 10.
init(Ready) = (level=0) : initial condition, control of HA may start in the control

mode Ready when the level=0 is true.
init(Filling) = false : initial condition.
E={(Ready, Filling), (Filling, Ready), (Filling, Filling)} : a finite multi-set of

control switches.

296 J. Jo et al.

Jump(Ready, Filling)={On=1} : a jump condition.
Jump(Filling, Ready)={On=0} : a jump condition.
Jump(Filling, Filling)={Level=10 ∧ Level'=0} : a jump condition.

Ready

= 0

Filling

O n= 1/

O n= 0/

/

Fig. 2. A graphical representation of the Barrelfiller using linear hybrid automata

3 Translation from ECML to LHA

This section introduces translation rules from a single ECML model to linear hybrid
automata. Coupled models are also considered briefly.

3.1 Single ECML Model

We explain the translation rules one-by-one, mapping one element in ECML (1) to
one of LHA (2). They include variables, phases, initial translation, rate, transition, etc.
We also had to solve several problems due to semantic gap between ECML and LHA,
such as I/O structure and transition execution. This section includes our solution for
the semantic gap, too.

Variables. Every input/output variable and state variable in an ECML model is
translated into a corresponding variable of linear hybrid automata. They both should
have the same data type.

Phases. Each phase in ECML corresponds to control node in LHA. If P∈{p1, p2, …,
pi} is a set of phases, all control nodes v in modes V∈{v1, v2, …, vi} has values such
as v1 := p1, v2:=p2, …, vi:= pi.

Initial Condition. An ECML model has an initial condition consisting of a phase and
a set of states of all variables, while LHA has a control node a set of states of all
variables. All elements should coincide with each other.

Rates. The rate of each phase in ECML decides the flow of each control mode in
LHA. We use the form of derivation of continuous variables in order to describe the
flow of continuous state variables using continuous input variables. For a rate function
rate(S, XC, XD) = {s | ds/dt=a(dx/dt)+b, s∈SC, x∈XC, {a, b} ⊂ R}}, the flow function is
flow(p) = {s | ds/dt=a(dx/dt)+b, s∈XHA, {a, b} ⊂ R}. XHA is equals to X in (2).

 Translation from ECML to Linear Hybrid Automata 297

Transitions without Type Distinction. Translating transitions needs to analyze
conditions which are conjunctions of atomic propositions. Atomic proposition is
defined as follows.  = {=, ≤, <} are comparison operators. z := x | n | z+n | z×n
belong to linear expressions if x is a variable and n is a constant. φ = z z' is an
atomic proposition too. For TransE(S, X)=p2, P=p1, cond1=φ1⁄φ2⁄…⁄φm, z∈{XC

∪

XD
∪SC

∪SD} and discrete event output function OutE(S, XC, XD)={(n1, n2, …,
nm)|nk∈{XC

∪XD
∪SC
∪SD}, {i,k}∈R} in ECML, the translated jump condition in

LHA is as follows. (p1, p2)∈E, jump(p1, p2)={cond1⁄y1'=n1⁄y2'=n2⁄…⁄yi'=ni}. Fig.3
shows an example translating a transition in ECML to that on LHA.

(a) A transition in ECML (b) A translated transition in LHA

Fig. 3. An example of translating transitions of ECML into LHA

Generating Discrete Input Automata. LHA has no input/output structure. Therefore,
we develop a discrete input automaton additionally to control discrete input variables
in ECML. The behavior of discrete input automata is as follows. It assigns random
values to discrete variables when there is no specific occurring time of external event,
and executes external transitions. However, if an external event occurs, a
corresponding external transition should be executed immediately. We use
‘synchronization labels’ to precisely simulate this behavior in LHA. For example,
Fig.4a is a discrete input automaton. The transition from idle to active is executed
randomly and assigns any value to the variable x1

D. In active state, it immediately
transits to idle. If a ‘synchronization label’ is used in the transition, it synchronizes
with other transitions those uses ‘synchronization label’ in LHA.

(a) A discrete input Automaton (b) A continuous input automaton

Fig. 4. Input control automata

Generating Continuous Input Automata. Continuous input automaton is related
with XC. Continuous input can be designed manually thorough considering
trajectories, but we propose automatic generation of continuous inputs as shown in
Fig.4b. The automaton shows that value of xC changes while assigned with an
unspecified value in unspecified time. A correspond hybrid automaton is generated

298 J. Jo et al.

from a continuous variable xC
∈XC. One method to determine execution time is to use

the asap condition. It is an urgent flag introduced in HyTech [9].

State Transitions. State transitions of ECML, which have no type distinction, are
also translated into transitions of LHA. The condition for the state transitions are
defined as C=(φ1

C⁄φ2
C⁄…⁄φn

C⁄φ1
D⁄φ2

D⁄…⁄φm
D), where φ C is an atomic

proposition for continuous terms while φ D is for discrete terms. We also generated
additional control modes using φC combinations as shown in Table 1. It shows
translation rule about φC, an atomic proposition in state transition conditions.
Invariant is an invariant condition for a control mode. Condprev is a part of condition
on a transition whose target control mode is the source of the state transition. Condprev
is omitted if Invariant satisfies φC. Condout is a condition on the transition
corresponding to the state transition. Current means elements changed after state
transitions. Negation indicates generated elements for an alternative situation when
invariant condition of source control mode from a state transition is false except
boundary value.

