
Verification of Function Block Diagram through
Verilog Translation

Seungjae Jeon, Eunkyoung Jee, Sungdeok Cha1,
Junbeom Yoo2, and Geeyoung Park3

1 Div. of Computer Science, Korea Advanced Institute of Science and Technology
Daejeon, Republic of Korea

{sjjeon,ekjee,cha}@dependable.kaist.ac.kr
2 Samsung Electronics Co., Ltd.

Suwon, Republic of Korea
junbeom.yoo@samsung.com

3 Korea Atomic Energy Research Institute,
Daejeon, Republic of Korea

gypark@kaeri.re.kr

Abstract. The formal verification of FBD program is required at nu-
clear power plant as traditional relay-based analog systems are being
replaced with digital PLC based software. This paper proposes a way
to formally verify the FBD program. For this purpose, Verilog model
is automatically translated from the FBD program, then Cadence SMV
performs model checking. We demonstrated the effectiveness of the sug-
gested approach by conducting a case study of the nuclear reactor pro-
tection system, which is currently being developed in Korea.

1 Introduction

Software safety became a critical issue in nuclear power plant area because tra-
ditional analog systems are being replaced by Programmable Logic Controller
(PLC) based software[5]. As formal methods are gaining acceptance in research
community as a promising approach to provide a high degree of safety assurance,
several formal specification and verification methods have been developed and
applied to nuclear power plant systems.

KNICS[3] consortium is developing a suite of instrumentation and control
software for next generation Korean nuclear power plants, which is classified as
being safety-critical by government regulation authority. Currently being devel-
oped advanced power reactor’s (APR-1400) protection system (RPS) is thor-
oughly verified using formal verification technique such as model checking[6].

PLC is a special type of industrial computer largely used in control systems.
It provides powerful functionality to deal with periodic time and polling mecha-
nism. International Electrotechnical Commission (IEC) defined five application
software programming languages for PLCs. Among them, Function Block Dia-
gram (FBD) is one of the most widely used languages. A major part of KNICS
APR-1400 RPS Software Design Specification (SDS)[4] is specified in FBD.

Rigorous safety demonstration is required on FBD program since it is au-
tomatically compiled to machine code and executed on industrial computers.
Correctness of FBD program can be guaranteed by using formal verification
technique as well as traditional testing and simulation methods.

This paper proposes a way to formally verify FBD program. We define the
syntax of FBD formally based on the IEC standard, then translate the pro-
gram into Verilog[10] model. Translated Verilog model is verified using Cadence
SMV[14] model checker. APR-1400 RPS is used as a case study to show effec-
tiveness of the proposed approach.

A tool, FBD2V, is implemented to support proposed approach. It gener-
ates Verilog model from FBD program. It is also used as a front-end for model
checking and counterexample analysis. These features enable nuclear engineers
to verify FBD program with minimum expertise on formal method.

The remainder of the paper is organized as follows: section 2 explains FBD,
Verilog, and Cadence SMV briefly. Section 3 describes the translation rules from
FBD to Verilog. Section 4 presents FBD2V and a case study of a real system.
Section 5 presents related works, and section 6 concludes this paper.

2 Background

2.1 PLC programming in FBD

PLC is an industrial computer applied to wide range of control systems. The
main characteristic of PLC program is scan cycle[8]. In each iteration of this
permanent loops, the program reads inputs, computes new internal states, and
updates outputs. This cyclic behavior makes PLCs suitable for interacting with
a continuous environment.

FBD is one of the standard PLC programming languages identified in IEC61131-
3[7]. FBD is widely used because of its graphical notations and usefulness in
applications with a high degree of data flow among control components. FBD
defines system behavior in terms of flow of signals among function blocks. A
collection of function blocks is wired together in a manner of a circuit diagram.

Fig.1 shows ten function block groups and a representative example of each
group. Arithmetic, comparison, bitwise boolean, type conversion, selection, and
numerical blocks do not have internal states. They always produce a primary
value as a result when executed with a particular set of input values. In contrast,
timer, edge detection, bistable and counter blocks store values in internal and
output variables[9].

Fig.2 gives an example of FBD to calculate TRIP T and TSP. The outputs
are produced by the sequential combination of the block operations. Details will
be explained with formal definitions in next section.

