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a b s t r a c t

Controllers in safety critical systems such as nuclear power plants often use the Function Block Diagram
(FBD) to design software embedded in the PLC (Programmable Logic Controller). Software engineers
develop FBD programs manually, while engineering tools provided by PLC vendors translate them into
ANSI-C programs mechanically. Every new PLC and its software engineering tool should demonstrate the
so-called FBD-to-C translator's correctness thoroughly. This paper proposes a verification process which
can efficiently verify the translator's correctness using the model checking technique. The HW-CBMC
model checker verifies the behavioral consistency between FBD and ANSI-C programs formally according
to the process and templates which this paper proposes. We also developed a CASE tool ‘CWrapper’ and
performed a case study with simplified examples of the APR-1400 (Advanced Power Reactor-1400)
nuclear reactor protection system in Korea.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Safety is an important property for real-time embedded sys-
tems [1] such as nuclear power plants to obtain permissions for
operation and export from government authorities. As the nuclear
reactor protection system (RPS) makes decisions for emergent
reactor shutdown, RPS software should be verified throughout its
entire development life-cycle. RPS software is typically modeled
with IEC-61131 FBD (Function Block Diagram) [2] in the design
phase, and then in the implementation phase, translated into
ANSI-C programs and compiled into an executable machine code
for RPS hardware—PLC (programmable Logic Controller). Compiler
expert companies typically provide C compilers with a thorough
demonstration of functional correctness. On the other hand, PLC
vendors usually develop translators which perform FBDs into C
programs by themselves. They should demonstrate the translator's
correctness and functional safety [3] sufficiently.

In the PLC industry for RPS, vendors such as AREVA [4], invensys [5]
and POSCO ICT [6] have provided safety-level PLCs and their own
software engineering tool-sets. ‘SPACE’ [7] is a software engineering
tool-set for AREVA's PLC ‘TELEPERM XS’ [8]. It stores FBD programs into
a database ‘INGRES’ and generates ANSI-C programs to perform code-
based testing and simulation (‘TXS SIVAT’ [9]). ISTec GmbH [10] also has
developed a reverse engineering tool ‘RETRANS’ [11] for checking

consistency between FBD programs and generated C programs. The
mechanical translator in ‘SPACE’ has been validated in such ways, and
the software engineering tool-sets have been used successfully for
more than a decade. PLCs of invensys also have been widely used.
‘TriStation 1131’ [12] is its software engineering tool-set. It provides
enhanced emulation-based testing and real-time simulation of FBDs,
but does not include a C translator yet.

KNICS (Korea Nuclear Instrumentation and Control System R&D
Center) [13] and POSCO ICT in Korea have recently developed a
safety-level PLC ‘POSAFE-Q’ and its software engineering tool-set
‘pSET’ [14]. The tool-set provides a graphical editor for FBD and LD
(Ladder Diagram) programming languages [2], and also generates
ANSI-C programs automatically. However, sufficient demonstra-
tion of correctness and functional safety of the so-called ‘FBD-to-C’
translator is still in progress. Thus, it must be one of the most
critical obstacles needed to pass inspection in order to obtain
permissions for the export of the new Korean nuclear power plant
[15] as a whole, i.e., including control software—I&C (Instrumenta-
tion & Control).

This paper proposes a systematic way to demonstrate func-
tional correctness of the ‘FBD-to-C’ translator using the model
checking techniques [16]. We use the ‘HW-CBMC’ [17] model
checker which can verify the behavioral equivalence between
FBD and ANSI-C programs. We first translate a FBD program into
a behaviorally equivalent Verilog program based on translation
rules in [18]. We modify the rules to translate it into a suitable
Verilog program for HW-CBMC, because the Verilog program as an
input of HW-CBMC is different from that of the VIS verification
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system [19]. The next step is to prepare an ANSI-C program which
is the other input of HW-CBMC. We provide a ‘CWrapper’ program
which wraps the ANSI-C program with template-based statements
to help users perform the HW-CBMC verification mechanically.
The HW-CBMC model checker then verifies the behavioral con-
sistency between the Verilog program translated from FBDs and
the wrapped ANSI-C program. This paper uses a part of the FBD
programs for ARP-1400 (Advanced Power Reactor-1400) RPS BP
(Bistable Processor) to demonstrate feasibility and efficiency of the
proposed verification technique.

