
Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

A Software Fault Tree Analysis Technique for Formal Requirement
Specifications of Nuclear Reactor Protection Systems☆

Sejin Junga, Junbeom Yoo⁎,a, Young-Jun Leeb
a Konkuk University, Republic of Korea
b Korea Atomic Energy Research Institute, Republic of Korea

A R T I C L E I N F O

Keywords:
Software Safety Analysis
Software Fault Tree Analysis
Requirements Specification
Formal Specification

A B S T R A C T

Rigorous safety demonstration of software, as well as systems, is required when developing digital reactor
protection systems in nuclear power plants. Various safety analysis techniques try to identify, analyze, and find
remedies for potential hazards at each stage of software development life-cycle. This paper proposes a software
fault tree analysis technique for software requirements written in the NuSCR formal specification language. The
proposed method can mechanically construct software fault trees and calculate minimal cut-sets, encompassing
timing constraints of multi-cycles, from NuSCR formal specifications. We also improved the fault tree con-
struction and analysis tool into “NuFTA 2.0” to cope with multi-cycled executions. The case study with a pre-
liminary version of requirements specification for a Korean nuclear power plant in operation shows the proposed
technique’s effectiveness and applicability to other V&Vs such as simulation.

1. Introduction

Rigorous safety demonstration of software through safety analysis is
highly recommended by government authorities [2,3] and international
standards [4–6], when developing nuclear reactor protection system
(RPS). Various safety analysis techniques such as fault tree analysis
(FTA), failure mode and effect analysis (FMEA) and Hazard and oper-
ability (HAZOP) try to identify potential hazards in software and sys-
tems, analyze their cause and effect, and then propose remedies/solu-
tions to avoid/overcome identified potential hazards. Software safety
analysis techniques [7,8] are also recommended to apply at each stage
of software development life-cycle [9,10] as shown in [11,12].

FTA is one of the most widely used safety/hazard analysis techni-
ques [13,14], and its application to software is often called software
fault tree analysis (SFTA). SFTA is used to detect software logic errors,
identify conditions that need to initiate fail-safe and fault tolerance
mechanism, and generate effective test cases. SFTA techniques have
been used in various software development phases and several domains
by manually or automatically. For example, [15–17] proposed SFTA
techniques for safety-critical software and systems in nuclear power
plants (NPP). They constructed software fault trees mechanically or
used fault tree templates to construct them from software require-
ments/design specifications or codes. Fault tree analysis with unified
modelling language (UML) such as generating fault trees from UML use

case [18] or activity diagram [19] is also an example of SFTA. We have
also proposed a SFTA technique - ‘NuFTA’ [20], which can mechanically
generate fault trees and refined logic formula from a software re-
quirement specifications written in NuSCR (Nuclear Software Cost Re-
duction) [21] formal specification language.

Software in nuclear RPSs encompasses the timing-constrained re-
quirements of multi-cycles, which should be well considered to define
important system operations such as the shutdown of nuclear reactors
[22]. While such systems like NPPs operate under continuous timing
constraints, previous researches, including NuFTA, does not take into
account the timing constraints of multi cycles precisely. This paper
proposes a refined SFTA technique that resolves two technical chal-
lenges left by our prevous work. We also implemented it into a sup-
porting tool “NuFTA 2.0”. (1) Our former work could deal with only one
execution cycle of a whole software system, due to its theoretical basis
[16]. We defined new fault tree semantics with respect to the timing
constrains of multi-cycles, and proposed a new set of fault-tree tem-
plates. NuFTA 2.0 now constructs a fault tree of 100 ~ 200 execution
cycles without being overwhelmed by unnecessary information. (2) The
previous version of NuFTA produced too large unrefined logic formula
(similar to cut-sets) to analyze. We proposed a new fault tree con-
struction algorithm based on set theory [23]. NuFTA 2.0 now constructs
a fault tree of 2,389 nodes in 0.228 seconds, and also produces well-
refined minimal cut-sets (MCSs) in 1.037 seconds. The MCSs, which

https://doi.org/10.1016/j.ress.2020.107064
Received 3 September 2019; Received in revised form 27 May 2020; Accepted 3 June 2020

☆ A preliminary version of this paper was published in KNS Autumn Meeting 2016[1]
⁎ Corresponding author.
E-mail address: jbyoo@konkuk.ac.kr (J. Yoo).

Reliability Engineering and System Safety 203 (2020) 107064

Available online 10 June 2020
0951-8320/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2020.107064
https://doi.org/10.1016/j.ress.2020.107064
mailto:jbyoo@konkuk.ac.kr
https://doi.org/10.1016/j.ress.2020.107064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2020.107064&domain=pdf

take into account multi-cycled timing constraints of the software re-
quirements specifications, can also be used for generating simulation
scenarios in design or implementation phases.

We performed a case study on a preliminary version [24] of an RPS
in a Korean nuclear power plant, it showed that the proposed SFTA
technique and the supporting tool, NuFTA 2.0, can help safety analysts
to analyze the RPS software more efficiently and precisely, it also helps
developers prepare simulation scenarios mechanically. The remainder
of the paper is organized as follows: Section 2 briefly overviews the
SFTA techniques, and introduces the NuSCR formal requirements spe-
cification language to aid understanding of the software fault tree (SFT)
templates proposed in the paper. Section 6 explains the new SFT tem-
plates, the new SFT construction algorithm, and the multi-cycled MCSs
calcuation algorithm. Section 4 describes the new supporting tool
NuFTA 2.0, and we explain the case study in Section 5. Section 6 con-
cludes the paper and gives remarks on our future research direction.

2. Background

2.1. Software Fault Tree Analysis

FTA [25] is a top down, deductive failure analysis in which an
undesired state of a system is analyzed using Boolean logic to combine a
series of lower-level events. SFTA, whose target is software, is one of
the softwrae safety analysis techniques trying to detect software logic
errors, determine the conditions under which fault tolerance and fail-
safe procedures should be initiated, and facilitates effective safety
testing by pinpointing critical test cases [26]. The SFTA technique can
be applied at any stage of the software development lifecycle, such as
requirements analysis, design or coding. SFTA is often done qualita-
tively, while traditional FTA can be done either qualitatively or quan-
titatively, due to the existence of software-related failure data [27,28].
SFTA is typically hard and unavailalbe to estimate probabilities of
failures without probability information of the software elements.
Functional safety standards such as IEC-61508[6] and ISO-26262[29]
use a predefined failure probability just to define the safety integrity
level of software elements not to do analyze with quantitatevely.

2.2. NuSCR

NuSCR [21] is a formal software requirements specification lan-
guage, targeting for safety-critical control software in nuclear power
plants. It extends software cost reduction (SCR) [30] with finite
state machine (FSM) and time-based notation in addition to deci-
sion tables in order to reduce the complexity of formal specifications.
NuSCR is also a corner-stone of the “NuDE 2.0,” a formal method-based
software development, verification, and safety analysis environment for
safety-critical digital instrumentation and control system (I&Cs) that is
implemented with a programmable logic controller (PLC) and field-
programmable gate array. It is a model-based development framework
for nuclear domain. More than 20 case studies were performed by NuDE
2.0 as summarized in [31,32]. ⟨Fig. 1(a) ⟩ shows the NuSCR modeling
tool - “NuSRS 2.1,” which is one of 13 tools in NuDE 2.0. We write
‘HI_LOG_POWER’ as ‘X’ in ⟨ Fig. 1 (D)⟩ for improving readability.

⟨ Fig. 1(b) ~ (d))⟩ illustrate a part of the NuSCR specification for
g_HI_LOG_POWER, which is fixed set-point rising trip logic, in KNICS RPS
bistable process (BP) [24]. NuSCR is basically based on the Parnas’ Four-
Variable Model [33] and additionally uses three other basic constructs
such as function variable, history variable, and timed history variable to
specify functionalities easily and each variable is represented by a
variable node called the structured decision table (SDT), FSM,
and timed transition system (TTS) [34], respectively. The re-
lationship of all constructs is expressed by FOD (Function Overview

Diagram) which is a kind of data-flow diagram. The FOD allows hier-
archical modeling of arbitrary depth. ⟨Fig. 1(b)⟩ shows the FOD for the
g_HI_LOG_POWER module and ⟨Fig. 1(c)⟩ and ⟨Fig. 1(d)⟩ are the SDT
and TTS nodes in from in the ⟨Fig. 1(b)⟩.