2.2 Verilog

Verilog[10] is one of the most popular Hardware Description Languages (HDL)
used by integrated circuit (IC) designers. Below we summarize the Verilog fea-
tures[2] pertinent to our discussion.

Fig. 1. Function block groups and representative examples

Verilog has several types of variables. A wire variable represents a physical
wire in a circuit and is used to connect gates or modules. A wire does not store
its value, and must be driven by the assign statement or by connected output
of a gate or a module. On the other hand, a reg variable is a data object holding
its value. Reg variables are assigned only in always and initial block.

A module is a principal design entry in Verilog. Module declaration specifies
the name and list of I/O ports. The first part of a module defines I/O and
data type of each port. Keywords input and output declare the input and
output ports of a module. Data type is specified for each variable, e.g., as the
size of a bit vector. Module declarations are templates from that one creates
actual instantiations. Modules are instantiated inside other modules and each
instantiation creates a unique object from the template. The exception is top-
level module (i.e., main) which is its own instantiation.

2.3 Model Checking and Cadence SMV

We use model checking technique to formally verify FBD programs. Model check-
ing is a technique to prove whether a formal system satisfies certain properties
or not. Cadence SMV is a model checker based on symbolic model checking tech-
nique[12]. Cadence SMV can verify a model programmed in Synchronous Verilog
(SV)[11], a slight variation of the Verilog language with cycle-based behavior.
Cadence SMV converts Synchronous Verilog into SMV input language[13], and

Fig. 2. A small example of FBD

then performs model checking. True is returned if Verilog model meets given
property. Otherwise, a counterexample is produced to show the existence of er-
rors in the model.

3 Verilog Translation from FBD

An FBD program is translated to a Verilog model in order to perform model
checking by Cadence SMV. This section mainly describes how to translate an
FBD program into a Verilog model. First subsection formally defines function
blocks and function block diagrams. Those definitions are based on [1] and
slightly modified. Next subsection restricts the scope of target FBD program.
Then we show translation steps with a small example.

3.1 Formal Definition of FBD

Defintion 1 (FB Type) Function block type is defined as a tuple
< Type name, IP, OP, BD >, where

– Type name: a name of function block type
– IP : a set of input ports, {IP1, ... , IPM}
– OP : a set of output ports, {OP1, ... , OPN}
– BD: behavior description, as functions for each OP ,

BDOPn : (IP1, ... , IPM) → OPn , 1 ≤ n ≤ N y

Input port (IP) and output port (OP) are the official term used in the stan-
dard [7]. Fig.3 describes an example of ADD block. Other function blocks can
be defined in the similar way.

As FBD is a network of function blocks, each block is considered as an in-
stance of function block type. Instance names of blocks are specified in Fig.2; ge,
ton, add, and sel. We write sel.G to indicate the port named G in block sel for
convenience. Behavior description of function block instance is written similarly;
add.BDOUT (add.IN1, add.IN2) = add.IN1 + add.IN2.

Fig. 3. Example: Formal definition of ADD block

Defintion 2 (FBD) FBD is defined as a tuple < FBs, V, T >, where

– FBs: a set of function block instances
– V : a set of input and output variables of FBD, V = VI

∪
VO

• VI : a set of input variables into FBD
• VO: a set of output variables from FBD

– T : a set of transitions between FBs and V
VI × FB.IP

∪
FB.OP × FB.IP

∪
FB.OP × VO y

Let VO be a set of output variables computed at each iteration of scan cycles.
VI is a set of input variables and each vi ∈ VI has its own value; their values
are constants, set by external, or output variables having same name. Transition
T represents wires connecting variables and function blocks. Fig.4 shows the
example FBD formally defined.