The remainder of the paper is organized as follows: Section 2
briefly explains the basic elements of the proposed verification
techniques, such as FBD, Verilog and HW-CBMC. It also details the
typical software development life-cycle of PLC-based systems. The
whole verification process is introduced in Section 3. In Section 4,
we apply the proposed verification technique to a part of PLC
software for APR-1400 RPS BP in Korea. Section 5 overviews
related work and we conclude the paper in Section 6.

2. Background

2.1. PLC-based software development process

RPS is a real-time embedded system, implemented on the
hardware—PLC. The RPS software is designed in FBD/LD languages
and then translated into C programs which will be compiled and
loaded on PLCs. Fig. 1 explains a typical software development
process for RPS as a waterfall model [20].

SRS (Software Requirements Specification) is written in natural
languages or formal specification languages [21–23]. Experts on
PLC programming languages then translate the requirements
specification into design models programmed in FBD or LD
manually. PLC vendors provide their own automatic translators
from the FBD/LD programs into ANSI-C programs, while typically
using COTS (Commercial Off-the-Shelf) software such as
‘TMS320C55x’ of Texas Instruments [24] for the C compilers. The
COTS compilers were well verified and certified, and sufficient to
be used for implementing the RPS software without additional
efforts.

The lower part of the figure shows V&V (Verification and
Validation) techniques which have been used to demonstrate
correctness and functional safety of the ‘Automatic Translator.’
‘TXS SIVAT’ [9] from AREVA's TELEPERM XS [25] is an example of
the C code-based simulation technique, while the ‘RETRANS’ [11] is
that of the bi-simulation technique. Structural testing techniques
with coverage criteria [26] are also applied into the automatically
translated C programs. The KNICS project in Korea used a testing
tool ‘IBM Rational Rhapsody’ [27] for C program testing. The
equivalence checking is a verification technique which this paper
proposes [28]. It uses a model checker HW-CBMC [17], which reads
Verilog and ANSI-C programs and checks their behavioral equiva-
lence [29]. It first translates FBD programs into behaviorally
equivalent Verilog programs [18]. These various techniques span-
ning from simulation and testing to formal verification have all
been used to guarantee the correct functioning of the PLC vendor-
specific ‘Automatic Translator,’ i.e., the FBD-to-C translator.

2.2. Function Block Diagram

FBD (Function Block Diagram) is one of five standard PLC
programming languages defined in the IEC 61131-3 standard [2].
It consists of an arbitrary number of function blocks connected
together with wires similar to that of a circuit diagram. FBD has
been widely used for developing software controllers of plants and
machines because of its graphical notations and usefulness in
implementing data flow based applications. For example, the FBD
in Fig. 2 consists of 4 function blocks, and the first executed
function block is GE_DINT while the last one is SEL_DINT.
GE_DINT is the function block calculating logical ‘≥’ with two
decimal integer inputs. The whole FBD program is a set of FBDs
interconnected with each other according to their predefined
sequential execution order.

2.3. Verilog

Verilog is one of the most common HDLs (Hardware Descrip-
tion Languages) used by IC (Integrated Circuit) designers. Designs
modeled in Verilog are technology independent, easy to develop
and debug, and considered more readable than schematics. For
this reason, Verilog is being increasingly used to specify software
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Fig. 1. RPS software development process using PLCs.

D.-A. Lee et al. / Reliability Engineering and System Safety 120 (2013) 139–149140



Author's personal copy

logic for process control systems. Verilog has several variable
types. A wire, similar to a physical wire in a circuit, is used to
connect modules in software development. A wire does not store
its value and must be driven by a continuous assignment state-
ment or by connecting it to an output of a module. On the other
hand, a reg, used in a procedural assignment block beginning
with always, represents a data object which holds its value from
the current execution cycle to the next.

2.4. HW-CBMC

HW-CBMC [17] is a testing and debugging tool in IC (Integrated
Circuit) industry. It can verify behavioral consistency between two
implementations of the same design: one written in ANSI-C,
typically for simulation, and the other written in register transfer
level HDL, an actual product. Motivation of HW-CBMC is to reduce
additional time needed for debugging and testing of the HDL
implementations in order to produce chips as soon as possible.
HW-CBMC reduces cost by providing an automated way of estab-
lishing the consistency of HDL implementation using the ANSI-C
implementation as a reference, because the debugging and testing
cost of the ANSI-C implementation is usually lower.