⟨ Fig. 1(c)⟩ is a SDT for the function variable node f_HI_LOG_PO-
WER_Trip_Out in the FOD. It decides a final output of the logic according
to the value of th_HI_LOG_POWER_ Trip_logic and 3 incoming errors.
⟨Fig. 1(d)⟩ is a TTS definition for the timed history variable node
th_HI_LOG_POWER_Trip. TTS is an FSM extended with a timing con-
straint such as [a, b] onto transitions. It is interpreted as follows: “If the
condition ‘f_HI_LOG_POWER _Val_Out > k_HI_LOG_POWER_Trip_Set’ is
satisfied in state ‘Normal’, it transits to ‘Waiting’ state. In this state, if the
conditions ‘f_HI _LOG_POWER_Val_Out > k_HI_LOG _POWER_Trip_Set’
lasts for k_HI_LOG_POWER_ Trip_Delay time, then it fires the trip signal
(th_HI_LOG_POWER_Trip:=true) and transits to the ‘Trip’ state.” The TTS
expressions [k_HI_LOG_POWER_Trip_Delay, k_HI_LOG_ POWER_-
Trip_Delay] means that the condition has to remain true for k_HI_-
LOG_POWER_ Trip_Delay time units. A history variable in NuSCR is
represented by a history variable node in FOD and is defined by FSM. A
detailed explanation of the FSM is skipped because of the FSM is defined
same as TTS except for the timing constraints.

2.3. Related Work

Safety and reliability analysis of software has been studied several
ways. Vyas et al. [28] presented a literature review of software FMEA
and FTA along the software development life-cycles. Almost all SFTA of
software requirement analysis phases, as mentioned in the [28], they
have been performed manually on use cases, textual descriptions of use
case, or natural language requirements. For example, eliciting safety
requirement from use cases is proposed by [18], and it constructs a fault
tree manually from UML use case. Tiwari et al. [35] proposed SFTA and
SFMEA that use a formalized use case template, but the descriptions of
its contents are written in natural language. There are also several
software fault tree constructions and analysis techniques for require-
ments specification that are semi- or fully- automatically from formal
specification such as using Statecharts [36], RSML [37], and NuSCR
[16]. SFTA in the requirement analysis phase is used to identify the
safety-related faults in specifications or missing/weakness require-
ments.

At software design phase, SFTA is applied to design specifications,
such as the function bloack diagram (FBD) [38], UML, Etc. SFTA for the
design phase is more automated than for the requirement analysis
phases. Lauer et al. [39] introduced automatically synthesis algorithms
for generating fault trees from UML model at a design level. Dickerson
et al.[19] proposed a foraml transformation method for generating fault
trees from an UML activity diagram with definitions of semantic map-
ping rules. Oveisi et al. [40] proposed an SFTA-based approach for
analyzing operational use cases in cyber physical systems. It auto-
matically constructs a fault tree from use case descriptions, however, it
only considers events of software system defined in use cases. In the
[15,17], the authors defined fault tree templates for FBDs, and applied
them to the shutdown logic for an RPS in Korea to analyze logical
correctness of the FBD designs. [41] proposed a tool and method to
construct software fault tree efficiently by reusing SFTA information,
however, fault tree construction is based on manual generation firstly.

Generating fault trees from models is also one of issues for safety
analysis. Kabir [42] reviewed the standard fault tree analysis methods
and some of its exetensions, such as dynamic, state/event, or compo-
nent fault trees, the author also invenstigated a number of prominent
model based dependability analysis techniques that use fault trees.
Many researches introduced in [42], focus on system-level analysis for
reliability and dependability analysis, and software requirement level

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

2

analysis is less considerations. Generating fault trees from system
modelling language (SysML) diagram [43,44] and generating compo-
nent fault tree by using the architetural layers [45] are several studies
for fault tree analysis by automatic generation. [46] proposed a method
to generate dynamic fault trees automatically from system models that
are internal block diagram and block definition diagram, with con-
sidering redundancy profile for systems. [46] also introduces several
papers about generating fault trees from system models. Alshboul et al.
[47] proposed an automatic derivation method of fault trees from
SysML, it uses behavior and state diagram of the SysML with failure
informatio to generate fault trees. These automatic generation method
of fault trees are concerned to behavior model of system-level.

Tiwari and Gupta [48] proposed an approach for generating test
cases from fault trees and software success tree. They constructed

software success tree and SFT from UML activity diagram with mapping
rules, and MCSs, which are created from the trees, are used to generate
test cases for testing normal/exceptional behavior. Li et al. [49] in-
troduced a use of fault tree analysis to software testing for improving
quality and efficiency of the testing. The authors distincted importance
elementary events by quantitative analysis using probability of each
nodes, which represents a basic event of software. Philip et al. [50]
proposed a framework that is automatic generation of safety validation
test cases from architecture analysis and design language (AADL) ex-
tended model for software system. The framework of [50] constructs
fault trees from AADL model and fault model, and generate test cases at
system level, using minimal cut-sets and safety properties. Yadav et al.
[51] proposed a model to predict the software defect density indicator
of early phases of software development life-cycles. Several software

Fig. 1. A part of the NuSCR specification for the g_HI_LOG_POWER module in NuSRS (ver. 2.1)

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

3

metrics of requirement analysis and design phases of software devel-
opment is used and selected to predict reliability with fuzzy inferences
as a quantitative analysis. Sinha et al. [52] proposed a model to predict
reliability/availability of hardware-software combined system at early
design phases. The authors identified functional requirements and
constructed component/software behavior model. A simulation of the
system behavior is used to predict reliability and availability of the
system [52]. [53] introduced basic information of software reliability
engineering such as reliability prediction model, reliability measure-
ment, management. Software reliability analysis need to probability
and failure information for predicting or measurement.

There are many approaches to fault trees for software and systems,
in addition there are several extensions such as dynamic fault trees,
state event fault trees. A method of generating fault trees from models
that are system layer, SysML, or UML have been also studied with much
attention. A lot of studies on fault tree analysis, including SFTA, focus
on failure or reliability analysis of behavior of the system/software. A
fault tree analysis of software that contains timing-constrained re-
quirements of multi-cycles in software requirements level is less studied
before. The proposed method and template in this paper can auto-
matically generate fault trees with considering defined logics of NuSCR
software requirements specification and containing multi-cycled con-
ditions as a qualitative analysis. The MCSs, generated by proposed
method in this paper, contains information and behavior of state
transitions (i.e. sequence of behavior) according to the time steps as
defined in software requirement specification and it can be used for
simulation-based testing by generating scenarios. A detailed explana-
tion and application of the proposed method and template is explained
in next section.

3. The Software Fault Tree Analysis for NuSCR specifications

This section introduces a SFTA technique for software requirements
specification written in NuSCR. It mechanically generates a set of
software fault trees from formal specification, it also generates well-
refined minimal cut-sets that encompass the timing constraints of multi-
cycled executions. Section 3.1 proposes the fault tree templates used to
construct SFTs mechanically from NuSCR formal requirements specifi-
cations. Section 3.2 explains the SFT construction algorithm which uses
the SFT templates. Section 3.3 shows the minimal cut-sets calculation
algorithms in the SFTs.

3.1. The Software Fault Tree Templates

A NuSCR formal requirements specification consists of 3 constructs
defined as SDT, FSM and TTS, respectively. Our previous work [16,20]
proposed fault tree templates for these constructs, but we could apply
them to software behavior of one execution only, which is too strict to
perform SFTA exhaustively. In order to do SFTA for the behavior of
multi-cycled executions, this paper re-defined the fault tree template for
the timed-history variables defined as TTS. The new SFT template for
TTS reflects software behavior of multi-cycles as well as in a single
cycle. We also refined the SFT templates for SDT and FSM in order to
incorporate additional information for multi-cycled executions.

3.1.1. The SFT Templates for SDT
⟨ Fig. 2 ⟩ is the software fault tree template for SDT. We summarized

the explanation of each element of the template in ⟨Table 1⟩. The root
node may have a specific value or a range of values, since a function

Fig. 2. An SFT template for SDT

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

4

variable node is a kind of mathematical function (i.e., a decision table).
The nodes of dotted box are conditional nodes, indicating the value
type of root node. All three types of sub-trees can have the similar
templates. The action generation node and condition generation node
means a decided output condition of action and condition nodes.

3.1.2. The SFT Templates for FSM
The history variable node is defined as an FSM consisting of the

finite number of states, transitions and transition labels (i.e., “condition
/ action”). The NuSCR FSM is a ’mealy-typed machine’ [54], and the
output is formed by both the state and the transition. It makes us dif-
ficult to derive an output value directly from an FSM, and we need to
transform the FSM into the moore-type machine[55], whose output is
decided by the state information only. We unfold the NuSCR FSMs into
‘annotated FSMs’ where the configurations are clearly marked to be
analyzed mechanically, by pairing a state and corresponding incoming
transitions.

⟨ Algorithm 1 ⟩ shows the process of unfolding FSMs by traversing
all transitions of all states in a depth-first strategy. If a transition has no
action statement, it assigns the output value of the transitions’s source
state to the action statement of the transition, as line 3-5. Lines 6-12
also checks whether the annotated state that we want to create has
already been created or not. If not, it creates a new annotated state and
set the necessary information, as line 13-16.

⟨ Fig. 3 ⟩ is the software fault tree template for FSM node. We
summarized its detailed explanation in ⟨Table 2⟩. The root node of the
template may have a specific value, state, or range of values, since a
history variable node is a kind of state-based mathematical model. The
nodes of dotted boxes are conditional nodes, indicating the value type
of the root node, and all types of sub-trees can have similar sub-tem-
plates. The nodes of pink box are case nodes, showing the case where
the FSM is in the state at time t.