< FBs, V, T >

FBs = {ge, ton, add, sel}
VI = {PV OUT, TSP, k delay, HYS, TRIP T}
VO = {TRIP T, et, TSP 1}
T = { (PV OUT , ge.IN1) , (TSP 1 , add.IN1) ,

(TSP , ge.IN2) , (HYS , add.IN2) ,
(ge.OUT , ton.IN) , (TRIP T , sel.G) ,
(k delay , ton.PT) , (TSP , sel.IN0) ,
(ton.Q , TRIP T) , (add.OUT , sel.IN1) ,
(ton.ET , et) , (sel.OUT , TSP 1) }

Fig. 4. Formal definition of Fig.2

Defintion 3 (Evaluation function) Each port and variables are evaluated as
f : (port or variable) → FBD data type

– For input variable p0 ∈ VI , f(p0) = p0

– For output variable precv ∈ VO, or input port precv ∈ fb.IP, fb ∈ FBs, let
(p′ × precv) ∈ T , f(precv) = f(p′)

– For output port pemit ∈ fb.OP, fb ∈ FBs, let fb.IP = {p1, ..., pM}, f(pemit) =
fb.BDp{p1, ..., pM} y

Output variables in FBD are evaluated by inputs and function blocks con-
nected. For example, TSP 1 at Fig.2 is evaluated as below:
f(TSP 1) = f(sel.OUT)
= sel.BDOUT (f(sel.G), f(sel.IN0), f(sel.IN1))
= f(sel.G) ? f(sel.IN1) : f(sel.IN0)
= TRIP T ? add.BDOUT (f(add.IN1), f(add.IN2)) : TSP
= TRIP T ? (f(add.IN1) + f(add.IN2)) : TSP
= TRIP T ? (TSP + HYS) : TSP

3.2 Assumptions on FBD

FBD should satisfy following assumptions in order to be translated into Ver-
ilog. These assumptions correspond to FBD semantics stated in IEC 61131-3
standard.

FBD is well wired

– Every port and variable are connected.
{x|(x × y) ∈ T} = {pemit|pemit ∈ VI or pemit ∈ fb.OP, fb ∈ FBs}
{y|(x × y) ∈ T} = {precv|p ∈ VO or precv ∈ fb.IP, fb ∈ FBs}

– Every port and variable has only one source.
∀(x × y) ∈ T ∀x′ ̸= x, (x′ × y) ̸∈ T

FBD is type safe

– ∀(x × y) ∈ T , x and y should have same data type; e.g., bool, int, or word.
FBD data type is defined in the standard.

FBD should not overwrite output variables

– Every output variable has unique name so that its value can be assigned
only once per cycle. Some FBD development tools allow overwriting output
variables. In this case, output variables should be renamed to temporary
names to be distinguished from each other.

Execution order is predefined

– Output variables are evaluated in given order. Let an ordered set VO =
{vo1, ..., voN}, computation starts from vo1 and ends at voN within a cycle.

3.3 Translation Steps

If FBD program satisfies all the assumptions, it is ready to be translated into
Verilog model. Each steps will be explained with an example FBD program
shown in Fig.2.

//Rule 1. module declaration:
module main (clk, [input variables], [output variables]);

// Rule 2. for each variable v ∈ V :
input | reg | wire | output [size(v) : 0] v;

initial begin
// Rule 3. for each reg variable vreg:
vreg <= [initial value of vreg];
end

// Rule 4. for each wire and output variable vo ∈ VO:
assign vo = f(vo);

always @ (posedge clk) begin
// Rule 5. for each reg variable vreg:
vreg <= [stored value];
end

always [if ([condition])] assert [label]: [assertion]; // property
endmodule

Fig. 5. Verilog generation template

Variable type detection
Each variable in FBD is mapped to one of Verilog variable types; input, reg,

wire and output. A input variable vi ∈ VI is input type if there is no output
variable having same name with vi, i.e., its value is transmitted from external
input. vi is reg type if its value needs to be stored internally. Reg variables
hold their value and will be used at next cycle operation. On the other hand,
values that need to be stored just for this cycle are declared as wire variables.
They represent physical wires connecting function blocks and variables. A output
variable vo ∈ VO is output type if it is designated as an external output of the
module. In Fig.2, variables are classified as following:

– Vinput = {PV OUT, TSP, k delay, HYS}
– Vwire = {TRIP T, et, TSP 1}

Variable size decision
Non-boolean values are represented as bit vectors and their size should be

decided. We use notation size(v) for number of bit size required to represent
v. Let size(v) = 0 if v is boolean variable. Size of input and reg variables
should be given by the user so that a model checker can cover proper range
of the input variables. Size of wire and output variables are computed from the
connected inputs, reg variables and function blocks. They should be large enough
to represent maximum values in the program.

