

SW-STPA: A Software Hazard Analysis Technique based on STPA

Sun Hwi Lee†1,a) Sanghyun Yoon†1,b)
Junbeom Yoo†1,c)

Abstract: As the uses of software are various, software is germane to human's life and property. Thus, the importance of
software safety increases rapidly and many hazard analysis techniques are used for safety of system/software. STAMP/STPA is
an efficient hazard analysis technique for large and complex system. But subject of STAMP/STPA is system, not software. This
difference of subjects makes difficulty apply STPA to small software. We propose SW-STPA to overcome the difficulties and
conduct a case study. We expect that it will help safety experts when analyze causal factors of software hazards with
STAMP/STPA.
Keywords: STAMP, STPA, Hazard analysis

1. Introduction

As the uses of software are various, software is germane to
human's life and property. Thus, the importance of software
safety increases rapidly and hazard analysis techniques are used
for safety of system/software. Hazard analysis is the process of
identifying hazards and their potential causal factors [1]. The
goal of hazard analysis is accumulating information about how
the behavioral safety constraints, which are derived from the
system hazards, can be violated.
STAMP (Systems-Theoretic Accident Model and Process)/STPA
(System-Theoretic Process Analysis) is the one of accident
causal model and hazard analysis technique for large and
complex system. In STAMP, systems are viewed as interrelated
components kept in a state of dynamic equilibrium by feedback
control loops [2]. And STPA is a hazard analysis technique
which is based on STAMP causality model. The goal of STPA is
to identify accident scenarios that encompass the entire accident
process. To satisfy goal, STPA includes all of accidents
scenarios about components of system and their interactions like
design errors, software flaws, component interaction accidents,
cognitively complex human decision making errors, etc. So,
STPA is suitable technique for large and complex system. Case
studies using STPA show that STPA could identify more hazards
than older techniques [3]. But subject of STPA is system, not
small software. This difference of subjects to analyze makes
difficulty apply STPA to small software. Therefore, if we could
develop software hazard analysis technique based on STPA, it
helps software developer have more various sights about
software hazard analysis.
This paper presents SW-STPA which is transformed STPA to
analyze software hazards. We propose new general form of
safety control structure for software with keeping the
advantages of STPA. And we applied this proposed technique to
FBDtoC, the translator developed for RPS.
FBDtoC is the translator which is used in RPS (Reactor

 †1 Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea
 a) bigsaram@konkuk.ac.kr
 b) pctkdgus@konkuk.ac.kr
 c) jbyoo@konkuk.ac.kr

Protection System) development life cycle. RPS makes
decisions for emergent reactor shutdown. Therefore, RPS
software should be developed in safety. RPS software is
typically modeled with IEC-61131 FBD (Function Block
Diagram) [4] in design phase. In implementation phase, the
FBD programs are translated into C programs, which are
compiled into executable code for RPS software. In this phase,
FBDtoC is used for translation with guaranteeing there
behavioral equivalence fundamentally.
The organization of the paper is as follows: Section 2 gives
introductions to STAMP/STPA. In section 3, we propose
SW-STPA and new general form of safety control structure in
SW-STPA. Section 4 shows the results of case study which is
applying SW-STPA to FBDtoC we developed. Section 5
concludes the paper and gives remarks on future research
extension and direction.

2. Backgrounds

2.1 STAMP

In the traditional causality models, accidents are considered to
be caused by chains of failure events. But, fast pace of
technological change, the occurrence of new types of hazards,
increasing complexity of system, and other causes make
traditional accident models be adequate for large and complex
system no longer. STAMP is developed to solve these problems.
STAMP is an accident model based on three principles: safety
constraints, hierarchical safety control structures, and process
models [5]. First basic concept is safety constraints. Safety
constraints are the enforcements that must not be violated for
safety of system. In STAMP, the accidents can occur when
safety constraints were not successfully enforced. Second is
hierarchical safety control structure. In STAMP, systems are
viewed as hierarchical structures. Each level imposes constraints
on the activity of the level beneath it. The last concept is process
model. In STAMP, every control level has process model.
Process model contains everything to decide control action:
variables, control logic, current state, state transition, etc. Figure
1 describes the process model and the operations between levels
of control. In this figure, accidents can occur when the
controller's process model does not match the system being

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #03

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
9

controlled and the controller orders unsafe command.