Table 1
A description of the SFT template for SDT

Conditional Nodes Exact The output value of root node is the same value of the right hand side (RHS) of an action statement.
overlapped The output value of root node is overlapped with the RHS of an action statement.
Undecidable The exact relation between the output value and the action statement is undecidable.

Statement Nodes Action Statement An action corresponding to one row of SDT Actions, i.e., possible output values of the node
Condition Statements A condition part corresponding to the rows of SDT Conditions, i.e., action statements

Require: f sm: FSM,annotatedS tate: an initial annotated state of FSM
1: function unfoldFSM(f sm,annotatedS tate)
2: for all Transition t∈ annotatedS tate.getOutgoingTransitions()do
3: if t.hasActionStatement() is falsethen
4: t.setActionStatement(annotatedS tate.getActionStatement())
5: end if
6: for all AnnotatedS tate tmpAS∈ f sm.getAnnoatedStates()do
7: if checkExistingAnnotatedS tate(tmpAS, t) is truethen
8: tmpAS.setPreviousAnnotatedS tate(annotatedS tate)
9: exist← true

10: break
11: end if
12: end for
13: if existis falsethen
14: Create a annotated statenextAS
15: settingAnnotatedS tate(nextAS, f sm, t, annotatedS tate)
16: unfoldFSM(f sm,nextAS)
17: end if
18: end for
19: end function

Algorithm 1. Unfolding FSM

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

5

3.1.3. The SFT Templates for TTS
The timed history variable node is defined as an TTS, which is an

extension of FSMs with timing constraints. The template for TTS is very
similar to the one for FSM, except for the subtree relating to timing
constraints. The TTS is also unfolded to an ‘annotated TTSs’ by the guide
in ⟨Algorithm 1⟩. ⟨Fig. 4⟩ is the software fault tree template for the TTS
node. The template for the TTS is fundamentally the same as for FSM,

except that the time nodes are different. The time nodes are indicated
with the yellow and show transitions containing a timing constraint. We
summarized the template elements in ⟨Table 3⟩.

Time nodes can be seen as a sequence of behaviors at each discrete
time unit. When the satisfaction time is the specific time that the con-
dition has to remain true, the behavior is as follows:

Fig. 3. An SFT template for FSM

Table 2
A description of the SFT template for FSM

Conditional Nodes Exact The output value of root node is the same value of the RHS of an action statement.
Overlapped The output value of root node is overlapped with the RHS of an action statement.
Undecidable The exact relation between the output value and the action statement is undecidable.
Equal The output state of root node is the same state of the history variable node.

Case Nodes Entering the state Entering the state through satisfying the condition of the ingoing transition
Remaining Remaining at the state because the conditions of all outgoing transition aren’t satisfied

Statement Nodes Action Statement An action parts corresponding to the output of FSM’s annotated state, i.e., possible output values of the node
Condition Statements A condition parts corresponding to the transition, i.e., conditions for satisfying the above case node

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

6

• During the satisfaction time, the TTS remains in the state and the
logic condition has to remain true.
• Before the satisfaction time, the TTS enters the state via state
transitions or the TTS remains in the state and the logic condition is
false.

To represent the time nodes in detail, we make a set of software
fault trees corresponding to a sequence of the behaviors. ⟨Fig. 5⟩ shows
the set of software fault trees when the satisfaction time is k_delay.

⟨ Fig. 6 ⟩ and ⟨Fig. 7⟩ are the software fault tree templates for a
sequence of behaviors. Each template is used to generate an element of

a set of software fault trees. ⟨Fig. 6⟩ is the template for the behaviors
during the satisfaction time and it ensures that the TTS is in a specific
state at a certain time and satisfies a logic condition. It is used to
construct the SFT for the behavior of the TTS from before the current
time to before the time to be satisfied (i.e., t-1 ~ t-(certain time-1)).
⟨Fig. 7⟩ is a template for the behaviors before the satisfaction time and
it ensures that a transition to the specific state occurs or remains in that
specific state while not satisfying a logic condition. It is used to con-
struct the SFT for the behavior of the TTS at the before a certain time in
the current time. (i.e., t-certain time). The elements of each template are
the same as the template for the TTS.

Fig. 4. A SFT template for TTS

Table 3
A description of the SFT template for TTS

Satisfy the timing constraints The condition and state are maintained for k_delay time.
Time Nodes Un-satisfy the timing

constraints
- Unsatisfying the Logic condition
The input value entered into TT S at current cycle doesn’t satisfy the logic condition regardless of whether the state and condition
are satisfied for a certain time.
- Unsatisfying the time condition
The input value entered into TTS at current cycle satisfy the loc,z.ic condition but the state and the condition aren’t maintained for
elay time. In other words, the state and the condition are maintained for one of the times between t-1 and t-(k_delay-1)

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

7

Fig. 5. A set of SFT related to the time nodes

Fig. 6. A SFT template for the behaviors during the satisfaction time of the time node

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

8

3.2. The Software Fault Tree Construction Algorithms

Constructing software fault trees for NuSCR requirement specifica-
tions involves two algorithms: 1) generating a foundation SFT : con-
structs a foundation SFT by exploring all nodes of FODs; 2) generating a
set of SFTs for multi-cycles : constructs a set of SFTs corresponding to
the time nodes of the SFTs for multi-cycles. SFT construction firsts
constructs a software fault tree by backwardly analyzing possible causes
of the output value represented by the root node throughout all con-
nected nodes in FODs. The next step of construction is generating fault
trees corresponding to time nodes in the foundation SFTs, it constructs
an additional set of fault trees that consider the timing constraints of
multi-cycles. ⟨Fig. 8⟩ shows a process of SFT construction algorithm.
All SFT construction uses the template which is outlined in the previous
section.

3.2.1. The SFT Construction Algorithms for a foundation fault tree
In previous work [16,20], we proposed an SFT construction algo-

rithm corresponding to one single cycle. The software fault tree con-
structed, however, is too large to perform SFTA, since it uses an explicit
search strategy which finds a possible cause by unfolding the symbol
value into the concrete value. A symbolic search strategy, which finds a
possible cause by changing the symbol value by comparing the symbol
value with the output value, needs to overcome the restriction as the
cases of formal verification techniques such as symbolic model checking
[56].

⟨ Algorithm 2 ⟩ shows the process of generating foundation SFTs.
The algorithm recursively expands SFTs from a root node. The expan-
sion terminates when all terminal nodes of the SFT consist of input
nodes or states of the NuSCR specification. In lines 2-4, if the variable
node is defined as an FSM or TTS, it first unfolds them guided by
⟨Algorithm 1⟩. In line 5, the setSymbol() modifies the range of the RHS

Fig. 7. A SFT template for the behaviors before the satisfaction time of the time node

Fig. 8. A process of the SFT constrution algorithm

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

9

R
eq

ui
re

:
n

o
d

e:
T

he
va

ria
bl

e
no

de
,ou

tp
u

t:
T

he
va

lu
e

or
th

e
ra

ng
e,ro

o
t:

T
he

fa
ul

tt
re

e
no

de
1:

fu
nc

tio
n
g
e
n
e
r
a
t
e
S
o
ft
w
a
r
e
Fa
u
lt

T
r
e
e
(n

o
d

e
,o

u
tp

u
t,r

o
o

t)
2:

if
n

o
d

ei
s

h
is

to
ry

va
ri

a
b

le
n

o
d

eo
rt

im
e

d
h

is
to

ry
va

ri
a

b
le

n
o

d
eth

en
3:

u
n

fo
ld

F
S

M(
n

o
d

e
)

.
A

lg
or

ith
m

1
4:

en
d

if
5:

se
tS

ym
b

o
l(o

u
tp

u
t
,n

o
d

e)
.

A
lg

or
ith

m
3

6:
co

n
n

e
ct

T
e

m
p

la
te

(n
o

d
e
,

ro
o

t)
7:

C
re

at
e

a
fa

ul
tt

re
e

no
de

lis
tf

tT
e

rm
in

a
lL

is
t

8:
ft

T
e

rm
in

a
lL

is
t←

fi
n

d
T

e
rm

in
a

lN
o

d
e

L
is

t(r
o

o
t)

9:
fo

r
al

l
te

rm
in

a
lN

o
d

e∈
ft

T
e

rm
in

a
lL

is
td

o
10

:
if

te
rm

in
a

lN
o

d
ei

s
in

p
u

tn
o

d
e

so
r

st
a

te
st

he
n

11
:

co
n

tin
u

e
12

:
el

se
13

:
C

re
at

e
a

va
ria

bl
e

no
de

p
re

d
e

ce
s

so
rN

o
d

e
14

:
C

re
at

e
a

ou
tp

ut
p

re
d

e
ce

s
so

rO
u

tp
u

t
15

:
p

re
d

e
ce

ss
o

rN
o

d
e←

fi
n

d
R

e
la

te
d

N
o

d
e

In
F

O
D

(t
e

rm
in

a
lN

o
d

e
)

16
:

p
re

d
e

ce
ss

o
rO

u
tp

u
t←

e
xt

ra
ct

O
u

tp
u

t(t
e

rm
in

a
lN

o
d

e
)

17
:

ge
ne

ra
te

S
of

tw
ar

eF
au

ltT
re

e(
pr

ed
ec

es
so

rN
od

e,
pr

ed
ec

es
so

rO
ut

pu
t,

te
rm

in
al

N
od

e)
18

:
en

d
if

19
:

en
d

fo
r

20
:

en
d

fu
nc

tio
n

A
lg
or
it
hm

2.
G
en
er
at
in
g
So
ftw

ar
e
Fa
ul
tT
re
e

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

10

of the action statement and marks the RHS of the action statement,
which is an element that can be added to the template. In line 6, the
connectTemplate() function connects the template corresponding to the
variable node to the root. In lines 7-17, if there is a terminal node that
has information on the variable node while traversing all the terminal
nodes of the tree, it extracts the information about the application of
the template related to the node and calls generateSoftwareFaultTree()
with the extracted information as an argument.