Let size(PV OUT) = size(TSP) = 7, size(k delay) = 4, size(HYS) = 2
given by user, then

– size(TRIP T) = 0
– size(et) = size(k delay) = 4
– size(TSP 1) = max(size(TSP), size(HYS)) + 2 = 9

Output variable assignment
A Verilog expression for assigning a variable p has a same semantic with f(p)

at definition 3. Function blocks that do not store internal states are mapped to
Verilog operators. Examples of blocks having internal states are timers, flip-flops,
and counters. These function blocks are translated into Verilog modules.

– f(TSP 1) = TRIP T ? (TSP + HYS) : TSP
– f(TRIP T) = ton.BDQ(PV OUT >= TSP, k delay),

behavior of TON is translated into Verilog module as shown in Fig.6.

module main (clk, PV OUT, TSP, k delay, HYS);
input clk;
input [7:0] PV OUT, TSP;
input [4:0] k delay;
input [2:0] HYS;
wire TRIP T;
wire [4:0] et;
wire [9:0] TSP 1;
TON ton (clk, (PV OUT >= TSP), k delay, TRIP T, et);
assign TSP 1 = TRIP T ? (TSP + HYS) : TSP;

endmodule

module TON (clk, IN, PT, Q, ET);
input clk, IN;
input [4:0] PT;
output Q;
output [4:0] ET;
reg [4:0] t;
initial t = 0;
assign ET = t;
assign Q = IN && (ET >= PT);
always @ (posedge clk)

t <= IN ? ((t < PT) ? t+1 : PT) : 0;
endmodule

Fig. 6. Verilog model translated from Fig.2

Generation of Verilog model
Based on translation rules in [2], Verilog model is generated according to the

template described in Fig.5. In Rule 1, module name, input and output ports
are specified in the first line. Variables are declared with their type, bit size, and
name in Rule 2. Rule 3 initiates the reg variables. The main evaluation logic,
expressed by a collection of function blocks and variables in FBD, is translated
by Rule 4. Stored values are assigned to reg variables in Rule 5. @ (posedge clk)
means positive edge of clk signal, i.e., the beginnings of each cycle. As updated
value of a reg variable becomes visible at next time unit, new value is read at
next cycle[14]. Finally, properties are embedded by the user.

– Verilog model Fig.6 is generated from Fig.2 by applying Rule 1 - 5.

4 Case Study

This section demonstrates a case study of the proposed FBD verification tech-
nique. Target system is Bistable Processor (BP) at APR-1400 RPS[4]. An FBD
program which is a part of BP, is translated into Verilog model through the
rules introduced in previous section. Then, the tool FBD2V is briefly introduced.
Model checking result of the program is analyzed using FBD2V, and then we
show how an error is discovered.

Fig.7 shows FIX RISING program, one of the modules in BP system. It
sets the variaable TRIP LOGIC out when the variable PV OUT exceeds cer-
tain range for given time units. The output TRIP LOGIC out takes part in the
emergency shutdown logic of nuclear reactor. The FBD is well wired, type safe,
does not overwrite output variables, and has top-down (traditional) execution
order. It satisfies all the assumptions.

To translate FIX RISING program into Verilog model, we detect variable
type first. As PV OUT, HYS, and MAXCNT are appeared only in input vari-
ables VI , they are input type. TRIP CNT, TRIP LOGIC, and TSP are reg
type variables whose values are stored and used at next cycle. TRIP CNT out,
TSP 1, TSP out, TRIP LOGIC 1, and TRIP LOGIC out appear in both input
and output variable set. Their values are assigned in wires and become inputs
for evaluating other variables, but they are not stored for next cycle, i.e., wire
type. Other steps are as same as explained in previous section.

Fig.8 shows Verilog model generated from FIX RISING program through
Rule 1 - 5 in Fig.5. System specification defines that HYS, MAXCNT, and TSP
have non-zero initial values; they are hard coded in line 16 - 23. Two properties
are embedded in line 37 - 40. Property A1 means that ”Trip should be set if
TRIP CNT out becomes larger than or equal to MAXCNT.” A2 means that
”Trip should be reset if PV OUT is less than or equal to TSP out.”

