

SSIRI 2011, Jeju island

A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems

Sanghyun Yoon Dependable Software Laboratory Konkuk University, Korea

June 28, 2011

Contents

- Introduction
- Background
 - Software Fault Tree Analysis
 - A Formal Software Requirement Specification method, NuSCR
- Our suggestion : NuFTA
 - Overview of NuFTA
 - Software fault tree templates for NuSCR nodes
 - Experimental Result
- Conclusion & Future Work

Introduction(1)

- Failures of safety-critical systems incur catastrophic disaster
 - The systems require rigorous quality demonstration.
- Safety analysis tries to assure the systems' safety through performing various safety analysis techniques
 - FTA (Fault Tree Analysis), FMEA (Failure Mode and Effect Analysis), HAZOP (Hazard and Operability study).
- Safety experts apply the techniques manually
 - Quality and correctness of the analysis result totally depends on the knowledge and experience of the experts.

Introduction(2)

- Many safety analysis techniques focus on mechanical generation of software fault tree.
- If we restrict the application domain of safety analysis into some critical failures, we can use the safety analysis techniques more efficiently.
- Our target domain was KNICS(Korea Nuclear Instrumentation and Control System) RPS(Reactor Protection System).
- Prototype version of KNICS RPS is specified with NuSCR.
- We propose a CASE tool, *NuFTA*
 - NuFTA is a CASE tool for digital nuclear RPS.
 - NuFTA generates software fault tree mechanically from an *NuSCR* specification.

BACKGROUND

Software Fault Tree Analysis

- Software Fault Tree Analysis(SFTA)
 - Target of SFTA is software of a system.
 - Deductive and top-down method of analyzing system.
 - Identifying all of the associated elements using boolean gate that could cause top event(failure) to occur.
- Minimal cut-set
 - A basic set of events that can cause failure.
 - Safety experts use minimal cut-set to obtain an estimate of reliability for complex fault tree.

Subsystem A = (1 | 2) | (3 & 4 & 5) | (6 | (7 & 8)) <Minimal cut-set of subsystem A>

<A fault tree for subsystem A>

KU KONKUK UNIVERSITY

A Formal Software Requirement Specification method - NuSCR(1)

- Extended SCR (Software Cost Reduction, Heninger, 1980) for RPS
- Sequential System.
- An FOD(Function Overview Diagram) is composed of variable nodes.
- Variable nodes

NDABLE SOFTWARE

- Function variable node(SDT), prefix : f
- History variable node(FSM), prefix : h
- Timed-history variable node(TTS), prefix : *th*

A Formal Software Requirement Specification method - NuSCR(2)

- Function variable node is defined with structured decision table(SDT).
- SDT is composed of condition statements and action statements.

Structured Decision Table:						
Conditions	1	2	3			
<pre>th_VAR_OVER_PWR_Trip_Logic = true & f_VAR_OVER_PWR_Op_Byp_Init = false</pre>	Т	-	F			
f_Mod_Err = true f_VAR_OVER_PWR_Chan_Err = true f_VAR_OVER _PWR_PV_Err = true	-	Т	F			
Action	1	2	3			
f_VAR_OVER_PWR_Trip_Out := true	0	0				
f_VAR_OVER_PWR_Trip_Out := false			0			

<A definition of function variable node(Structured Decision Table)>

A Formal Software Requirement Specification method - NuSCR(3)

<Timed-history variable node(Timed Transition System)>

NuFTA

Overview of NuFTA

- Purpose
 - Mechanically generates a software fault tree for analysts.
 - Root node of SFT : trip/pre-trip(shut-down) signal
 - Analysis result : graphical fault tree, logical expression
- Software fault tree constructing process using NuFTA
 - 1) Analyst selects a node generating shutdown signal in NuSRS (NuSCR supporting tool).
 - 2) The NuFTA analyzes backwardly causes of the signal throughout all connected nodes in an FOD.
 - 3) Using fault tree templates for NuSCR nodes, the NuFTA constructs a software fault tree for the node.
 - 4) The NuFTA produces a logical expression(minimal cut-set) representing the generated software fault tree.

Software fault tree templates for NuSCR nodes(1)

- T. Kim suggested templates for NuSCR nodes in A Synthesis Method of Software Fault Tree from NuSCR Formal Specification using Templates(2005).
- We modified templates and used for developing NuFTA.
- NuFTA uses software fault tree templates for analyzing variable nodes of NuSCR specifications.
- For analyzing NuSCR nodes, the templates classifies
 - Relational operator of action/assign statement
 - Definition of right hand side of action/assign statement

Software fault tree templates for NuSCR nodes(2)

• This part of SDT template classifies relational operator of action statement.

Software fault tree templates for NuSCR nodes(3)

<A template for SDT(2)>

- This part of SDT template classifies definition of RHS of action statement.
 - function variable node = constant - $e. g. f_X = 1$
 - function variable node = other variable node + constant
 - $e.g. f_X = th_Trip_Logic + 1$
 - NuFTA additionally attaches a sub-tree for output value of *th_Trip_Logic*
 - function variable node = function variable node + constant
 - RHS has output value of previous cycle
 - $e.g. f_X = f_X + 1$
 - NuFTA additionally attaches a sub-tree for output value of <u>f_X</u> on previous cycle.

Annotated automata

- History and timed-history variable are defined with automata
 - Output values of automata are not specified on states
 - We need to specify output values on states for algorithmic analysis.
- Our suggestion: Annotated automata
 - Unfolded automata whose states specified own output value.
 - NuFTA unfolds automata then analyze the annotated automata.

Software fault tree templates for NuSCR nodes(4)

• A template for TTS(1)

Software fault tree templates for NuSCR nodes(5)

•

Software fault tree templates for NuSCR nodes(6)

Software fault tree templates for NuSCR nodes(7)

Experimental Result(1)

• We used a prototype version of requirement specification of KNICS RPS.

<FODs of <u>g_BP></u>

21

Experimental Result(2)

Name of FOD	Range of a process variable	Analysis time of <i>trip_out</i> (ms)	Analysis time of <i>pretrip_out</i> (ms)
g_VAR_OVER_PWR	0~100	-	-
g_lO_SG1_LEVEL	0~100	138	109
g_HI_LOG_POWER	0~100	92	142
g_LO_PZR_PRESS	0~100	205	197
g_SG1_LO_FLOW	0~100	111	108
g_HI_LOCAL_POWER	0~2	8	4

- NuFTA constructed SFT from FODs, except the most complex FOD.
- Cause of this problem : state explosion problem
 - Optimization of source code and data structure is required.

Conclusion & Future Work

- Conclusion
 - NuFTA is a CASE tool supporting software fault tree analysis for analysts.
 - We restricted application domain of safety analysis into specific type of critical failure, *'shut down'*.
 - We automated large part of safety analysis.

- Future work
 - Optimization of code and data structure
 - Definition of semantics for time constraints