⟨ Algorithm 3 ⟩ is the algorithm for a symbolic search strategy,
which is called ‘setSymbol’ in ⟨Algorithm 2⟩. It traverses all RHS of the
action statements one by one in order to set the range and the marking.
If the type of the RHS of the action statement is a constant and its
condition is satisfied, then the RHS of the action statement is marked. If
the type of the RHS of the action statement is a range and its condition
is satisfied, then the RHS of action statement is changed to consist only
of the intersection between the output and the RHS of the action
statement and then the RHS of the action statement is marked.

3.2.2. The SFT Construction Algorithm for Multi-Cycles
⟨ Algorithm 4 ⟩ shows the process of generating a set of SFTs for

multi-cycles. In order to generate a set of SFTs for multi-cycles, the
timing constraints related nodes must exist in the foundation fault trees
generated by the previously explained algorithms. The inputs of the
algorithm are as follows: node is the timing history variable node as-
sociated with the timing constraint; state is the source of the transition
associated with the timing constraint; d is the time that the condition
and the state must be maintained in.

⟨ Algorithm 4 ⟩ is very similar to ⟨Algorithm 2⟩ except for the part
that connects the template to the root node. The algorithm generates
SFTs as much as the input time and recursively expands each SFT from
a root node. The expansion termination condition of each SFT is the
same as ⟨Algorithm 2⟩. The algorithm returns a list of the root nodes of
the generated SFT. In lines 4-6, it creates a root node at a certain time,
sets the information of the root node, and includes the generated root

Require: node: The variable node,output: The value or the range
1: function setSymbol(node,output)
2: Create a RHS of action statement listactionList
3: actionList← f indActionList(node)
4: for all action∈ actionListdo
5: if action.Typeis rangethen
6: if output.Typeis constantthen
7: if action.min≤ output.value≤ action.maxthen
8: action.setValue(output.value)
9: markPossibleCause(action)

10: end if
11: else if output.Typeis rangethen
12: if action.min> output.min andaction.max> output.maxthen
13: action.setMax(output.max)
14: markPossibleCause(action)
15: else if action.min< output.min andaction.max< output.maxthen
16: action.setMin(output.min)
17: markPossibleCause(action)
18: else if action.min< output.min andaction.max> output.maxthen
19: action.setMax(output.max)
20: action.setMin(output.min)
21: markPossibleCause(action)
22: else if action.min≥ output.min andaction.max≤ output.maxthen
23: markPossibleCause(action)
24: end if
25: end if
26: else if action.Typeis constantthen
27: if output.Typeis constantthen
28: if action.valueis equaloutput.valuethen
29: markPossibleCause(action)
30: end if
31: else if output.Typeis rangethen
32: if output.min≤ action.value≤ output.maxthen
33: markPossibleCause(action)
34: end if
35: end if
36: end if
37: end for
38: end function

Algorithm 3. Setting Symbols

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

11

R
eq

ui
re

:
n

o
d

e:
T

he
va

ria
bl

e
no

de
,st

a
te

:T
he

st
at

e
of

th
e

tim
ed

hi
st

or
y

va
ria

bl
e

no
de

,
d

:T
he

tim
e

1:
fu

nc
tio

n
g
e
n
e
r
a
t
e
S

F
Tf
o
r
T
im
e
C
y
c
le
s(

n
o

d
e
,s

ta
te
,d

)
2:

C
re

at
e

a
fa

ul
tt

re
e

no
de

lis
ts

o
ft

w
a

re
F

a
u

ltT
re

e
S

e
t

3:
fo

r
i
=

1
to

d
do

4:
C

re
at

e
a

fa
ul

tt
re

e
no

de
ro

o
t

5:
se

tt
in

g
R

o
o

tN
o

d
e

(r
o

o
t
,

n
o

d
e
,i

)
6:

so
ft

w
a

re
F

a
u

ltT
re

e
S

e
t
.a

d
d(

ro
o

t)
7:

if
i
,

d
th

en
8:

co
n

n
e

ct
F

ir
st

In
te

rp
re

ta
tio

n
T

e
m

p
la

te
(r

o
o

t
,

n
o

d
e
,s

ta
te
,i

)
9:

el
se

10
:

co
n

n
e

ct
S

e
co

n
d

In
te

rp
re

ta
tio

n
T

e
m

p
la

te
(r

o
o

t
,

n
o

d
e
,s

ta
te
,i

)
11

:
en

d
if

12
:

C
re

at
e

a
fa

ul
tt

re
e

no
de

lis
tf

tT
e

rm
in

a
lL

is
t

13
:

ft
T

e
rm

in
a

lL
is

t←
fi

n
d

T
e

rm
in

a
lN

o
d

e
L

is
t(r
o

o
t)

14
:

fo
r

al
l

te
rm

in
a

lN
o

d
e∈

ft
T

e
rm

in
a

lL
is

td
o

15
:

if
te

rm
in

a
lN

o
d

ei
s

in
p

u
tn

o
d

e
so

r
st

a
te

st
he

n
16

:
co

n
tin

u
e

17
:

el
se

18
:

C
re

at
e

a
va

ria
bl

e
no

de
p

re
d

e
ce

ss
o

rN
o

d
e

19
:

C
re

at
e

a
ou

tp
ut

p
re

d
e

ce
ss

o
rO

u
tp

u
t

20
:

p
re

d
e

ce
ss

o
rN

o
d

e←
fi

n
d

R
e

la
te

d
N

o
d

e
In

F
O

D
(t

e
rm

in
a

lN
o

d
e

)
21

:
p

re
d

e
ce

ss
o

rO
u

tp
u

t←
e

xt
ra

ct
O

u
tp

u
t(t
e

rm
in

a
lN

o
d

e
)

22
:

ge
ne

ra
te

S
of

tw
ar

eF
au

ltT
re

e(
pr

ed
ec

es
so

rN
od

e,
pr

ed
ec

es
so

rO
ut

pu
t,

te
rm

in
al

N
od

e)
.

A
lg

or
ith

m
2

23
:

en
d

if
24

:
en

d
fo

r
25

:
en

d
fo

r
26

:
R

et
ur

n
so

ft
w

a
re

F
a

u
ltT

re
e

S
e

t
27

:
en

d
fu

nc
tio

n
A
lg
or
it
hm

4.
G
en
er
at
in
g
So
ftw

ar
e
Fa
ul
t
Tr
ee
fo
r
Ti
m
e
Cy
cl
es

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

12

node as an element of the set of software fault trees. In lines 7-10, if the
time is not the last time ‘d’, it connects the template for the first in-
terpretation of the time nodes in the TTS to the root node and if not it
connects the template for the second interpretation to the root node.
Lines 12-22 are the same as the lines 7-17 of ⟨Algorithm 2⟩.

3.3. The Minimal Cut Set Calculation Algorithm

This section explains an algorithm to calculate the MCSs of a SFT. It is
based on a dynamic programming strategy and progressive manipulations
of the SFT. The algorithm consists of 3 steps: that are (1) converting an SFT
into the equivalent set of unique subtrees, (2) calculating MCSs for all sub
trees, and (3) expading the MCSs for all subtrees into the MCSs of the SFTs.
The SFT has several identical subtrees which are filled with the same
content as the SFT template. Thus, to ease the complexity of the problem
and eliminate the identical subtrees, step 1 converts the SFT into the
equivalent set of unique subtrees, defines the relationships between the
subtrees. Step 2 calculates the minimal cut-sets for all subtrees that are
generated with the SFT template. Step 3 expands the minimal cut-sets of all

subtrees into the minimal cut-sets of the SFT using the law of Boolean al-
gebra [57] with a bottom-up approach.