This paper proposes to use the HW-CBMC's behavioral consis-
tency checking function for verifying the behavioral consistency
between FBDs and ANSI-C programs. It requires FBDs to be

translated into Verilog programs first [30]. The semantics of FBD
are similar to that of Verilog in our previous research [31].
However, HW-CBMC does not allow all grammars and structures
of Verilog, and we provide modified translation rules for translat-
ing FBD programs into appropriate Verilog programs for
HW-CBMC.

3. Verification of FBD-to-C translator using HW-CBMC

3.1. Overview

Verification of the ‘FBD-to-C’ translator using HW-CBMC con-
sists of three steps as depicted in Fig. 3. The first step translates
FBD programs into behaviorally equivalent Verilog programs.
It then wraps ANSI-C programs using templates this paper pro-
vides in the second step. Finally HW-CBMC verifies behavioral
equivalence between those programs, i.e., Verilog and ANSI-C
programs. This subsection briefly explains these three steps.

(Step 1) HW-CBMC reads two inputs—Verilog and ANSI-C
programs. We have to translate FBD programs into equivalent Verilog
programs in order to use the HW-CBMC verification. Our previous
research [18] proposed translation rules from FBD to Verilog for the
formal verification using the VIS verification system [19]. This paper
modified several translation rules since HW-CBMC reads Verilog

Fig. 2. An example of FBD program.

Fig. 3. An overall verification process for ‘FBD-to-C’ translator using HW-CBMC.

D.-A. Lee et al. / Reliability Engineering and System Safety 120 (2013) 139–149 141



Author's personal copy

programs which are slightly syntactically different from those for VIS.
We implemented the modified rules into ‘FBDtoVerilog 1.0H’ which
are explained in detail in Section 3.2.

(Step 2) HW-CBMC requires users to insert into ANSI-C pro-
grams verification properties and codes for reading programs and
initiating the verification. The insertion may incur unexpected
modification on irrelevant parts, and is a potential threat to the
validity of the HW-CBMC verification. It is also an error-prone activity
to insert properties case-by-case. Thus, we provide a ‘CWrapper’
program, wrapping the ANSI-C program with template-based
statements to prohibit unnecessary modifications and to help users
perform the HW-CBMC verification mechanically. Section 3.3
describes the templates-based wrapping process.

(Step 3) Users perform the HW-CBMC verification with two
programs, a translated Verilog program and a wrapped ANSI-C
program. HW-CBMC decides on their behavioral equivalence and
produces ‘success’ or ‘fail’ with a counterexample. The former means
that the FBD-to-C translator works functionally correctly, while the
latter does not at least for the specific case of the counter-example.

3.2. (Step 1) The FBDtoVerilog translation

3.2.1. Well-formed FBDs
We assume that all FBDs should be well-formed FBDs. If a FBD

is not well-formed, we cannot apply the systematic verification
process using HW-CBMC to the FBD, since it is too biased from
typical FBD programming schemes. An FBD is well-formed, if it
satisfies the assumptions below:

� Assumption 1. EN port of all FBs should be set to enable.
FBD programming engineers often use EN and ENO ports as
control signals to enable or disable other function blocks. The
IEC 61131-3 standard does not explain the case clearly when
function blocks are enabled and disabled subsequently by
controlling the ports. Furthermore it is not an appropriate
usage of FBDs that programmers use the EN port to control
other function blocks as control-flow based languages such as C
and JAVA, because FBD is a data-flow based language. We
assume that all EN ports are set to 1 (TRUE) and they are not
allowed to have a connection with others.

� Assumption 2. Explicit data-type conversions should be used.
Some FBD software engineering tools allow implicit data-type

conversions such as from INT to BOOL. However, arithmetic or
logical computation among variables which have different
types may cause unexpected errors, unless explicit type con-
versions do not proceed. We assume that all data-type conver-
sions are defined explicitly.

� Assumption 3. Output variables should not be overwritten.
An output variable must have a unique name and be assigned only
once in a cycle. FBD evaluates outputs at every execution cycle. If
an FBD generates several different values for the same output
variable in a cycle, it is a potential cause of unexpected behaviors.

