2011 Fifth International Conference on Secure Software Integration and Reliability Improvement - Companion

A Domain-Specific Safety Analysis for Digital
Nuclear Plant Protection Systems

Sanghyun Yoon
College of Info. and Comm.
Konkuk University
Seoul, South Korea
pctkdgus @konkuk.ac.kr

Abstract—Rigorous safety demonstration through safety analy-
sis is strongly mandated for safety-critical systems. Nuclear plant
protection systems often use techniques such as FTA, FMEA and
HAZOP. Safety experts perform them manually, and quality of
the analysis totally depends on the ability and experience of the
experts. If we restrict the application domain of safety analysis
into specific critical failures, we could automate a large part
of the analysis and also improve its quality too. This paper
proposes a domain-specific safety analysis technique, NuFTA, for
nuclear plant protection systems. NuFTA mechanically constructs
a software fault tree of nuclear reactor protection systems
specified with NuSCR requirement formal specification language.
The root failures of the fault tree constructed through NuFTA
are restricted into ‘shutdown’ events of nuclear reactors, which
is the most important event in the domain. Within the domain
specific restrictions, NuFTA can construct software fault trees
mechanically and aid safety experts’ analyses efficiently.

I. INTRODUCTION

Safety-critical systems (e.g. nuclear power plants and air-
planes) require rigorous quality demonstration prior to opera-
tional approval issued by regulation agencies. Safety analysis
[7] tries to assure systems safety through performing various
safety analysis techniques together such as FTA (Fault Tree
Analysis), FMEA (Failure Mode and Effect Analysis) and
HAZOP (Hazard and Operability). Safety experts apply the
techniques into target systems manually. Therefore, quality
and correctness of the analysis results are totally depending
on the knowledge and experiences of safety experts.

For software in safety-critical systems, many software fault
tree analysis techniques [19], [15], [5], [10], [9], [13] have
been researched, focusing on mechanizing the construction of
fault trees from software specification or program code. They
all have a common intrinsic limitation; containing information
only on their specifications or source code and not showing
anything beyond that captured in the sources. Safety experts
are still needed even after constructing fault trees mechan-
ically. Therefore, the software fault tree analysis techniques
above cannot substitute the analysis itself but can only be used
as an aid for constructing fault trees.

Although (mechanical) software fault tree analysis tech-
niques have the limitation, we can use them more efficiently,
if we restrict the target of safety analysis into some important
failures, from a domain-specific point of view. In the RPS
(Reactor Protection System) in nuclear power plants, the most

978-0-7695-4454-0/11 $26.00 © 2011 IEEE
DOI 10.1109/SSIRI-C.2011.21

Jaeyeon Jo
College of Info. and Comm.
Konkuk University
Seoul, South Korea
tm77 @konkuk.ac.kr

68

Junbeom Yoo
College of Info. and Comm.
Konkuk University
Seoul, South Korea
jbyoo@konkuk.ac.kr

important event which should be evaluated through safety
analysis is ‘shutdown’ signals. If an RPS fires the signal, the
nuclear reactor should stop immediately. Whenever a nuclear
reactor is under dangerous conditions, RPS should fire the
signal on time. However, the signal should not be fired when
it should not, since shutdown costs about $260,000 a day. To
avoid both catastrophe and shutdown lost, safety analysis for
RPS should analyze all cases which might lead to the fire of
the signal.

This paper proposes a domain-specific safety analysis tech-
nique, NuFTA for nuclear reactor protection systems. NuFTA
generates software fault trees mechanically, whose root nodes
(top failures) are shutdown signals. It constructs a software
fault tree from a formal requirements specification of RPS,
written in the NuSCR [22] formal modeling language. A
CASE tool NuSRS supports specifying NuSCR formal spec-
ification, and they had been used to develop KNICS(Korean
Nuclear Instrumentation and Control System consortium) RPS
[6] for APR-1400 nuclear reactor in Korea [21]. NuFTA starts
its analysis from a node in the NuSRS tool. NuFTA then finds
all cases which lead to a condition in which the node has a
predefined value indicating a shutdown (e.g. th_X_Trip == 0)
or normal output (e.g. th_X_Trip == I) in the form of fault
tree. It analyzes all NuSCR constructs backwards, and also
generates a logic expression representing all cases in summary.