⟨ Algorithm 5 ⟩ shows the process of converting the SFT into the set of a
top node of the subtrees. The algorithm recursively traverses all the nodes of
the SFT and identifies the top nodes of the subtrees among all the SFT
nodes, stores them in the set of subtrees, and defines the top-to-bottom
relationship between the top nodes of the subtrees. The ‘compar-
eSFTTemplate()’ function checks if two nodes belong to the same subtree,
and if they belong to the same subtree, the function recursively calls the
algorithm to check the next node, as line 2-4. If not, we check if the node
exists in the set of top nodes and if the node exists, it defines the top-down
relationship between the top node in the set and the top node, we then
terminate the algorithm because all child nodes of the node have already
been checked, as line 5-11. In line 12-15, if the node does not exist in the
set, it defines the top-down relationship between the node and the top node,
adds the node to the set and calls the algorithm recursively.

To obtain the MCSs of the SFT, we calculate the MCSs of the subtree
obtained as a prerequisite. We use the MOCUS [58] algorithm that is
the oldest deterministic algorithm developed for obtaining MCSs. Since

Require: parentNode: The top node of subtrees,node: The node of the software fault tree,list : The set of the top node of
subtrees

1: function ConvertingSoftwareFaultTreeintoSetofSubtrees(node,node,list)
2: for all childNode∈ node.getChilds()do
3: if compareS FTTemplate(parentNode,childNode)then
4: ConvertingS o f twareFaultTreeintoS eto f S ubtrees(parentNode,childNode, list)
5: else
6: for all subtreeNode∈ list do
7: if isEqual(childNode,subtreeNode) then
8: subtreeNode.addParentO f S ubtree(parentNode)
9: parentNode.addChildO f S ubtree(subtreeNode)

10: return
11: end if
12: end for
13: childNode.addParentO f S ubtree(parentNode)
14: parentNode.addChildO f S ubtree(childNode)
15: list.add(childNode)
16: ConvertingS o f twareFaultTreeintoS eto f S ubtrees(childNode,childNode, list)
17: end if
18: end for
19: end function

Algorithm 5. Converting Software Fault Tree into Set of Subtrees

Require: list : The set of the top node of subtrees
1: function expandMCSofSubtrees(list)
2: while list.size> 1 do
3: for all childS ubtree∈ list do
4: if list.get(i).hasChildO f S ubtreeis f alsethen
5: for all parentS ubtree∈ childS ubtree.getParentO f S ubtree() do
6: cartesianProduct(parentS ubtree, childS ubtree)
7: lawO f BooleanAlgebra(parentS ubtree.getMinimalCutS et())
8: parentS ubtree.removeChildO f S ubtree(childS ubtree)
9: end for

10: list.remove(childS ubtree)
11: end if
12: end for
13: end while
14: end function

Algorithm 6. Expanding MCSs of Subtrees into MCSs of Software Fault Tree

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

13

the size of the subtree is the same as the size of one SFT template, the
execution speed of the algorithm is not optimal, but there is no problem
in finding the MCSs of the subtree. We can expand the MCSs of subtrees
into the minimal cut-sets of the SFT for both top-down and bottom-up
approaches, because we have defined the top-down relationships be-
tween the subtrees in the first step. We use the bottom-up approach
because the top-down approach is much more computationally taxing
than the bottom-up approach [59].

⟨ Algorithm 6 ⟩ shows the process of expanding the MCSs of the
subtrees into the MCSs of the SFT using a bottom-up approach. The
algorithm finds a subtree that has no child of subtrees, traverses all the
parents of the subtree, and performs a cartesian product the minimal
cut-sets of the subtree and the minimal cut-set that containins the
subtree of the parent of the sub tree. After the cartesian product, the
minimal cut-sets of the parent of the subtree may not meet the MCS
condition, so the minimal cut-set condition is adjusted again using the
Boolean algebra’s idempotent Law and absorption Law. The algorithm

repeats this process until only the root node of the SFT remains in the
set.

4. NuFTA 2.0

“NuFTA 2.0” is a supporting tool to do SFTA on NuSCR formal
specifications mechanically. When we select an important output node
such as a shutdown signal in NuSRS 2.1, the NuFTA 2.0 mechanically
generates a SFT and calculates MCSs as depicted in ⟨Fig. 9⟩, based on
the algorithms introduced in Section 3. We constructed the fault trees
into sub-trees in module form for improving readability, because the
fault tree has too many nodes to view as a single tree. NuFTA2.0 con-
sists of two components, the software fault tree part and the minimal
cut-set part. The software fault tree part shows the SFTs with the
zoomed view from the JAVA library JGraph. The minimal cut-sets part
shows all MCSs for the SFT and saves them in a .txt format file to
seamlessly accelerate future extensions to this analysis. NuFTA 2.0 aims

Fig. 9. NuFTA 2.0 : An assistant tool for generating SFT and MCSs from NuSCR specifications

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

14

to be a analysis platform for various SFTA, i.e., vertical and horizontal
analysis [60].

The NuFTA 2.0 shows a better performance compared to our pre-
vious version [20], besides the NuFTA 2.0 supports the multi-cycle case
of fault trees and MCSs that previous version cannot support. ⟨Table 4⟩
is a summary of the comparison results of two outputs, th_HI_LOG_PO-
WER_Trip_Logic == true and f_HI_LOG_POWER_Trip_Out == true, in the
⟨Fig. 1⟩. We measured the time taken for SFT construction and the
number of SFT nodes constructed. As NuFTA 1.0 is not able to generate
multi-cycle cases for fault trees, we only measured the time and nodes
for a single cycle SFT when comparing with NuFTA 2.0. NuFTA 2.0 is
faster and more efficient than NuFTA 1.0 when generating fault trees of
the outputs for th_HI_LOG_POWER_Trip_Logic == true. The case of
f_HI_LOG_POWER_Trip_Out == true also showed that the NuFTA 1.0
cannot afford it within the time limitation while NuFTA 2.0 did it in a
quiet reasoning time and space consumption. The nodes generated by
NuFTA 2.0 are symbolic bundles of concrete values represented in the
nodes generated by NuFTA 1.0, so the semantics of all nodes created by
both tools are the same.

5. Case Study

We performed a case study to demonstrate the effectiveness and
feasibility of the proposed SFTA technique and the supporting tool
NuFTA 2.0. Section 5.1 explains the target system software in the case
study and section 5.2 shows the analysis results of the proposed SFTA
technique, as well as construction results for fault trees and MCSs with
multi-cycled requirements. We also introduce an additional usage for
the SFTA results in section 5.3.

5.1. Target System Software

We used a g_HI_LOG_POWER module which is the initial version of a
BP software module for the APR-1400 RPS operating in Korea[24]. The
RPS is a safety-critical system whose main purpose is to protect reactors
during unexpected behavior in the NPP. The software in the RPS is
crucial to the safety in that its malfunction may result in irreversible
consequences. The g_HI_LOG_POWER module is one of 18 modules in
the BP software. It is a ‘fixed set point rising trip’ logic that fires a trip
signal when the system faces an emergency threatening the safety of the
system. The trip signal is triggered when the state variable f_HI_-
LOG_POWER_PV has been maintained above a set point for a period of
time. ⟨Fig. 10⟩ shows the value of the f_HI_LOG_POWER_PV variable
over time that occurs the trip signal according to the cycle time.
⟨Fig. 1⟩ shows the FOD and TTS for the HI_LOG_POWER logic which is
simplified version with eliminating pre-trip algorithms.

5.2. SFT Construction and MCS Analysis

We constructed fault trees and MCSs that are top event conditions of
f_HI_LOG _POWER_Trip_Out == true from the g_HI_LOG_POWER logic.
The system scan cycle time applied is 20ms to check the timing con-
straints via the TTS node in this paper. k_HI_LOG_POWER_Trip_Delay is
divided by the scan cycle time for checking time flows. ⟨Fig. 11⟩ is an
example of the generated SFTs. We can obtain 512 kinds of MCSs from
the results, and these MCSs contain either single cycles or multi-cycles.
The structure of these MCS is ((MCS1) ∥ (MCS2) ∥ · · · ∥ (MCS512)),
that are an OR combination between a set of conditions which satisfy
f_HI_LOG_POWER_Trip_Out == true. Each MCS consists of a combina-
tion of variables and their specific values. ⟨Table 5⟩ shows some ex-
amples of the MCSs among the 512 MCSs. Case 1 ~ 3 appears different
condition for satisfying the top-event respectively.

Case 1 MCS appears the states about “the module fires a trip signal
(f_HI_LOG _POWER _Trip_Out == true) because the process variable value
is not a valid range.” Case 3 MCS contains a timing constraintWaiting for
[480, 480] which needs to be analyzed multi-cycled time. It means that
the operation value f_HI_LOG_POWER_PV is greater than the trip-set-
point for a 480 time to satisfy the top-event. The proposed SFTA
technique can construct fault trees and calculate MCSs about these
multi-cycled time cases and the multi-cycled MCS is divided into the
‘during’ and ‘before’ the satisfaction time. ⟨Fig. 10⟩ shows an example
of during and before the satisfaction time in the multi-cycle MCS for
‘Waiting for [480, 480],’ ⟨Table 6⟩ shows MCSs about multi-cycled
timing requirements about during and before the satisfaction time in
the case study. The MCSs about during the satisfaction time affects at
the n and n+1 cycle times and MCSs about before the satisfaction time
affects at the t-24 and t-25 cycle times.