Controlled Process

Control
Actions Feedback

Controller

Process model

Figure 1 Process model and operations between levels of control

2.2 STPA

STPA is a hazard analysis technique based on STAMP. The goal
of STPA is identifying accident scenarios that encompass the
entire accident process. Additional goals are providing guidance
to users and information necessary to guide the design process
and making it can be used before a design has been created.
STPA can be applicable to existing designs or systems.
STPA uses a control diagram and the functional requirements,
system hazards, and the safety constraints and safety
requirements for the component. Thus, before the STPA process,
developer must establish these fundamentals.

Fundamentals are:
1) Defining accidents and unacceptable losses for

system
2) System hazards
3) System safety requirements and constraints
4) Safety control structure

Developer can use STPA technique after the fundamentals are
established. STPA has two main steps as the following:

1) Identify the potential for inadequate control of the
system that could lead to a hazardous state. hazardous
states result from inadequate control or enforcement of
the safety constraints, which can occur because:
a) A required control action is not provided or not

followed;
b)An incorrect or unsafe control action is provided;
c) A potentially safe control action is provided too

early or too late, that is, at the wrong time or in the
wrong sequence;

d)A correct control action is stopped too soon.
2) Determine how potentially hazardous control action

identified in step 1 could occur.
a) Augment the control structure with process models

for each control component.
b)For each unsafe control action, examine the parts of

the control loop to see if they could cause it. Design
controls and mitigation measures if they do not

already exist or evaluate existing measures if the
analysis is being performed on an existing design.
For multiple controllers of the same component or
safety constraint, identify conflicts and potential
coordination problems.

c) Consider how the designed controls could degrade
over time and build in protection.

3. SW-STPA

Subject of analysis is system in STPA. So, general form of
safety control structure in STPA is composed of controller,
actuator, controlled process, and sensor. And a control loop is
made by them. Because of this control loop, system is kept in a
state of dynamic equilibrium. When controller gives control
action to actuator, actuator operates physical controlled process.
And then sensor senses controlled process and gives feedback to
controller.
Subject of analysis is software in SW-STPA. Thus, general form
of safety control structure in SW-STPA could not be composed
of controller, actuator, sensor, controlled process. In figure 2,
different from STPA, general form of safety control structure in
SW-STPA is composed of SW controller, functional controllers,
and information. Omitted in figure 2, each controller has a
process model, same as controller in STPA.

Human

Controller

Human

Controller

Controller

SW Controller

with UI

Actuator Sensor

Controlled

Process

Functional

Controller 1

Functional

Controller n

Information

Functional

Controller 2

SW- STPA

STPA

...

Figure 2 Differences between SW-STPA from STPA

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #03

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
10

There are two reasons of new general form of safety control
structure in SW-STPA. First reason is bringing about advantages
from the general form of safety control structure of STPA. In
STPA, each controller has control actions. And general four
types of inadequate control actions help identifying potential
hazardous control actions. Therefore, if each function of the
software could be the functional controller, it has control actions
and helps to identify more potentially hazardous states.
Second, there is no actuator or sensor which operates physical
controlled process or senses in software. Instead of actuator and
sensor, functional controller exists. Functional controller in
figure 2 is the separated function of software. For example, if
the subject software is the translator, parser or open file will be
functional controller. In order to maintain feedback control loop
in software without partition like actuator and sensor, each
functional controller needs to give feedback to SW controller

with UI in figure 2. It means that if SW controller with UI gives
control action to functional controller, then every functional

controller actuates that and has to check the current state. In
additional, each functional controller could be separated by
small functional controllers such as safety control structure in
STPA. For example, if digital watch is software and alarm
controller is the one of functional controllers, and then alarm
will be able to be separated into small functional controllers like
ringing controller, and setting alarm time controller.
In STPA, controlled process means that actuator operates the
physical process that controller ordered. But in SW-STPA, it is
not possible that the functional controller operates the physical
controlled process. Every functional controller can only handle
information in software. Therefore, new concept is needed in
software. Information in figure 2 is the all of information which
functional controller created, changed, and deleted. For example,
if the alarm controller is the functional controller of digital
watch, then the time when alarm rings and the variable which
indicates alarm rings or not will be the elements of Information.
SW controller with UI is a controller which controls software as
a whole and communicates with human controller. Details of SW

controller with UI are described in figure 3. SW controller with

UI is separated by input interface, output interface, and SW

controller. Input interface gives what human controller ordered
to SW controller. Output interface gives feedback of SW

controller to human controller. This separation of SW controller
with UI has advantage when the software needs complex UI
because of large scale.