FBD2V automates suggested FBD verification framework. It takes LDA file
as input then converts it into a Verilog model. LDA file is a FBD storing for-
mat of a tool pSET[15] used by KNICS consortium. User adjusts bit size and
initial values of the variables during the translation, as shown in Fig.9. After the

Fig. 7. FIX RISING program

properties are embedded, FBD2V executes Candence SMV and model check-
ing is performed. To enhance readability of the counterexample, it is displayed
in timing graph form, which is familiar to hardware engineers. Variables are
highlighted in different colors and shapes for visualization.

Fig.10 shows model checking result of FIX RISING program displayed in
FBD2V. The left side is Cadence SMV result and the right side is a timing
graph representation of the counterexample. The program failed to satisfy the
property A2, ”Trip should be reset if PV OUT is less than or equal to TSP out.”
To aid counterexample analysis, FBD2V enables users to declare monitoring
variables; constants, variables in counterexample, and arithmetic operators can
be used to declare a monitoring variable. PV OUT ≤ TSP out is displayed at
the bottom of the figure to check the condition of the property. Although this
condition is satisfied at the 6th cycle, TRIP LOGIC out holds the same value

1 module main (clk, HYS, MAXCNT, PV OUT);
2
3 input clk;
4 input [2:0] HYS;
5 input [4:0] MAXCNT;
6 input [7:0] PV OUT;
7 reg [4:0] TRIP CNT;
8 reg TRIP LOGIC;
9 reg [7:0] TSP;
10 wire [5:0] TRIP CNT out;
11 wire TRIP LOGIC 1;
12 wire [7:0] TSP 1;
13 wire TRIP LOGIC out;
14 wire [8:0] TSP out;
15
16 assign HYS = 1;
17 assign MAXCNT = 5;
18
19 initial begin
20 TRIP CNT <= 0;
21 TRIP LOGIC <= 0;
22 TSP <= 20;
23 end
24
25 assign TRIP CNT out =

((PV OUT >= TSP) && ! TRIP LOGIC) ? (TRIP CNT + 1) : 0;
26 assign TRIP LOGIC 1 =

(TRIP CNT out >= MAXCNT) ? 1 : TRIP LOGIC;
27 assign TSP 1 =

(TRIP CNT out >= MAXCNT) ? (TSP - HYS) : TSP;
28 assign TRIP LOGIC out =

((PV OUT < TSP 1) && TRIP LOGIC 1) ? 0 : TRIP LOGIC 1;
29 assign TSP out =

(((PV OUT < TSP 1) && TRIP LOGIC 1) ? (TSP 1 + HYS) : TSP 1;
30
31 always @ (posedge clk) begin
32 TRIP CNT <= TRIP CNT out;
33 TRIP LOGIC <= TRIP LOGIC out;
34 TSP <= TSP out;
35 end
36
37 always begin
38 if (TRIP CNT out >= MAXCNT) assert A1: TRIP LOGIC out == 1;
39 if (TRIP LOGIC && PV OUT =< TSP out)

assert A2: TRIP LOGIC out == 0;
40 end
41 endmodule

Fig. 8. FIX RISING program translated into Verilog

Fig. 9. FBD2V screenshot

with TRIP LOGIC 1. As a result, the logic assigning TRIP LOGIC out has an
error. User can conclude that the LT INT block is misused instead of LE INT
block.

BP is composed of 6 modules, including FIX RISING program, and 18 drip
decision logic implementations. Each trip decision logics uses two or more mod-
ules with specific parameters, just like a function call. Every logic and module
was formally verified with proposed method, and errors were found.

There was a state explosion problem with the program having large number
of inputs or storing variables for long term of cycles. We adopted a manual
abstraction technique to make the verification feasible. Automated abstraction
and slicing techniques for Verilog model will be needed for futurework.

5 Related Work

Verilog translation from FBD and verification technique was previously proposed
in [2]. It focused on mechanical generation of FBD from NuSCR formal specifica-
tion and equivalence checking using VIS verifier[16] on various versions of FBD
programs. It originally devised Verilog translation rules in order to use VIS. It
also stated the possibility for model checking on the translated Verilog program.
Main difference of our research is that we developed a tool to automate the
FBD model checking framework. Verilog translation rules are modified to gen-
erate Verilog code. Visualized counterexample analysis is another contribution
of our tool FBD2V.