⟨ Table 7 ⟩ shows a summary of the software fault tree analysis by
NuFTA 2.0. We found a logic error and hazardous states in the NuSCR
requirement specification in the g_HI_LOG_POWER logic. Case 2 MCS
reveals a condition for firing the trip signal, however, if we check the
three range conditions (f HI LOG POWER Val Out0 _ _ _ _ _ 17885,

f HI LOG POWER al Out29401 _ _ _ _ 30000,V and 0 ≤ f_HI_LOG_-
POWER _ Val_Out ≤ 599) to check the range of the process variable
value, we can see that there is no intersection. This condition state

Table 4
A summary of SFT construction performance

th_X_Trip_Logic == true f_X_Trip_Out == true

time(s) # of nodes time(s) # of nodes

NuFTA 1.0 12.477 1,609,343 N/A N/A
NuFTA 2.0 0.011 123 0.144 2156
X : HI_LOG_POWER

Fig. 10. A multi-cycle example of a value changing with time for the
g_HI_LOG_POWER logic

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

15

Fig. 11. A Software Fault Tree with the Top Node (f_HI_LOG_POWER_Trip_Out == true)

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

16

means that the NuSCR specification associated with the case 2 MCS,
contains erroneously specified.

As shown in ⟨Table 6⟩, the MCSs fire a trip signal if only the case

where the process variable value is greater than the trip set point
(17886 ≤ f_HI_LOG_POWER_Val _Out ≤ 30000) in state ‘Normal’ at t-
25, it transits to the ‘Waiting’ state at t-24 and then the conditions
(f HI LOG POWER Val Out17886 _ _ _ _ _ 30000) lasts for a time delay
(24 cycle) in the ‘Waiting’ state. In the informal software requirement
specification (SRS), the timing constraint is described as follows: “If the
process variable value is greater than the trip set-point and then this state
lasts for a time delay, the module fires a trip signal.” It can be confirmed
that there is no contradiction between the MCS and the informal spe-
cifications, which is no corresponding part of the hazard item/logical
error regarding the timing constraint.

We found a contrary condition between the NuSCR specification
from the case 3 MCS with multi-cycled cases about case 2 in during and
before the satisfaction time. The constraints of the automatic testing are
described as follows: “The automatic test is run on the test scan to avoid

Table 5
Three examples of MCSs from the fault trees generated by the case study

Element MCS case 1 MCS case 2 MCS case 3

(A) f_X_Trip_Out true true true
& (A) f_X_PV_Err true true false
& (A) th_X_Trip_Logic false false true
& th_X_Trip_Logic’s state at t Waiting Normal Trip
& th_X_Trip_Logic’s state at t-1 Waiting Waiting Waiting for [480, 480]
& (A) f_X_Val_Out 17886 ≤ v ≤ 30000 & 29401 ≤ v ≤ 30000 &

600 ≤ v ≤ 30000
0 ≤ v ≤ 17885 & 29401 ≤ v ≤ 30000 &
0 ≤ v ≤ 599

17886 ≤ v ≤ 30000 & 0 ≤ v ≤ 29400 &
600 ≤ v ≤ 30000

& f_X_PV 17886 ≤ v ≤ 30000 & 29401 ≤ v ≤ 30000 &
600 ≤ v ≤ 30000

0 ≤ v ≤ 17885 & 29401 ≤ v ≤ 30000 &
0 ≤ v ≤ 599

17886 ≤ v ≤ 30000 & 0 ≤ v ≤ 29400 &
600 ≤ v ≤ 30000

& f_X_AT_Val N/A N/A N/A
& f_X_PT_Val N/A N/A N/A
& f_X_MT_Val N/A N/A N/A
& f_X_AT_Query false false false
& f_X_PT_Query false false false
& f_X_MT_Query false false false
& (A) f_X_Op_Byp_Init false false false
& f_X_AT_Opb_Rqst_MSR false false N/A
& f_X_AT_Opb_Rqst_RSR false false N/A
& f_X_AT_Opb_Perm_In N/A N/A false
& f_Mod_Err N/A N/A false
& f_X_Chan_Err N/A N/A false
X : HI_LOG_POWER

Table 6
MCSs about ‘during’ and ‘before’ the satisfaction time for multi-cycled timing constraints

Element MCSs for multi-cycle by ‘Waiting for [480, 480]’

‘During the satisfaction time’ ‘Before the satisfaction time’

Case 1 Case 2 Case 1 Case 2 Case 3 Case 4

(A) th_X_Trip_Logic false false false false false false
& th_X_Trip_Logic’s state

at t-n / t-24
Waiting Waiting Waiting Waiting Waiting Waiting

& th_X_Trip_Logic’s state
at t-(n+1) / t-25

Waiting Waiting Normal Normal Waiting Waiting

& (A) f_X_Val_Out 17886 ≤ v ≤ 30000 17886 ≤ v ≤ 30000 17886 ≤ v ≤ 30000 17886 ≤ v ≤ 30000 17886 ≤ v ≤ 30000 &
0 ≤ v ≤ 17885

17886 ≤ v ≤ 30000 &
0 ≤ v ≤ 17885

& f_X_PV 17886 ≤ v ≤ 30000 N/A 17886 ≤ v ≤ 30000 N/A 17886 ≤ v ≤ 30000 &
0 ≤ v ≤ 17885

N/A

& f_X_AT_Val N/A 17886 ≤ v ≤ 30000 N/A 17886 ≤ v ≤ 30000 N/A 17886 ≤ v ≤ 30000 &
0 ≤ v ≤ 17885

& f_X_PT_Val N/A N/A N/A N/A N/A N/A
& f_X_MT_Val N/A N/A N/A N/A N/A N/A
& f_X_AT_Query false true false true false true
& f_X_PT_Query false false false false false fals
& f_X_MT_Query false false false false false false
X : HI_LOG_POWER

Table 7
An analysis result of SFTA by NuFTA 2.0

MCSs (in ⟨ Table 5 ⟩) Analysis Description Result
MCS 1 A case of handling error value
MCS 2 Erroneously specification Logic error

MCS 3 Case 1 (during) &
Case 1 (before)

A case regarding the timing
constraint for tirp signal occurs

Case 2 (during,
before)

Contrary condition to SRS Hazardous state

Case 3, 4 (before) Conflict condition, but intended
specification

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

17

affecting the actual operation.” According to the informal SRS, the au-
tomatic testing value (f_HI_LOG_POWER_AT_Val) and the actual opera-
tion value (f_HI_LOG_POWER_PV) must be independent in firing a trip
signal. However, case 2 MCSs of during and before the satisfaction time
are contrary to the requirement specification. We can construct soft-
ware fault trees and MCSs automatically from NuFTA 2.0 and we are
also able to identify several hazardous state and logic errors of the
NuSCR specification by the SFTA in this paper.

5.3. Various Uses of the SFTA Results

We could get various cases of MCSs from the NuSCR requirement
specification using NuFTA 2.0. This section introduces the various uses
of the SFTA results for software analysis. First, the MCSs can be used to
generate simulation/testing scenarios for a later phase of the software
development. Simulation scenarios commonly consist of input combi-
nations according to the time step. MCSs for multi-cycled conditions
illustrates these combinations well by a time flow. ⟨ Table 8 ⟩ is an
example of simulation scenarios generated from the case 3 MCSs in
⟨Table 5⟩ and its multi-cycled cases. It consists of 26 cycles for simu-
lating the functionality of the specification about ‘trip signal occur
when a state variable f_HI_LOG_POWER_PV has been maintained above
a set point for a period of time.’ The value 17886 is a set point which is
marked in ⟨Fig. 10⟩ and the input value of the f_HI_LOG_POWER_PV
variable consists of maintaining a higher value than 17886 in the sce-
nario.

⟨ Fig. 10 ⟩ is one example of a value changing that satisfies the
simulation scenario generated. The scenario contains state/variable
changes for representing sequence of behavior of the software-based
controllers in time flows to simulate. According to the MCSs, the sce-
nario also can contain simple event behavior. If simulation-based
testing is proceed using scenarios from SFTA of NuSCR, the simulation
can covers functionalities of the specification including timing-con-
strained continuous behaviors compared with other test case generation
methods using fault trees [48,50]. Scenarios from SFTA of NuSCR can
be used as simulation input of NuSCR itself or after development arti-
facts such as FBD design model, Verilog, or VHDL[31,61].

Another case of using the MCSs is for identifying software con-
tributable hazards by combining guide words. Guide words are a pre-
defined set for identifying deviations from software or system elements,
MCSs can be used as a specific candidate for applying guide words to
analyze software contributable hazards. For example, analyst identifies
which deviation occurs when the state of guide phrases under a certain
condition of the MCSs. ⟨Table 9⟩ shows some results of the software
hazard anlayiss by applying guide phrases about ‘functionality’ and
‘safety’ of the [8]. MCS 1 and 3 in ⟨Table 5⟩ can support deviation
analysis by providing a certain set of states or the condition of the
software for software hazard analysis.