Even if the NuFTA is not a software fault tree analysis
technique for general purposes, it showed its advantage on
analyzing specific failures in the domain of nuclear reactor
protection systems. Our former work /citeFTtemplate had
proposed conceptual algorithm and templates for mechanical
generation of fault tree, but they are insufficient to develop a
CASE tool. We refined the templates, constructed algorithm
and developed a CASE tool, NuFTA.

The remainder of the paper is organized as follows: Section
2 briefly overviews techniques for mechanical software fault
tree analysis. It also introduces the NuSCR formal require-
ments specification language briefly, and an example of a
mechanically generated software fault tree. Section 3 explains
templates and algorithms developed to construct a software
fault tree from an NuSCR specification mechanically. Section
4 conducts a case study using a requirements specification [4]
of the KNICS RPS in Korea. We evaluated performance of

IEEE
computer
® psouety



NuFTA through estimating computation time of all relevant
nodes in requirements specification. We conclude the paper in
Section 5.

II. BACKGROUND

A. Software Fault Tree Analysis

Software fault tree analysis (FTA) analyzes an undesired
state of a software system using Boolean logic such as AND
(A) and OR (V). Intrinsic features of software have directed
many researches into mechanical generation of software fault
trees from program source code or specifications, but they
contain information only on their sources and cannot show
anything beyond that captured in the sources. Mechanically
generated fault trees have provided a good starting point of
FTA to safety analysis, and widely used in FTA of safety
critical systems such as nuclear power plants and satellites.

[8], [9], [11] constructed software fault trees from
Ada83/Ada95 programs. They defined fault tree templates for
all program constructs in Ada83/Ada95, and constructed a
fault tree for a root-node (a top failure) through combining
a series of templates and Boolean logic gates. Templates help
analysts focus on all possible causes in the constructs. [13],
[16] proposed a fault tree analysis technique on Function
Block Diagrams (FBDs) [1],one of the most widely used PLC
(Programmable Logic Controller) programming languages. It
was applied to the main shutdown logic of the KNICS RPS
[6] in Korean nuclear power plants.

In case of software specifications, [15] proposed HiP-HOPS
(Hierarchically Performed Hazard Origin and Propagation
Studies), which generates fault trees from an architectural
diagram similar with data flow diagram. It analyzes on only
interactions between software components, since it considers
a software component as a black-box. [14] extended it to
generate fault trees from Matlab-Simulink models, but can-
not analyze internal behavior of components neither. [19]
proposed a technique generating software fault tree from
architecture description language RIDL (Reliability Imbedded
Design Language), and developed an analysis tool Galileo
[18]. RIDL can describe redundant modules and components
from aspect of reliability, but cannot go into details on module
and component.

[5] proposed a synthesis method of software fault tree from
software requirements specification written in NuSCR [22]
formal specification language. The software fault tree reflects
requirements on both structure and behavior, and can be used
for analyzing safety in the view of structure and behavior both.
It provided templates for all constructs in NuSCR, but the
templates and synthesis algorithm were not mature to develop
a supporting CASE tool. Software fault tree depicted in Fig.
3 was generated from the NuSCR specification presented
in Fig. 1, according to the proposal [5]. [12], [17], [20]
describe software fault tree generation and analysis techniques
developed for State charts [2] and RSML (Requirements State
Machine Language) [10] formal requirements specifications.

t: current execution cycle
p : previous execution cycle

Nt CT" 8 Normal)

m Cendition 2 “Trip' at t-1 "&iﬁ:ﬁﬁfz;oﬂ :::
f_Channel Error = 0 and
X <h.X Setpoint - k Hys )
iting’ £X Valid =1or “Waiting” for £X >= h.X Setpoint for
Waking” ot ¢t | | ¢ ot Error = 1 or | | [k K Trip Delay. 51 ‘ ‘ I Trip.Delay. k Trip Delay]
f.Chennel_Error = 1
Fig. 1. A software fault tree generated from the NuSCR specification in Fig.