Table 1. Translation rules for state transition

z z’ z=z’ z<z’ z≤z’
 Condprev Invariant Condout Condprev Invariant Condout Condprev Invariant Condout

Current z=z’ z=z’ z=z’ z<z’ z≤z’ z≤z’ z≤z’ z≤z’ z≤z’

Negation
z<z’ z≤z’ z=z’ z≥z’ z≥z’ z=z’ z>z’ z≥z’ z=z’
z>z’ z≥z’ z=z’

(a) Case of  is ‘=’ (b) Case of  is ‘≤’

(c) Case of  is ‘<’

Fig. 5. Translation of State transitions

 Translation from ECML to Linear Hybrid Automata 299

Fig. 5 shows a translation result from the state transition in Fig.3a using the Table
1. Fig. 5a,b,c is the cases that  is ‘=’, ‘≤’ and ‘<’, respectively. In Fig.5a, The
invariant of p22 is Current Invariant. Condout is the condition of the transition from p22
to p3. Condprev is control modes of Negation which are p21 and p23. When control is in
p1, then control changes by a result of comparison of z with z’. If control changes p22,
p23 control modes do not change until z=z’. If a value of z reaches z’ while control
mode is p21 or p23, control changes to p22. The jump condition of a transition (p21, p23)
or (p21, p23) is from Negation Condout. As soon as the control changes to p22, it changes
to p3 by the urgent flag asap.

External Transitions. In case of external transitions, we first generate a transition in
discrete input automaton in order to determine the time of executing external
transition. And then we add a synchronization label to the transition and the external
transition. Transition condition for the discrete input automaton has to use asap. A
source control mode is active and the target control mode is idle. Execution scenario
is as follows: When a discrete change occurs, the control changes from idle to active.
As soon as the control has changed to active, the transition executes synchronously
with the source transition through the synchronization label.

3.2 Coupled ECML Model

In the coupled models of ECML, we use the concept of structured model. A
structured model contains basic models which connect with each other. Basic model
are coupled with each other using connecting ports which describe data flow. Input
coupling connects an input port of a structured model to an input port of a basic
model. Output coupling connects an output port of a basic model to an output port of
a structured model. Internal coupling connects an output port of basic model to input
port of a basic model. Translating coupled model generates additional internal
coupling automata from each internal coupling. Internal coupling is translated into
automaton which is similar to discrete automaton or continuous automaton showed in
Fig.4 with additional passing of values of connected ports. Translation of output
coupling doesn't need to generate LHA.

4 Conclusion

This paper proposes translation rules from ECML to linear hybrid automata. The
translation makes possible analysis and formal verification of ECML models using
the HyTech model checker. We are now developing an automatic translator from
ECML to LHA.

Acknowledgments. This work was supported by the IT R&D Program of MKE/KEIT
[12ND-1310, "The Development of CPS(Cyber-Physical Systems) Core Technologies
for High Confidential Autonomic Control Software"].

300 J. Jo et al.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical
Computer Science 138, 3–34 (1995)

2. Alur, R., Henzinger, T.A., Ho, P.H.: Automatic symbolic verification of embedded
systems. IEEE Transactions on Software Engineering 22, 181–201 (1996)

3. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: a model checker for hybrid systems.
Software Tools for Technology Transfer 1, 110–122 (1997)

4. Asarin, E., Dang, T., Maler, O.: The d/dt Tool for Verification of Hybrid Systems. In:
Brinksma, D., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–770. Springer,
Heidelberg (2002)

5. Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In: Hybrid
Systems: Computation and Control, pp. 258–273 (2005)

6. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Verification of Hybrid Systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

7. Lee, D.A., Lee, J.H., Yoo, J., Kim, D.H.: Systematic verification of operational flight
program through reverse engineering. In: International Conference on Advanced Software
Engineering & Its Applications (2011) (submitted)

8. Praehofer, H., Auernig, F., Reisinger, G.: An environment for devs-based multiformalism
simulation in common lisp/CLOS. Discrete Event Dynamic Systems: Theory and
Application 3, 119–149 (1993)

9. Henzinger, T., Ho, P., Wong-Toi, H.: A user guide to hytech. Tools and Algorithms for the
Construction and Analysis of Systems, 41–71 (1995)

10. Han, S., Huang, K.: Equivalent Semantic Translation from Parallel DEVS Models to Time
Automata. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007.
LNCS, vol. 4487, pp. 1246–1253. Springer, Heidelberg (2007)

11. Choi, H., Cha, S., Jo, J.Y., Yoo, J., Lee, H.Y., Kim, W.T.: Formal Verification of
DEV&DESS Formalism Using Symbolic Model Checker HyTech Control and
Automation, and Energy System Engineering, pp. 112–121. Springer (2011)