3.2.2. Translation of FBs and FBDs
Translation from (well-formed) FBDs to Verilog programs includes

two steps: translations for function blocks (FBs) and function block
diagrams (FBDs). A basic unit of the translation is a FB which is
translated into a module of Verilog, whereas it is translated into a
function of Verilog for the VIS verification system [18]. Fig. 4
presents two function blocks GE_DINT and SEL_DINT and corre-
sponding module definitions written in Verilog. The translation of a
FB starts declaring name and input/output ports of the module. Its
body includes definitions of types and sizes of input/output ports. It
also includes an assign statement which defines the behavior of a FB
in accordance with IEC 61131-3 standard [2].

The translation of a FBD assumes that all modules for FBs are
defined beforehand. It also starts with defining the name and
input/output ports of the module too. If the FBD has feedback
transitions or stores variables in order to use value at the later
execution cycles (see [18] for details), then the variables are
translated into the reg type variables. Other cases are translated
into the wire type variables. All module definitions for FBs are
called according to their execution order sequentially. At last, the
assign statements assign values to the output variables of the
FBD, and new values are also assigned to reg variables in the
always block. Fig. 5 shows an example FBD program in KNICS RPS
BP and the corresponding Verilog code.

We implemented the translation (from FBDs to Verilog programs
for HW-CBMC) in a tool ‘FBDtoVerilog 1.0H.’ It uses a de facto standard
XML format of FBDs—PLCopen TC6 XML [32]. PLCopen is a vendor-
and product-independent worldwide association. FBDtoVerilog 1.0H
translates FBDs into Verilog programs which can be read by
HW-CBMC, not VIS nor SMV. In our previous work, ‘FBDtoVerilog

Fig. 4. An example of function blocks and translated Verilog modules.
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1.0’ [18,33] translates FBDs into Verilog programs for verification
using VIS and SMV [34]. The Verilog programs, however, cannot be
used for the HW-CBMC verification, since the model checkers have
their own restrictions and rules. For example, HW-CBMC cannot
handle functions of Verilog whereas VIS and SMV can.

3.3. (Step 2) The ANSI-C wrapping

HW-CBMC reads an ANSI-C program to which verification
properties and commands are inserted. Step 2 aims to produce the
ANSI-C program in which all necessary information and commands

are included, using a concept of wrapping with templates. Fig. 6
presents the wrapping process, and the output of the process is an
ANSI-C program wrapped with all necessary information for the
HW-CBMC verification. It is structured with 11 templates from T1 to
T11 while 3 templates (T3, T7, T10) are optional. It helps users
perform the verification mechanically and prevents frequent non-
careful modifications on the ANSI-C programs.

T1. Inclusion of the target ANSI-C file

The wrapping process starts by including a target ANSI-C file.
HW-CBMC can execute functions in a “.c” file which has the body of

Fig. 5. A part of FIX_RISING module in KNICS RPS BP and translated Verilog program.
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Fig. 6. A template-based process of wrapping ANSI-C program.
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the function, not a header, “.h”, file. The inclusion, therefore, should
include a “.c” file as shown below.

#include “ModuleName.c”

T2. Definition of bound variable and declaration basic functions

Definition of a bound variable and declaration of two basic
functions, next_timeframe() and set_inputs(), are followed.
The bound defines the number of repeated executions for the
main function (T7–T10). Users have to set the value within a
verification command at Step 3. The two functions are used for
synchronizing two programs (i.e., Verilog and ANSI-C programs).
‘next_timeframe()’ sets clock signals at T11 and ‘set_input()’
sets assigned variables at T9.

extern const unsigned int bound;
void next_timeframe();
void set_input();

T3. Declaration of non-deterministic functions

T3 is a modifiable element. If users want to perform the
verification with random values as input values, then it should
be filled with non-deterministic functions. The functions return
nondeterministic values to input variables, which mean that the
value of inputs is not specified. Users may use them to assign the
values to inputs at T7. A name of non-deterministic functions
begins with the prefix nondet_. For instance, the following
function returns a nondeterministically chosen integer:

int nondet_int();

T4. Definition of C structures to access variables in Verilog program

HW-CBMC needs structure data-type variables to access
variables defined in the Verilog program. The structure types are
declared at T4 and accessed at T9 to set values or at T10 to verify
the equivalence. Information of input and output ports in Verilog
programs makes variables in the structure types.