2 (excerpted)

B. NuSCR Formal Specification Language

Fig. 2 describes the NuSCR [22] specification for “manual
reset variable set-point rising trip” logic part in the KNICS

RPS BP (Bistable Process) [3]. We used a prototype version

of requirements specification and simplified it to aid under-
standing. We could use an official version [4], but we are

unable to disclose all details and they are also similar with each

other, so we decided to use the prototype version. Although
the details are beyond the scope of the paper, this section

introduces important features of the NuSCR example which

are pertinent to our discussion.

f_Module_Error
f_Channel_Error

X Trip <Legend >

 Input or output

+ function node

_m,ReseUni

h_X_Setpoint  data flow

history node

L
O
-

: timed-history node

th_X_Pretrip

(a) FOD for g_Manual_Reset_Variable_Set_Point_Rising_Trip

1.X<h_X_Setpoint

Conditions

KX_MIN <= £.X T|F

X >= h_X_Setpoint

X <= k_X_MAX T|-|F

Actions.

fX_Valid 71 or f_Module_Error = 1

or _Chanyfel_Error =1or f.X Valid:= 0 X

1 X_Valid:= 1 X | x

[_Trip fDelay, k_Trip_Delay ]
(1X >7/h_X_Setpoint)

X < h_X_Setpoint —k_Hys

X <n el (c) SDT for f X_Valid

(b) TTS for th_X_Trip

Fig. 2. A simplified NuSCR specification for g_Manual_Reset_Variable
_Set_Point_Rising_Trip

69



The NuSCR has 4 basic constructs, FOD (Function
Overview Diagram), FSM (Finite State Machine),
TTS (Timed Transition System) and SDT (Structural
Decision Table). Fig. 2(a) describes an FOD for
g_Manual_Reset_Variable_Set_Point_Rising_Trip logic.
Prefix ‘g’ means that it is a group of nodes in a hierarchy
of FODs. The FOD is composed of four internal nodes
and they are all defined individually. The prefixes °f’, ‘A’,
and ‘th’ denote function variable node, history variable
node and timed history variable node respectively. Arrows
denote data-flow dependency relation. NuSCR is based on a
sequential data-flow.

Fig. 2(b) is a TTS definition for timed history variable
node th_X_Trip in the FOD. TTS is an FSM extended with
time duration constraint [a, b] in transition conditions. It is
interpreted as follows: “If condition ‘f X == h_X_Setpoint’
is satisfied in state ‘Normal’, then it transits to ‘Waiting’
state. In this state, if the condition lasts for k_Trip_Delay
or one of three input errors (f X_Valid, f Module_Error,
f_Channel_Error) occur, then it fires the trip signal (th_X_Trip
:= 0). In the state ‘Trip’ if the trip condition is canceled, then
it comes back to the state ‘Normal’ and the output becomes
‘1’. The TTS expression [k_Trip_Delay,k_Trip_Delay] means
that the condition has to remain true for k_Trip_Delay time
units. We skipped the explanation on the history variable node
h_X_Setpoint, for it is a subset of the timed history variable
node.

Fig. 2(c) defines an SDT for function variable node
f_X Valid. 1t is interpreted as follows: “If the value of f X
is between k_X MIN and k_X_MAX, the output value of
f_X Valid is 0, which means that it is a normal case. Oth-
erwise, f X Valid is 1”. The NuSCR recommends multiple
correlated condition statements per row, e.g. ‘k_X_MIN < f X
< k_X_MAX. It helps the NuSCR resolve table-size explosion
problems [22], and also can increase readability of SDTs. Fig.
3 is a screen-dump of NuSCR supporting tool NuSRS, showing
an FOD of NuSCR specification g_VAR_OVER_PWR [4] for
KNICS RPS BP.

C. An Example of Mechanical Software Fault Tree Analysis

Our former work [5] proposed templates for mechani-
cal generation of fault trees and a prototype of fault tree
construction algorithm. According to the guide, we con-
structed a software fault tree (depicted in Fig. 1) from
the NuSCR specification (described in Fig. 2) in hand.
The g_Manual_Reset_Variable_Set Point Rising_Trip logic
in Fig. 2(a) fires a shutdown signal (¢h_X_Trip := 0) in Fig.
2(b) when the nuclear reactor is in danger from aspect of
the input variable f X. It is one of 18 shutdown logics of
nuclear reactors, in which safety analysis is essential to safety
demonstration.

Fig. 3 is a fault tree when the shutdown signal is fired.
Therefore, the root-failure node of the fault tree is the case that
the shutdown is fired (th_X_Trip := 0), and we constructed the
fault tree through combining a series of templates. The fault
tree analysis shows all possible cases that the shutdown signal

70

is fired. It analyzes the cases in two ways, ‘entering the state’
and ‘remaining at the state’. We assumed that the software
fault tree has only 2 system execution cycles. An assisting
tool NuFTA which we developed and proposed in this paper,
currently also supports 2 system execution cycles.