Ta
bl
e
9

A
n
ex
am
pl
e
of
so
ftw

ar
e
ha
za
rd
an
al
ys
is
us
in
g
gu
id
e
ph
ra
se
s

Ite
m

G
ui
de
ph
ra
se
s

D
ev
ia
tio
n
(c
om
bi
ni
ng
M
CS

&
G
ui
de
ph
ra
se
s)

H
az
ar
d

H
az
ar
do
us

RP
S
BP

so
ftw

ar
e

Fu
nc
tio
n
ex
ec
ut
es
w
he
n
tr
ig
ge
r
co
nd
iti
on
s
ar
e

no
ts
at
is
fie
d

g_
H
I_L

O
G
_P
O
W
ER

m
od
ul
e
do
es
no
tfi
re
th
e
tr
ip
si
gn
al
un
de
r
co
nd
iti
on
of
ca
se

1-
3
M
CS
s

M
CS
1:
A
sy
st
em

do
es
no
tr
ec
ei
ve
a
tr
ip
si
gn
al
,w
he
n
a
pr
oc
es
sv
ar
ia
bl
e
is
in

an
va
lid

er
ro
r
ra
ng
e

O

M
CS

2:
Re
qu
ir
em
en
t
lo
gi
c
er
ro
r

X
M
CS

3:
A
sy
st
em

do
es
no
t
re
ce
iv
e
a
tr
ip
si
gn
al
,w
he
n
th
e
sy
st
em

is
in
a

cr
iti
ca
ls
ta
te

O

Fu
nc
tio
n
ex
ec
ut
es
w
he
n
tr
ig
ge
r
co
nd
iti
on
s
ar
e

no
ts
at
is
fie
d

g_
H
I_L

O
G
_P
O
W
ER

m
od
ul
e
fir
e
th
e
tr
ip
si
gn
al
un
de
r
co
nd
iti
on

f_H
I_L

O
G
_P
O
W
ER

_T
rip

_O
ut

=
=

fa
lse

A
sy
st
em

re
ce
iv
e
tr
ip
si
gn
al
w
he
n
th
e
sy
st
em

is
in
no
rm
al
st
at
e

O

So
ftw

ar
e
fa
ils
to
re
co
gn
iz
e
ha
za
rd
ou
s
re
ac
to
r

st
at
e

g_
H
I_L

O
G
_P
O
W
ER
m
od
ul
e
do
es
no
tr
ec
og
ni
ze
th
e
er
ro
rv
al
ue
un
de
rc
on
di
tio
n
of

ca
se
1,
3
M
CS
s

A
sy
st
em

do
es
no
tr
ec
ei
ve
a
tr
ip
si
gn
al
,w
he
n
a
pr
oc
es
s
va
ri
ab
le
is
in
an

er
ro
r
or
ha
za
rd
ou
s
va
lu
e

O

Table 8
An example of simulation scenario from MCSs of the “NuFTA 2.0”

Cycle 0 1 ... 24 25

f_X_PV 15000 17886 17886 ≤ v
≤ 30000

19342 19632

f_X_AT_Query false false false false false
f_X_MT_Query false false false false false

Input f_X_PT_Query false false false false false
f_X_Mod_Err false false false false false
f_X_Chan_Err false false false false false

Expected
output

f_X_Trip_Out false false false false true

X : HI_LOG_POWER

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

18

6. Conclusion and future work

For the safety analysis of safety-critical software, this paper pre-
sented an SFTA technique for NuSCR formal requirements specification.
We introduced the software fault tree templates for the construction of
SFTs from each nodes of the NuSCR and redefined algorithms for fault
tree construction and minimal cut-set analysis. The proposed algorithm
and template can cover timing constraints which prevous versions were
unable to handle. We also proposed a supporting tool, “NuFTA 2.0,” for
generating SFTs and MCSs automatically from NuSCR software re-
quirements specification. We performed the case study using the NuSCR
specification for the APR-1400 RPS BP software to demonstrate the
feasibility of NuFTA 2.0 in the software hazard analysis of safety
system. The case study showed that NuFTA 2.0 can construct fault trees
and MCSs containing multi-cycled timing constraints. We also in-
troduced various uses of the SFTA results that are scenario generation
for simulation and software hazard analysis. We have a plan to make a
test scenario from the fault trees with MCSs mechanically/auto-
matically. We are also planning to perform software hazard analysis
semi-automatically by combining other analysis techniques.

Declaration of interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

CRediT authorship contribution statement

Sejin Jung: Methodology, Validation, Visualization, Writing - ori-
ginal draft, Writing - review & editing. Junbeom Yoo:
Conceptualization, Methodology, Writing - original draft, Writing - re-
view & editing. Young-Jun Lee: Resources, Validation, Writing - re-
view & editing.

Acknowledgements

This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (NRF-2017R1D1A1B03030065) and Next-
Generation Information Computing Development Program through the
National Research Foundation (NRF) of Korea funded by the Ministry of
Science, ICT (NRF-2017M3C4A7066479).

References

[1] Son J, Kim Y, Jeong K, Lee D-A, Yoo J. NuFTA 2.0: New Templates and an
Automatic Generator of Fault Tree for NuSCR. Transactions of the Korean Nuclear
Society Autumn, Meeting Gyeongju, Korea. 2016.

[2] Criteria for Use of Computers in Safety Systems of Nuclear Powr Plants(RG 1.152).
Tech. Rep.. U.S. Nuclear Regulatory Commision (NRC); 2004.

[3] Criteria for Safety Systems(RG 1.153). Tech. Rep.. U.S. Nuclear Regulatory
Commision (NRC); 1996.

[4] IEEE Standard Criteria for Safety Systems for Nuclear Power Generating Stations
(IEEE 603). Tech. Rep.. Institute of Electrical and Electronics Engineers (IEEE);
2009.

[5] IEEE Standard Criteria for Digital Computers in Safety Systems of Nuclear Power
Generating Stations (IEEE 7-4.3.2). Tech. Rep.. Institute of Electrical and Electronics
Engineers (IEEE); 2010.

[6] Functional safety of electrical, electronic and programmable electronic (E/E/PE)
safety-related systems (IEC 61508). Tech. Rep.. International Electrotechnical
Commission (IEC); 2010.

[7] IEEE Standard for Software Safety Plans (IEEE 1228). Tech. Rep.. Institute of
Electrical and Electronics Engineers (IEEE); 1994.

[8] Software Safety Hazard Analysis (NUREG/CR-6430). Tech. Rep.. United States
Nuclear Regulatory Commission (NRC); 1995.

[9] Developing Software Lift Cycle Processes for Digital Computer Software Used in
Safety Systems of Nuclear Power Plants(RG 1.173). Tech. Rep.. U.S. Nuclear
Regulatory Commision (NRC); 1997.

[10] IEEE Standard for Developing Software Life Cycle Processes (IEEE 1074). Tech.
Rep.. Institute of Electrical and Electronics Engineers (IEEE); 1995.

[11] Lee J-S, Lindner A, Choi J-G, Miedl H, Kwon K-C. Software safety lifecycles and the
methods of a programmable electronic safety system for a nuclear power plant.
International Conference on Computer Safety, Reliability, and Security. Springer;
2006. p. 85–98.

[12] Park G-Y, Kim DH, Lee DY. Software FMEA analysis for safety-related application
software. Annals of Nuclear Energy 2014;70:96–102.

[13] Leveson N.G.. SafeWare: system safety and computers. 1995. ????
[14] Ericson CA. Hazard Analysis Techniques for System Safety. John Wiley & Sons;

2015.
[15] Oh Y, Yoo J, Cha S, Son H. Software safety analysis of function block diagrams using

fault trees. Reliability Engineering & System Safety 2005;88(3):215–28.
[16] Kim T, Yoo J, Cha S. A Synthesis Method of Software Fault Tree from NuSCR Formal

Specification using Templates. Journal of Korean Institute of Information Scientists
and Engineers - Software and Applications (in Korean) 2005;32(12):1178–91.

[17] Park G-Y, Koh KY, Jee E, Seong PH, Kwon K-C, Lee DH. Fault tree analysis of KNICS
RPS software. Nuclear Engineering and Technology 2008;40(5):397–408.

[18] Vyas P, Mittal R. Eliciting additional safety requirements from use cases using SFTA.
2012 1st International Conference on Recent Advances in Information Technology
(RAIT). IEEE; 2012. p. 163–9.

[19] Dickerson CE, Roslan R, Ji S. A formal transformation method for automated fault
tree generation from a uml activity model. IEEE Transactions on Reliability
2018;67(3):1219–36.

[20] Yoon S, Jo J, Yoo J. A domain-specific safety analysis for digital nuclear plant
protection systems. Secure Software Integration & Reliability Improvement
Companion (SSIRI-C), 2011 5th International Conference on. IEEE; 2011. p. 68–75.