struct module ModuleNamefint inputn;…_Bool outputm; g;
extern struct module ModuleName ModuleName;

T5. The main function

The main function starts with declarations of temporary vari-
ables. The variables have temporary values generated at T7. They are
not mandatory elements if the verification uses only deterministic
values. It, however, is necessary for non-deterministic value gen-
eration, because two inputs—one for Verilog and the other for
ANSI-C—must have equivalent values in a cycle. To provide equiva-
lent inputs, the non-deterministic function should be called once in
a cycle and return the random value to the temporary variables.

void main {
int temp_input0;…; temp_inputn;
int temp_output0;…; temp_outputm;

T6. Declaration and definition of parameters for the ANSI-C function

Execution of the ANSI-C program requires the definition of
parameters for its function. Information in regard to the parameters
decides the definition. For example, they may be various variables

such as integer and boolean, or a single structure data-type. The
parameters are used at T8 as parameters for the ANSI-C function and
T10 as resources of verification properties.

int input0;…;inputn;
int output0;…;outputm;

T7. Generation of input values

Input variables can be assigned in two ways, deterministic and
non-deterministic. Users may assign a value to an input variable
deterministically by using an arithmetic formula. On the other
hand, the non-deterministic assignment of input values should use
the functions defined at T3. It returns values of specific types non-
deterministically. The following assignment statements demon-
strate an example of the two types of input variables, respectively.

input0 ¼ input0 þ 10;
input1 ¼ nondet_intðÞ;

T8. The function call of the ANSI-C program

To execute the included ANSI-C program at T1, T8 calls a
function in the ANSI-C program. The function is executed with
the parameters defined at T6. The values which are generated at
T7 have been assigned to the parameters before the function is
executed. The below example assumes that a name of the function
is the same as the name of the included ANSI-C program.

ModuleNameðinput0;…;outputmÞ;

T9. Assignments of input values to variables in the Verilog program

Executing a Verilog program also requires assigning values to
the Verilog input variables. The values should equate to those used
by the ANSI-C function at T8. We use the C structures defined at T4
to assign the value generated at T7 to the Verilog input variables.
set_inputs() is then called to synchronize the assigned values
with the Verilog program.

ModuleName:inputn ¼ inputn;…
set_inputs();

T10. Verification of equivalence

The HW-CBMC verification uses assertion statements such as
assertðpropertyÞ. The property is an equality equation
between two outputs, i.e., from ANSI-C and Verilog programs.
The outputs of the ANSI-C program are defined at T6 while those
of the Verilog program are defined at T4. The HW-CBMC verifica-
tion succeeds when the property is true. If it is not true, i.e.,
these two outputs are not equivalent, the verification fails and it
produces a counter example.

assertðModuleName:output0 ¼ ¼ output0Þ;

T11. Clock synchronization

The last step in the wrapping process is to make the Verilog program
proceed by one execution cycle. We use the function next_timeframe
(). Then it proceeds to T7 and generates inputs again. This iteration
repeats for the bound times defined at T2.

next_timeframe();

Fig. 7 is an example of the wrapped ANSI-C program for the
FIX_RISING module in the KNICS RPS BP. Hereafter we call it
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Wrapper. The Wrapper includes an ANSI-C file (T1) first and
declares basic functions and variables (T2). Declaration of the
non-deterministic input function nondet_int() is followed (T3).
The C structure, module_FIX_RISING, for the target Verilog
programs is defined (T4).

The main function begins with the declaration of tempor-
ary variables (T5). The program uses the structure data-type
to define input and output variables as a parameter (T6). The
for loop iterates for the bound times. One non-deterministic
and three deterministic assignments are followed (T7), and
the ANSI-C and Verilog programs with assigned inputs are
executed (T8 and T9). The Wrapper has two assertion state-
ments for trip and pretrip outputs of the KNICS RPS BP
(T10). Finally, the for loop ends with the function next_ti-
meframe() (T11). We developed a CASE tool ‘CWrapper’
generating the wrapped ANSI-C program in accordance with
the templates-based process. The details will be introduced in
Section 4.