Fig. 3. A screen-dump of NuSCR specification of KNICS RPS BP in NuSRS
tool-set (ver. 2.1)

III. NUFTA

NuFTA is a CASE tool for mechanically constructing soft-
ware fault trees from NuSCR formal requirements specifica-
tion. They all have aimed at plant protection systems in Korean
nuclear power plants, as we had introduced in [21]. NuFTA
does not aim at a general-purpose tool but a domain-specific
one, which analyzing important events only in the domain. In
our case, it does on ‘shutdown’ signal only. By restricting
its target into the signal, NuFTA can construct a software
fault tree in feasible time efficiently. We refined the templates
and construction algorithm which our former work [5] had
proposed, and developed the CASE tool NuFTA. The NuFTA
is now embedded in NuSRS, a supporting tool for NuSCR
formal specification and verification. Fig. 4 below represents
a screen-dump of NuFTA, describing a software fault tree
which constructed from the node in a dashed rectangle in
Fig. 2. This section first overviews the NuFTA’s software fault
tree construction, and explains the templates and algorithms
in detail.

A. Overview

The following overviews the construction of software fault
tree using NuFTA:

1) An analyst selects a node generating shutdown signal in
NuSRS.

2) NuFTA analyzes backwardly causes of the signal
throughout all connected nodes in FODs.

3) Using fault tree template for all nodes of NuSCR,
NuFTA constructs a software fault tree for the node as
Fig. 4 shows.

4) NuFTA produces a logic expression representing the
software fault tree generated, if it is feasible.



AlmE Vs v

Fig. 4. A screen-dump of NuFTA (ver. 1.0)

The first thing which a safety analyst performs is to select an
important node generating shutdown signal in a NuSCR speci-
fication. He (She) selects a node and assigns to it a value which
means a shutdown condition. For example, for the selected
node in Fig. 3, output variable f VAR_OVER_PWR_Trip_Out
should have zero (0) to signal a shutdown. Then the NuFTA
starts analyzing backwardly all combinations of conditions
causing the result. It backtracks the FOD to input nodes, since
NuSCR is a sequential data-flow based language. Whenever
it meets nodes such as function, history and timed history
variable nodes, it uses appropriate fault tree templates. For
history and timed history variable nodes, NuFTA transforms
them into expanded formats in order to apply the templates
into them. A predefined execution step used to expanding
them. Details are introduced in Section 3.3. The NuFTA finally
produces a logic expression, minimal cut-set representing all
combinations of the conditions.

B. Fault Tree Templates

Constructs of the NuSCR formal specification language
have different definitions respectively. According to the def-
initions, our former work [5] had proposed three types of
templates. We refined them more precisely for developing
a CASE tool, NuFTA. Function variable node is defined as
an SDT which consists of condition statements and action
statements. The outputs are described in action statements
and the causes are described in condition statements. Fig. 5(a)
shows a template for SDTs whose value of output is value.
The template describes the relation between action statements
and an output of an SDT. The leftmost branch describes that
the value of output and a value of RHS (Right Hand Side)
of an action statement of are the same. The middle branch
describes that the value of output is included or shared in
the range of RHS of an action statement. And the rightmost
branch describes that common range of the value of output
and RHS of action statements cannot be founded or other
exceptional cases. This branch should also be included in a
fault tree, because a fault tree should include every cause to
generate failures. One of the three branches are selected by

71

relation of value of an output and action statements, so they
are described in dotted box. For analyze action statements, the
template classify RHS of action statements as Fig. 5(b) shows.
The leftmost node describes that RHS of action statement
specified with values of other NuSCR node’s outputs. In this
case, fault trees for other nodes which have the output values
should be connected. Middle node describes that a function
variable nodes RHS of action statement specified with the
function variable node’s own an output value of previous cycle.
In a fault tree, analysis for the value of previous cycle should
be added. The rightmost node describes that RHS of action
statement specified with only constants.