[21] Yoo J, Kim T, Cha S, soo Lee J, Son H. A formal software requirements specification
method for digital nuclear plant protection systems. Journal of Systems and
Software 2005;74(1):73–83.

[22] Choi J-G, Lee D-Y. Development of RPS trip logic based on PLD technology. Nuclear
Engineering and Technology 2012;44(6):697–708.

[23] Kechris A. Classical descriptive set theory. 156. Springer Science & Business Media;
2012.

[24] Korea Atomic Energy Rearch Institute. SRS for Reactor Protection System. Tech.
Rep.. 2005. KNICS-RPS-SRS121 Rev.00

[25] Fault Tree Analysis (FTA) (IEC 61025). Tech. Rep.. International Electrotechnical
Commission (IEC); 2006.

[26] Leveson NG, Cha SS, Shimeall TJ. Safety verification of ada programs using soft-
ware fault trees. IEEE software 1991;8(4):48–59.

[27] Kaiser B, Liggesmeyer P, Mäckel O. A new component concept for fault trees.
Proceedings of the 8th Australian workshop on Safety critical systems and software-
Volume 33. Australian Computer Society, Inc.; 2003. p. 37–46.

[28] Vyas P, Mittal R. The applications of SFTA and SFMEA approaches during software
development process: an analytical review. International Journal of Critical
Computer-Based Systems 2015;6(1):29–49.

[29] ISO 26262, road vehicles – functional safety. Tech. Rep.. International Organization
for Standardization (ISO); 2011.

[30] Heninger KL. Specifying software requirements for complex systems: New techni-
ques and their application. IEEE Transactions on Software Engineering
1980(1):2–13.

[31] Kim E-S, Lee D-A, Jung S, Yoo J, Choi J-G, Lee J-S. NuDE 2.0: A Formal Method-
based Software Development, Verification and Safety Analysis Environment for
Digital I&Cs in NPPs. Journal of Computing Science and Engineering
2017;11(1):9–23.

[32] Yoo J, Kim E-S, Lee D-A, Choi J-G, Lee YJ, Lee J-S. NuDE 2.0: A Model-based
Software Development Environment for the PLC & FPGA based Digital Systems in
Nuclear Power Plants. International Symposium of Integrated Circuit (ISIC). 2014.

[33] Parnas DL, Madey J. Functional documentation for computer systems engineering:
version 2. McMaster University, Faculty of Engineering, Communications Research
Laboratory; 1991.

[34] Henzinger TA, Manna Z, Pnueli A. Timed transition systems. Workshop/School/
Symposium of the REX Project (Research and Education in Concurrent Systems).
Springer; 1991. p. 226–51.

[35] Tiwari S, Rathore SS, Gupta S, Gogate V, Gupta A. Analysis of use case requirements
using SFTA and SFMEA techniques. 2012 IEEE 17th International Conference on
Engineering of Complex Computer Systems. IEEE; 2012. p. 29–38.

[36] Yoo J, Cha S, Son H. Automatic generation of goal-tree from statecharts require-
ments specification. TRANSACTIONS-AMERICAN NUCLEAR SOCIETY 2003:37–8.

[37] Ratan V, Partridge K, Reese J, Leveson NG. Safety analysis tools for requirements
specifications. Computer Assurance, 1996. COMPASS’96, Systems Integrity.
Software Safety. Process Security. Proceedings of the Eleventh Annual Conference
on. IEEE; 1996. p. 149–60.

[38] Programmable Controllers - Part3: Programming languages (IEC 61131-3). Tech.
Rep.. International Electrotechnical Commission (IEC); 2013.

[39] Lauer C, German R, Pollmer J. Fault tree synthesis from UML models for reliability
analysis at early design stages. ACM SIGSOFT Software Engineering Notes
2011;36(1):1–8.

[40] Oveisi S, Ravanmehr R. Sfta-based approach for safety/reliability analysis of op-
erational use-cases in cyber-physical systems. Journal of Computing and
Information Science in Engineering 2017;17(3).

[41] Li L, Lu M, Gu T. A reuse-oriented auxiliary construction method for software fault
tree and tool implementation. 2014 10th International Conference on Reliability,
Maintainability and Safety (ICRMS). 2014. p. 451–6.

[42] Kabir S. An overview of fault tree analysis and its application in model based de-
pendability analysis. Expert Systems with Applications 2017;77:114–35.

[43] Mhenni F, Choley J-Y, Nguyen N. An integrated design methodology for safety
critical systems. 2016 Annual IEEE Systems Conference (SysCon). IEEE; 2016.

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

19

http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0002
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0002
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0037
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0037
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0038
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0039
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0040
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0041
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0041
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0042
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0042

p. 1–6.
[44] Yakymets N, Jaber H, Lanusse A. Model-based system engineering for fault tree

generation and analysis. the 1th International Conference on Model-Driven
Engineering and Software Development. 2013.

[45] Höfig K, Zeller M, Heilmann R. Alfred: a methodology to enable component fault
trees for layered architectures. 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications. IEEE; 2015. p. 167–76.

[46] Baklouti A, Nguyen N, Mhenni F, Choley J-Y, Mlika A. Dynamic fault tree gen-
eration for safety-critical systems within a systems engineering approach. IEEE
Systems Journal 2019;14(1).

[47] Alshboul B, Petriu DC. Automatic derivation of fault tree models from sysml models
for safety analysis. Journal of Software Engineering and Applications
2018;11(5):204–22.

[48] Tiwari S, Gupta A. An approach to generate safety validation test cases from uml
activity diagram. 2013 20th Asia-Pacific Software Engineering Conference (APSEC).
1. IEEE; 2013. p. 189–98.

[49] Li HW, Ren Y, Wang LN. Research on software testing technology based on fault
tree analysis. Procedia Computer Science 2019;154:754–8.

[50] Philip G, Dsouza M, Abidha V. Model based safety analysis: Automatic generation of
safety validation test cases. 2017 IEEE/AIAA 36th Digital Avionics Systems
Conference (DASC). IEEE; 2017. p. 1–10.

[51] Yadav HB, Yadav DK. Early software reliability analysis using reliability relevant
software metrics. International Journal of System Assurance Engineering and

Management 2017;8(4):2097–108.
[52] Sinha S, Goyal NK, Mall R. Early prediction of reliability and availability of com-

bined hardware-software systems based on functional failures. Journal of Systems
Architecture 2019;92:23–38.

[53] Ali SR. Software reliability analysis. Next Generation and Advanced Network
Reliability Analysis. Springer; 2019. p. 59–104.

[54] Mealy GH. A method for synthesizing sequential circuits. Bell Labs Technical
Journal 1955;34(5):1045–79.

[55] Moore EF. Gedanken-experiments on sequential machines. Automata studies
1956;34:129–53.

[56] McMillan KL. Symbolic model checking. Symbolic Model Checking. Springer; 1993.
p. 25–60.

[57] Sikorski R, Mathématicien P. Boolean algebras. 2. Springer; 1969.
[58] Fussell J, Henry E, Marshall N. MOCUS: a computer program to obtain minimal sets

from fault trees. Tech. Rep.. Aerojet Nuclear Co., Idaho Falls, Idaho (USA); 1974.
[59] Garribba S, Garribba P, Naldi F, Reina G, Volta G. Efficient construction of minimal

cut sets from fault trees. IEEE Transactions on reliability 1977;26(2):88–94.
[60] Cha S, Yoo J. A safety-focused verification using software fault trees. Future

Generation Computer Systems 2012;28(8):1272–82.
[61] Kim J, Kim E-S, Yoo J, Lee YJ, Choi J-G. An integrated software testing framework

for FPGA-based controllers in nuclear power plants. Nuclear Engineering and
Technology 2016;48(2):470–81.

S. Jung, et al. Reliability Engineering and System Safety 203 (2020) 107064

20

http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0042
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0043
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0044
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0045
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0046
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0047
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0047
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0047
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0048
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0048
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0049
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0049
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0049
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0050
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0050
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0050
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0051
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0051
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0051
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0052
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0052
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0053
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0053
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0054
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0054
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0055
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0055
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0056
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0057
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0057
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0058
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0058
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0059
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0059
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0060
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0060
http://refhub.elsevier.com/S0951-8320(20)30565-2/sbref0060

	A Software Fault Tree Analysis Technique for Formal Requirement Specifications of Nuclear Reactor Protection Systems
	Introduction
	Background
	Software Fault Tree Analysis
	NuSCR
	Related Work

	The Software Fault Tree Analysis for NuSCR specifications
	The Software Fault Tree Templates
	The SFT Templates for SDT
	The SFT Templates for FSM
	The SFT Templates for TTS

	The Software Fault Tree Construction Algorithms
	The SFT Construction Algorithms for a foundation fault tree
	The SFT Construction Algorithm for Multi-Cycles

	The Minimal Cut Set Calculation Algorithm

	NuFTA 2.0
	Case Study
	Target System Software
	SFT Construction and MCS Analysis
	Various Uses of the SFTA Results

	Conclusion and future work
	Declaration of interests
	CRediT authorship contribution statement
	Acknowledgements
	References