3.4. (Step 3) The HW-CBMC verification

The HW-CBMC verification aims to verify the behavioral
equivalence between outputs from two programs (such as Verilog
and ANSI-C) which have the same combination of inputs. It
requires all related files (Verilog, ANSI-C, etc.) to be located at
the same directory. Users can also execute the HW-CBMC verifica-
tion within the Visual Studio Command Prompt.1 The command
for the verification can be seen below:

4hw-cbmc.exe ModuleName.v Wrapper.c

–module ModuleName –bound N

ModuleName.v is the Verilog file translated from an FBD, while
Wrapper.c is the wrapped file of a target ANSI-C program. The
command has two parameters. –module ModuleName declares

Fig. 7. An example of the wrapped ANSI-C program for the FIX_RISING module in KNICS RPS BP.

1 http://msdn.microsoft.com/en-us/library/ms229859.aspx.
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the module name of the Verilog program to read. –bound N

declares the number of iterating cycles from T11 to T7 in the
template.

HW-CBMC returns “VERIFICATION SUCCESS” when the two
programs are behaviorally equivalent. Users can be confident that
the ANSI-C program generated from an FBD program always
shows the same behavior with its origin—FBD program. If the
verification fails, HW-CBMC returns “VERIFICATION FAILED” and
produces a counterexample as depicted in Fig. 8.

4. Case study

We applied the proposed process to two PLC programs,
FIX_RISING and FIX_FALLING developed by pSET, to demonstrate
its feasibility. Table 1 shows information of the two programs for
this case study. The two programs have a similar structure;
however, their operations are contrariwise. For example, FIX_RIS-
ING generates trip and pretrip signals where one of the inputs has
a value over a set point for more than specific times. The pretrip
signal is a warning signal for the trip signal, thus the limitation of
the pretrip is lower.

We used an automatic translator, ‘pSET2TC6’ [35], which trans-
lates the program files of pSET as the PLCopen TC6 XML standard,
because pSET does not support the standard. pSET has two
different data formats: one is a binary type which is unreadable,
and the other is a ASCII type. Although readable, the ASCII type is
not commonly used. Since we developed FBDtoVerilg according to
the PLCopen standard for vendor- and product-independence, it is
necessary to translate the ASCII format to the PLCopen TC6 XML
standard format.

4.1. Translation of FBD and generation of wrapper

We translated the programs in Table 1 using FBDtoVerilog.
FBDtoVerilog has an input file which follows PLCopen TC6 XML
standard. It produces Verilog files with the same name as the

name of the FBD program according to translation rules as
described in Section 3.2. For instance, if a name of the FBD file is
FIX_RISING.xml, then FBDtoVerilog produces a FIX_RISING.v file.

CWrapper automatically produces a Wrapper file, Wrapper.c.
When CWrapper performs the producing Wrapper, it refers to the
translated Verilog program to define the C structure as described
at T4 in Fig. 6. CWrapper considers how FBD-to-C translates the
FBD to C, because the parameters and function call depend on the
C program. pSET translates input and output ports of FBD into a
structure data-type of C with suffix __t; it also translates the FBD
program into a function of C with suffix __ (double underscores).
For instance, the input and output ports of FIX_RISING are
defined as a structure data-type FIX_RISING__t; the FIX_RIS-
ING is translated into FIX_RISING__(FIX_RISING__t* a__). The
current version of CWrapper is implemented with respect to the
ANSI-C program translated by pSET.

We implemented an execution program to execute FBDtoVerilog
and CWrapper. The program is executed with a FBD program, and
it executes FBDtoVerilog to translate the FBD program into Verilog.
After the translation, it executes CWrapper to produce Wrapper.
Fig. 9 presents the execution with the FIX_RISING program.

4.2. Results of HW-CBMC verification

We performed the verification using HW-CBMC in determinis-
tic and non-deterministic ways. Verification using non-
deterministic functions usually takes more time and additional
memory space. Furthermore, if number of the bound is too great,
then HW-CBMC is shut down abnormally. We chose the bound

Fig. 8. An example of a verification failure and a counterexample produced.

Table 1
Information of programs for case study.

Module name # Blocks # Inputs # Outputs (Feedback)

FIX_RISING 26 4 6 (4)
FIX_FALLING 26 4 6 (4)
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empirically, because there are not criterion that users can
decide it.

The deterministic verification fixes three inputs; PTSP, TSP,
and MAXCNT. We used a formula to assign values to another one,
PV_OUT, according to a scenario. The scenario is that the three
inputs are fixed and PV_OUT can increase or decrease. We also
perform non-deterministic verification with respect to the sce-
nario; however, we assigned a non-deterministic value to PV_OUT.
Table 2 describes the verification results of two modules in BP of
the KNICS project.