Condition statements that corresponding each output state-
ment are specified in lower nodes. If the condition statements
are composed with a few conditions connected with logical
connector, the template uses AND gate and OR gate in order
to analyze conditions respectively.

function variable
node output = value

l RHS : Right Hand Side

N\

\

./,TJ,

SR—— ‘r_;aTu_aFRﬁS_u_l_"‘
| valle=RHSof | |0 statement = |
I action statement | o |

1 e B i

,,,,, L

.
I value N RHS of
|action statement 7 @

,,,,,, o

/
/ \\
S
function variable function variable function variable
node = other variable node = function node = constant
node + constant variable node +
T constant
N N
condition
statements
other node = x condition ﬁ;n:::wnn vanabl\e condition \
generation node statements node = x generation statoments \
‘ nodeat t - p

VAN " / } AN

AR | /N /

/ N / \ VAN

‘ condition 1 ‘ " ‘ condition n ‘

condition 1 condition n
generation node generation node
A A

(b)A fault tree template for SDTs(2)

Fig. 5. A fault tree template for SDTs

History variable node is defined as an FSM which consists
of states and transitions. In order to analyze conditions of
an output, NuFTA need to search states which generate the
output. But it is difficult to find possible outputs of states
because states on FSM dont have form for specifying outputs.
Therefore, NuFTA unfolds the original FSM to other format,



an annotated FSM for algorithmic search. In the annotated
FSM, states have own output values and names of original
states. Transitions are reordered by relations of annotated
states. A template for history variable node uses annotated
FSM as Fig. 6. The first branch describes that the output value
is the same as the RHS of the annotated assignment statement.
The second branch describes that the output value is shared
with RHS of the annotated assignment statement. The third
branch describes that the relationship between values is not
decided. The last one describes that the annotated state which
has original state is same as the output state (history variable
node = state).
history variable

node output = value
or state

L |

annotation I annotation

annotation annotation

I r
1 I
I I

I

f 1
| value=RHSof | jvalue = RHS of annotated value 11 RHS of state = annotated |
| action statement : statement # @ laction statement? @ | state | |
/ A
/ A o
F JE\ JEN VAN
VAAN /N VAN "k

Fig. 6. A fault tree template for FSMs(1)

Fig.7 shows a fault tree extends by using a template in
Fig.6. An annotated FSM can have a few annotated states
that generating same output value. The annotated states are
connected with OR gate. The template classifies causes of
output value with two cases. One is enter the state via state
transition and the other is remain at the state. The former
means that one condition of current states ingoing transitions
is satisfied then FSM enters the current state via ingoing
transition. The latter is classified two cases as Fig. 8. When
an outgoing transition of a state is disabled, an FSM remains
at the state. Therefore, the template describes that causes of
the first case are logical inverse of transitions condition. In the
second case, outgoing transition of current state is enabled but
the transitions target and source state are same. In other words,
the transition of current state is self-cycling. The template
describes that second case is occurred when the condition of
the state is satisfied.

Timed history variable node is defined as TTS. TTS is
very similar with FSM, excepts TTS can have time constraint
condition on transition. Therefore, a fault tree template for
TTSs is similar with FSMs’. In order to generate fault tree
from a TTS, a template for TTSs uses same approach as
a template for FSMs shown as Fig. 9. In Fig. 10 and Fig.
11, the template for TTSs describes how analyzes condi-
tions of transitions of current state in TTS. The template
for TTSs defines a transition which has timed constraint as
timed transition and the other transition as untimed transition.
Analysis of untimed transitions is described completely same
as FSM’s. For analyzing condition of timed transition, the
template focuses on how long the condition is satisfied and

72

annotated state n

annotated state 1
transitions

/L

A

annotated state 1
att

enter the state via
state transition
-

| transition tr

JAERN

remain at the state

‘ transition tr |

conditions (tr) at

source (tr) att-p e

condition
generation node

7\

\
£ \

Fig. 7. A fault tree template for FSMs(2)

Remain at the state
through enabled
outgoing transition

remain at the state
because of disabled
outgoing transition

Y I\
fIl
. transition tr transition tr ‘ ‘ transition tr ‘
/ \ (0 /N
L\

[ transition tr

7N
# — A
not conditions (tr) { e
source (tr) att-p a source (tr) att-p conditions {tr) at
t-p
condition condition
generation node generation node
A\
/\ A
Fig. 8. A fault tree template for FSMs(3)

stayed at previous state. When a state of TTS is on the source
state of current state’s ingoing transition k_delay unit times
before and condition of the transition is satisfied for k_delay



timed history variable node
output = value or state

I " annotation |

annotation | "~ annotation
state = annotated |

1
| function variable I | value 1 RHS of
inade output = \,a\ue laction statement ? @

annotation 1T
value = RHS of |
action statement

1 iiiiiiiiii / IL\
/TN /-r \ /T‘\ /’T \\‘
yA
/
N\

annotated state 1 annotated state n

J ,L

transitions

{1

A

remain at the state
because of disabled
outgoing transition

annotated state 1
att

enter the state via
state transition

4N

Fig. 9.