Human

Controller

SW Controller

Input

Interface

Output

Interface

SW Controller with UI

Figure 3 Details of SW Controller with UI

4. Case study

We applied SW-STPA to FBDtoC the translator we developed.
Because that FBDtoC has been developed, we established safety
control structure refer to source codes. One of the features of
STPA is that developer can apply STPA to their project in any
development phases. Thus, SW-STPA is same with STPA, we
could apply general form of safety control structure in
SW-STPA to FBDtoC.
FBDtoC is composed of two levels in safety control structure. It
does not need separation of SW Controller with UI to SW
controller, input interface, output interface because it has simple
translator. High level safety control structure of FBDtoC is
described in figure 4. FBDtoC consists of one FBDtoC

controller, and four functional controllers. File open does
operation open file, as similar to file save. XML parser is
provided by PLCOpen. XML parser parses XML file to parsed
data. Translator builds parsed data into data structure for
translation and translates built data into C language. Therefore,
Translator can be separated to builder and translator. Figure 5
describes details of translator.
In figure 5, we described details of translator. Builder builds
four types of elements: variable, block, component, and system.
After build elements into four types, translate controller orders
translation to three translators: block translator, component

translator, system translator.

FBDtoC

Controller

XML parser Translator

Information

Order (Parsing)

Parsing

Build,

Translate

Feedback

Feedback

Order (Translation)

Feedback

File open File save

Open file
Save file

Open file
Save file

Feedback
Feedback

Feedback
Feedback

Feedback

Figure 4 Safety control structure level 0 of FBDtoC

Translate

Controller

Builder
Block

translator

Component

translator

System

translator

Variable Block Component System

Build

Feedback

Translate block Translate component Translate system

Build variables

Build blocks Build components Build system

Feedback
Feedback

Feedback

Feedback Feedback Feedback Feedback

Build Build Build

Build

Feedback Feedback Feedback

Feedback

Feedback
Feedback Feedback

Translate Translate Translate

Translator

Order (Translation) Feedback

Figure 5 Safety control structure level 1 of Translator

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #03

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
11

5. Conclusions & Future work

STAMP/STPA is powerful hazard analysis technique for system.
Applying STPA to software, we have to solve the problem that
subject of analysis is different from subject of STPA. To solve
this problem, we proposed SW-STPA which is hazard analysis
technique for software. And we proposed new general form of
safety control structure in SW-STPA. We applied SW-STPA to
FBDtoC, the translator we developed. And the new general form
described FBDtoC successfully.
SW-STPA is developed step 1, step 2 is not developed yet. We
are now planning to develop SW-STPA step 2. We also plan to
apply all steps of SW-STPA to FBDtoC as a whole, and compare
with other hazard analysis technique.

Reference
1) Leveson, N.G.: “Safeware: system safety and computers”, ACM,
1995.
2) Nancy G. Leveson: “Engineering a Safer World”, MIT Press (MA),
2010.
3) http://csrl.scripts.mit.edu/home/stampstpa-workshop.
4) International Electrotechnical Commission: “International standard
for programmable controllers: Programming languages,” 1993, part 3.
5) Leveson, N.G.: “A new accident model for engineering safer
systems”, Safety Science, Elsevier, 42(4), 237-270, 2004.

Acknowledgments This research was supported by Basic
Science Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2012-0003619) and by the MKE (The
Ministry of Knowledge Economy), Korea, under the
Development of Performance Improvement Technology for
Engineering Tool of Safety PLC (Programmable Logic
Controller) program supervised by the KETEP (Korea Institute
of Energy Technology Evaluation And Planning)"
(KETEP-2010-T1001-01038). It was also supported, in part, by
a grant from the Korea Ministry of Strategy, under the
development of the integrated framework of I₩&C conformity
assessment, sustainable monitoring, and emergency response for
nuclear facilities.

Sun Hwi Lee was born in 1985. He is a
M.E. candidate in Konkuk University,
Seoul, Republic of Korea.

Sanghyun Yoon was born in 1987. He is a
Ph.D candidate in Konkuk University,
Seoul, Republic of Korea.

Junbeom Yoo was born in 1975. He is an
assistant professor in Konkuk University’s
Department of Computer Science and
Engineering. His research interests include
requirements engineering and formal
methods. He has a PhD in computer

science from the Korea Advanced Institute of Science and
Technology.

Korea-Japan Joint Workshop on ICT (Pohang, Korea, 20-22 September 2012), Paper #03

ⓒ2012 Information Processing Society of Japan & Korean Institute of Information Scientists and Engineers
12