HW-CBMC returns “VERIFICATION SUCCESSFUL” for both cases,
which means that the translator of pSET is functionally correct in
the cases. Deterministic and non-deterministic verification of
FIX_RISING took 73.851 s and 190.773 s respectively. It shows that
non-deterministic verification takes more time than deterministic
one even if it has less bound. Fig. 10 presents a screen dump which
is the result of the non-deterministic verification of FIX_RISING.

5. Related work

5.1. Equivalence checking

Equivalence checking is a technique used to check the func-
tional equivalence between two programs. The VIS (Verification
Interacting with Synthesis) [19] is a widely used tool for the formal
verification, synthesis, and simulation of finite state systems.
It uses Verilog as a front-end and provides combinational and
sequential equivalence checking of two Verilog programs. The
combinational equivalence of the VIS provides a sanity check
when re-synthesizing portions of a network, and its sequential
verification is done by building the product finite state machine.
Yoo et al. [18] uses VIS to verify the equivalence of PLC programs
between successive revisions. The revision for optimization must

exhibit the same functions as the former one. The approach helps
to guarantee that the revision does not change the functions.

On the other hand, there is a study for equivalence checking
between two different descriptions. Bombieri et al. [36] presents a
formal definition of equivalence between the Transaction Level
Modeling (TLM) and Register Transfer Level (RTL) is presented. The
TLM is the reference modeling style for hardware/software design
and verification of digital systems, and the RTL is a level of
abstraction used in describing the operation of a synchronous
digital circuit. The definition is based on events, and it shows how
such a definition can be used for proving the equivalence
between both.

5.2. Verification of compilers, code-generators and translators

Verifying the correctness of compilers directly including code
generators or translators is one of the most difficult topics in
computing research [37]. There are researches to verify them
through various techniques; see [38] for a survey. One of them
uses two model checkers to verify untrusted code generators [39].
It specifies the same properties in two expressions, LTL (Linear
Temporal Logic) for the NuSMV [34] model checker and user-
specified assertion in CBMC. NuSMV verified the original program
with the LTL properties and CBMC verified the automatically
generated program with the user-specified assertion properties.
They verified the code generator using the two programs with the
two same properties about correctness.

Ref. [40] shows verification of compiling specification for a Lisp
compiler. They verified compilation from ComLisp to the Stack-
based intermediate language SIL, which is the first phase of the
compilation. They specified two languages formally, and specified
the compilation rules formally. The correctness of the compilation
process is verified using a PVS specification and verification
system. Verification of a C compiler is also performed in [41]. This
is also focused on a partial C compiler, which is its front-end. They
verified the observational semantic equivalence between the
source and generated code using Coq, which is proof assistant.

6. Conclusion

This paper describes a systematic technique to verify behavioral
consistency between FBD design and ANSI-C implementation
using HW-CBMC. We introduced the process of the verification
technique and gave explanations for the steps of each process. The

Fig. 9. A screen dump of performing CASE tool with regard to FIX_RISING program.

Table 2
Verification results.

Module name Result

FIX_RISING VERIFICATION SUCCESS
Deterministic (bound) 73.851 s (100)
Non-deterministic (bound) 192.036 s (30)

FIX_FALLING VERIFICATION SUCCESS
Deterministic (bound) 67.828 s (100)
Non-deterministic (bound) 272.391 s (30)
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first step is translation of the target FBD program into a semanti-
cally equivalent Verilog program. Second, it produces a wrapping
program to wrap the target ANSI-C program. Finally, HW-CBMC
verifies behavioral consistency between the Verilog program and
the ANSI-C program. We performed two case studies developed by
pSET to demonstrate its feasibility. We also implemented CASE
tools, ‘FBDtoVerilog 1.0H’ and ‘CWrapper.’ The case studies are
performed semi-automatically with the CASE tools. Our future
research plan is to make a GUI (Graphic User Interface) environ-
ment for convenience to perform the process. Another plan is to
provide the iterating number of the ‘main’ function for the
verification in a precise way. This paper uses the empirical number
of the iteration, but we expect that it is possible to provide the
number in a statistical or mathematical way.
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