2\
2

A fault tree template for TTSs(1)

Untimed transition :
tr i
. 1

transition tr

conditiens (tr) for
[k_delay, k_delay]

cundlllcns tr) at

candition
generation node
i \ 75K
LN

Fig. 10. A fault tree template for TTSs(2)

source (tr)att-p [t-k_delay, t-p]

[ source (tr) for

unit times then the timed transition is enabled.

73

Timed transition
tr

|

| transition tr

/[
/N
[\
L_T_l
Remain at the state ‘
Remain at the state
because of
. ; through enabled
disabled outgoing < .
o outgoing transition
transition
" v

Not condition for
[k_delay, k_delay]

Condition
generation node

b \

A fault tree template for TTSs(3)

Conditionitr) for

State for [t - , t -p] Dhdoléir. K detag]

State for [t
k_delay .t -p]

Fig. 11.

C. Construction Algorithm

NuFTA analyze an NuSCR specification using the fault
tree templates for each NuSCR variable node. Construction
of a software fault tree using NuFTA starts when an analyst
enters a failure as an input to NuFTA. NuFTA finds a variable
node in an NuSCR specification that generates the failure.
The remainder sequence of analysis is divided by type of
variable node. If the variable node is defined with SDT, NuFTA
finds an output value at action statements and conditions of
the output value at condition statements. If the variable node
is defined with FSM or TTS, NuFTA unfolds the variable
node with annotated FSM or annotated TTS. Because states in
FSM and TTS have no own output value in them, algorithmic
construction needs another format which has states’ notified
output value. Then NuFTA finds an output value at annotated
states and that’s conditions at annotated transitions. When
NuFTA find NuSCR variable node in conditions of an output,
NuFTA attaches a new fault tree for the variable node to the
cause node. If all leaf nodes of fault tree are input nodes or
states of NuSCR specification, NuFTA finishes the analysis on
the failure. The specific algorithm are as follows.

Function create Fault Tree is a function that constructs fault
tree data. According type of NuSCR variable node, the func-
tion calls buildSDTTree and buildFSMTree. They construct
fault trees using each template and return the trees to Function
create Fault Tree. A node of fault tree that contains cause of
failure called cause node. Causes of a failure can be value
of NuSCR input node or variable node. If the cause node has
variable node, Function create Fault Tree recursively call itself
and attach a fault tree for the variable node.



Function create Fault Tree
U is a set of candidate fault node
s is a root node of fault tree

U:={s}

while(U != {})

u is element of U

k is type of NuSCR variable node of u

if(k is type of SDT)
connect(u, buildSDTTree(u))

else if(k is FSM)
a := annotate_ FSM(FSM of u)
connect(u, buildFSMTree(a))
connect(cause node, u)

T is set of variable nodes in causes of failure
U :=(U-{u}pUT

Function annotate_ FSM
Input:FSM
Output:annotated FSM

ss is source state

vs is value of source state
ts is target state

vt is value of target state

T is set of transition
closed is set of transition
Q is stack of (state, output value of state)

is :=initial state
n :=output value of initial state
S :=(s,n) U S

push(Q, (is,n))

while(Q '={})
(ss,ns) := pop(Q)
for each transition t from ss
ts := target state of t
if(t has assignment)
vt := assigned value after processing t
else
vt:=n

if(v > maxvalue)
exit for
if((ts,vt) & closed)
push(Q,(ts,vt))
T := ((ss,ns),(ts,vt)) cup T
closed := (ts, vt) cup closed
annotated FSM is combined by T and states of FSM

Constructing annotated FSM is necessary for analyzing
FSM with algorithmic way. Our former work [5] suggested
annotated FSM, but method for constructing annotated FSM
is not suggested. We constructed annotated FSM using DFS
(Depth-First Search) algorithm. Constructing annotated FSM
stars with get output value of initial state. Then, NuFTA finds
target states of outgoing transitions of initial state then insert
the state to a stack. NuFTA pop one element of the stack and
assign output value to the element and recursively finds target
state as did at initial state. When stack is empty, NuFTA stops
constructing annotated FSM. Transitions have can assignment
on output value when the conditions of transition are satisfied.
So the output value of transitions target state is assigned by
the assignment. If a transition has no assignment, output value

74

of the transitions target state assigned by output value of
transitions source state.