There are other many Verilog HDL model checkers. CBMC[18] checks Verilog
for consistency with ANSI-C program. VCEGAR[19] performs model checking of

Fig. 10. A counterexample from FIX RISING program

Verilog using CounterExample Guided Abstraction Refinement[20] framework.
Using these model checkers instead of Cadence SMV might be meaningful.

Counter-example visualization is one of the active research areas. smv2vcd[17]
converts SMV counterexample into industrial standard format, Variable Change
Dump (VCD). VCD file can be viewed and analyzed by a wide variety of tools.

6 Conclusion

This paper proposed a method for formal verification of FBD. We suggested a
way to automatically translate Verilog model from FBD program. The gener-
ated Verilog model is verified with Cadence SMV model checker. Verilog model
generation and counterexample analysis are done with tool support.

Contributions of suggested method are followings: First, FBD program is
thoroughly verified by model checking using automated tool FBD2V. Second,
FBD2V aids analysis of counterexamples computed by Cadence SMV. FBD2V
represents a counterexample in timing graph form which is familiar to hardware
engineers. User can declare monitoring variables and slice variables to debug the
FBD program.

The proposed method was applied to the verification of KNICS APR-1400
RPS. Several errors were found and they were noticed to nuclear engineers to be
fixed in the next revision.

Acknowledgment This work was supported by the Korea Science and Engineering
Foundation(KOSEF) through the Advanced Information Technology Research

Center(AITrc). This work was also supported by the MIC(Ministry of Infor-
mation and Communication), Korea, under the ITRC(Information Technology
Research Center) support program supervised by the IITA(Institute of Informa-
tion Technology Advancement)

References

1. Junbeom Yoo, Hojung Bang, Sungdeok Cha. FBD Program Synthesis for PLC Con-
trollers. Science of Computer Programming, 2005, submitted.

2. Junbeom Yoo. Synthesis of Function Block Diagrams from NuSCR Formal Specifi-
cation. Doctoral Thesis, 2005.

3. KNICS(Korea Nuclear Instrumentation and Control System Research and Devel-
opment Center), http://www.knics.re.kr/english/eindex.html

4. Korea Atomic Energy Research Institute. SDS for reactor protection system.
KNICS-RPS-SDS231 Rev.02, 2006.

5. U. NRC. Digital Instrumentation and Control Systems in Nuclear Power Plants:
safety and reliability issues. National Academy Press, 1997.

6. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 1999.

7. IEC. International Standard for Programmable Controllers: Programming Lan-
guages. Part 3, 1993.

8. A. Mader. A Classification of PLC Models and Applications. In Proc. WODES 2000:
5th Workshop on Discrete Event Systems, August 21-23, Gent, Belgium, 2000.

9. R. Lewis. Programming industrial control systems using IEC 1131-3 Revised Edi-
tion(IEE Control Engineering Series). The Institute of Electrical Engineers, 1998.

10. IEEE Standard Hardware Description Language Based on the Verilog hardware
Description Language (IEEE Std 1364-2001). IEEE, 2003.

11. Ching-Tsun Chou. Synchronous Verilog: A Proposal. Fujitsu Laboratories of Amer-
ica, 1997.

12. K.L.McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
13. vl2smv manual, http://www.cis.ksu.edu/santos/smv-doc/vl2smvman.txt
14. Cadence SMV tutorial,

http://www.cis.ksu.edu/santos/smv-doc/tutorial/tutorial.html
15. pSET (POSCON Software Engineering Tool), http://rnd.poscon.co.kr
16. VIS, http://vlsi.colorado.edu/∼vis/
17. smv2vcd, http://www.cs.cmu.edu/∼modelcheck/smv2vcd.html
18. Bounded Model Checking for ANSI-C, http://www.cs.cmu.edu/∼modelcheck/cbmc/
19. H. Jain, N. Sharygina, D. Kroening, E. Clarke. Word Level Predicate Abstraction

and Refinement for Verifying RTL Verilog. In 42nd Design Automation Conference,
2005.

20. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5), 2003.