IV. EXPERIMENTAL RESULT

We constructed experiments for measuring cost time accord-
ing to complexity of all FODs in an NuSCR specification about
shutdown signal (trip_out = true) and pre-shutdown signal
(pretrip_out = true). FODs composed a few NuSCR variable
nodes and specify shutdown logic in an RPS specification. The
variable nodes in one FOD use a same variable that represents
measurement value of RPS. The variable is called process
variable. Complexity of shutdown signal defined with a pro-
cess variables range and causes that generate failure value on
an NuSCR specification. States of annotated automata (FSM
or TTS) have own output value and name of original state.
Therefore, when NuFTA unfolds FSM and TTS to annotated
automata, number of annotated states can be increased propor-
tionally to range of process variable. Before measure cost time
of all FODs, we constructed first experiment for measuring
time of analysis according to range of process variable. Target
is a simple FOD, ¢g_LO_SGI_LEVEL. This FOD is composed
two SDTs and one TTS which has three states and four
transitions. Range of process variable in g_LO_SGI_LEVEL
is ‘0~100’, but we adjust that for experiments. Table 1 shows
result of first experiment.

TABLE 1
TIME COST ACCORDING TO PROCESS RANGE OF VARIALBE OF
¢_LO_SGI_LEVEL

pretrip out(ms)

Range of a process variable | trip out(ms)
0~10 96
0~100 138
0~1000 351
0~10000 3377

93
109
170
453

As we assumed, result shows that the cost time is increases
according to range of process variable. We constructed second
experiment that measures cost time of analysis for all FODs.
If the cost time is over 5 minutes, we stopped the analysis.

Table 2 shows the result.

TABLE II
ANALYSIS TIME OF EACH FOD

Range of | Analysis time | Analysis time
Name of FOD a process of trip of pretrip
variable out(ms) out(ms)
g_VAR_OVER_PWR 0~100 - -
g LO_SGI_LEVEL 0~100 138 109
g_HI_ LOG_POWER 0~100 92 142
g_LO_PZR_PRESS 0~100 205 197
g_SGI_LO_FLOW 0~100 111 108
g_HI_LOCAL_POWER 0~2 8 4

Except one FOD, g VAR_OVER_PWR, NuFTA shows good
performance of analysis for NuSCR specification. The FOD
is much more complex than other FODs. It composed with 6



SDTs, 2 TTSs, and one FSM which has 4 states and 16 transi-
tions. With experiments for small range of a process variable
on g_VAR_OVER_PWR, we concluded that constructed fault
tree for g VAR_OVER_PWR correctly. But because of lack of
optimization of source code and data structure, NuFTA need
large needs long cost time and large memory for analyzing
the FOD.

V. CONCLUSION AND FUTURE WORK

We proposed a domain-specific safety analysis technique
NuFTA for the domain of plant protection systems in Korean
nuclear power plants. We restricted the application domain of
safety analysis into specific types of critical failures, ’shut-
down’ signal in nuclear power plants. It made possible to
automate a large part of the analysis and also improve its qual-
ity too. The NuFTA mechanically constructs a software fault
tree of nuclear reactor protection systems specified formally
with NuSCR. Within the domain specific restrictions, NuFTA
can construct software fault trees mechanically and aid safety
experts’ analysis efficiently. Experiment result showed that
NuFTA can construct software fault trees for important signals
but needs optimizations of source code and data structure for
more efficient mechanical construction. Furthermore, we plan
to expand system cycles of the software fault trees according
to user’s request.

ACKNOWLEDGMENT

This research was supported by the MKE(The Ministry of
Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program supervised by
the NIPA(National IT Industry Promotion Agency (NIPA-
2011-(C1090-1131-0008), NIPA-2011-C1090-1131-0003), un-
der the Development of Performance Improvement Technol-
ogy for Engineering Tool of Safety PLC(Programmable Logic
Controller) program supervised by the KETEP(Korea Institute
of Energy Technology Evaluation And Planning) (KETEP-
2010-T1001-01038), Basic Science Research Program through
the National Research Foundation of Korea(NRF) funded by
the Ministry of Education, Science and Technology(2010-
0002566) and IT R&D Program of MKE/KEIT [10035708,
“The Development of CPS(Cyber-Physical Systems) Core
Technologies for High Confidential Autonomic Control Soft-
ware”’]

REFERENCES

International. Electrotechnical Commission (IEC). International standard
for programmable controllers: Programming languages, 1993. part 3.

D. Harel. On visual formalism. Communication of the ACM, 31(5):514-
530, 1986.

KAERI(Korea Atomic Energy Rearch Institute). SRS for Reactor Protec-
tion System. KNICS-RPS-SRS101 Rev.00, 2003.

KAERI(Korea Atomic Energy Rearch Institute). Fromal SRS for Reactor
Protection System. KNICS-RPS-SVR131-01 Rev.00, 2005.

T. Kim, J. Yoo, and S. Cha. A Synthesis Method of Software FaultTree
from NuSCR Formal Specification using Templates. Journal of the
Korean Institute of Information Scientists and Engineers - Software and
Application (in Korean), 32(12):1178-1191, 2005.

KNICS. http://www.knics.re.kr/english/eindex.html.

[71 N. G. Leveson. SAFEWARE, System safety and Computers. Addison
Wesley, 1995.

75

[8] N. G. Leveson, S. Cha, and T. Shimeall. Safety verification of ada
programs using software fault trees. IEEE Software, 8(4):48-59, 1991.

[9] N. G. Leveson and P. Harvey. Analyzing software safety. IEEE Software,
9(5):569579, 1983.

[10] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Re-
quirements specification for process-control systems. IEEE Transactions
on Software Engineering, 20(9):684-707,1994.

[11] S.-Y. Min, Y. kyu Jang, S. Cha, Y.-R. Kwon and D. Bae. Safety
verification of Ada95 programs using software fault trees. In Computer
Safety, Reliability and Security (SAFECOMP) - LNCS 1698/1999, pages
226-238, 1999.

[12] R. Mojdehbakhsh, S. Subramanian, R. Vishnuvajjala, W. Tsai, and L. El-
liott. A process for software requirements safety analysis./n International
Symposium on Software Reliability Engineering, pages 45-54, 1994.

[13] Y. Oh, J. Yoo, S. Cha, and H. S. Son. Software Safety Analysis of
Function Block Diagrams using Fault Trees. Reliability Engineering and
System Safety, 88(3):215-228, 2005.

[14] Y. Papadopoulos and M. Maruhn. Model-based synthesis of fault trees
from matlab-simulink models. In the 2001 International Conference on
Dependable Systems and Networks (DSNOI), pages 7782, 2001.

[15] Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner. Analysis
and synthesis of the behaviour of complex programmable electronic
systems in conditions of failure. Reliability Engineering and System
Safety, 71(3):229247, 2001.

[16] G.-Y. Park, K. Y. Koh, E. Jee, and P. H. Seong. Fault tree analysis of
KNICS RPS software. Nuclear Engineering and Technology, 40(5):397-
408, 2008.

[17] V. Ratan, K. Partridge, J. Reese, and N. Leveson. Safety analysis tools
for requirements specifications. In the 7thCOMPASS Workshop, pages
149160, 1996.

[18] K. Sullivan, J. Dugan, and C. Coppit. The Galileo fault tree analysis
tool. In the 29th Annual International Symposium on Fault-Tolerant
Computing, pages 232235, 1999.

[19] K. Vemuri, J. Dugan, and K. Sullivan. Automatic synthesis of fault trees
for computer-based systems. /[EEE Transactions on Reliability, 48(4):394-
402, 1999.

[20] J. Yoo, S. Cha, and H. S. Son. Automatic Generation of Goal-Treefrom
Statecharts Requirements Specification. America Nuclear Society Trans-
actions, 88:37-38, 2003.

[21] J. Yoo, E. Jee, and S. S. Cha. Formal Modeling and Verification of
Safety-Critical Software. IEEE Software, 26(3):4249, May/June 2009.
[22] J. Yoo, T. Kim, S. Cha, J.-S. Lee, and H. S. Son. A Formal Software
Requirements Specification Method for Digital Nuclear Plants Protection

Systems. Journal of Systems and Software, 74(1):7383, 2005.



