
Testing of Timer Function Blocks in FBD

Eunkyoung Jee, Seungjae Jeon, Hojung Bang, Sungdeok Cha
Div. of Computer Science

Korea Advanced Institute of Science and Technology
Daejeon, Republic of Korea

{ekjee,sjjeon,hjbang,cha}@dependable.kaist.ac.kr

Junbeom Yoo
Next Generation Mobile Equipment Team

Samsung Electronics Co., Ltd.
Suwon-si, Gyeonggi-do, Republic of Korea

junbeom.yoo@samsung.com

Geeyong Park, Keechoon Kwon
I&C/Human Factors Division

Korea Atomic Energy Research Institute
Daejeon, Republic of Korea
{gypark,kckwon}@kaeri.re.kr

Abstract

Testing for time-related behaviors of PLC software
is important and should be performed carefully. We
propose a structural testing technique on Function
Block Diagram(FBD) networks including timer func-
tion blocks. In order to test FBD networks including
timer function blocks, we generate templates for timer
function blocks and transform a unit FBD into a flow-
graph using the proposed templates. We apply existing
testing techniques to the generated flowgraph and de-
scribe how the characteristics of timer function blocks
are reflected in the testing process. By the proposed
method, FBD networks including timer function blocks
can be tested thoroughly without the intermediate code
which was essential in the previous FBD testing. To
demonstrate the effectiveness of the proposed method,
we use a trip logic of bistable processor of digital plant
protection systems which is being developed in Korea.

1. Introduction

Testing of safety critical software is an indispensable
step to assure software quality because the failures of
safety critical software can cause serious damage to hu-
man life or property.

This work focuses on the programable logic con-
troller(PLC) programs implemented by Function Block
Diagram(FBD), one of the most widely used standard
PLC programming languages. As existing analog sys-

tems have been replaced by digital systems controlled
by software, testing of digital control systems has be-
come more important in nuclear power plant control
systems.

An FBD program is automatically compiled to PLC
machine code and executed on PLC. In the previous
case[1], functional testing on FBD has been done on
the intermediate C source code transformed from an
FBD network. We propose a structural testing method
to test FBD networks including timer function blocks
without having to generate the intermediate code. In
[4], for the FBD testing, a unit FBD is transformed
into a flowgraph and existing structural testing tech-
niques are applied to the flowgraph. However, it did
not address how timer function blocks could be tested.
Because many PLC programs use timer function blocks
and misused timer function blocks can cause serious er-
rors, testing of timer function blocks is essential.

In this paper, we extend work reported in [4] by
defining flowgraph segment templates corresponding
to the timer function blocks. The proposed method
makes systematic structural testing for FBD networks
including timer function blocks possible. This method
also has an advantage that it can be applied to any
FBD program, whatever its intermediate format is.
We demonstrate our approach by applying it to a
trip logic of Bistable Processor(BP) of Reactor Pro-
tection Systems(RPS) which is being developed in Ko-
rea Nuclear Instrumentation and Control System R&D
Center(KNICS)[2]. We confirm that various errors in-
cluding timer function block errors of a unit FBD can
be found effectively by applying the proposed method.

The remainder of the paper is organized as follows:

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

section 2 introduces FBD, and section 3 describes the
template generation for the timer function blocks to
transform a unit FBD including timer function blocks
into a flowgraph. In section 4, we apply control flow
and data flow testing strategies to the flowgraph trans-
formed from a unit FBD. Finally, the conclusion and
future works are described in section 5.

2. Background

2.1. Function Block Diagram

A PLC[6] is an industrial computer widely used
in control systems. The standard PLC programming
languages identified in IEC 61131-3[3] are Structured
Text(ST), Function Block Diagram(FBD), Ladder Di-
agram(LD), Instruction List(IL), and Sequential Func-
tion Chart(SFC). FBD, one of the most widely used
PLC languages, is easy to understand and good for
representing data flow between control blocks.

FBD is based on viewing a system in terms of the
flow of signals between processing elements[5]. Figure
1 shows five function block groups and representative
examples of each group. RPS, which is being developed
at KNICS, is programmed with function blocks out of
five groups in figure 1.

IN

PT

Q

TOF

BOOL

Q := 0 if IN = 0 is continued
 for PT delay time
Q := 1 otherwise

Timer Function Blocks

TIME ET

BOOL

TIME

IN0
IN1

INn

OUT

AND
ANY_BIT

OUT := IN0 & IN1 & … INn

Bitwise Boolean Functions

ANY_BIT

ANY_BIT

ANY_BIT
...

IN0
IN1

INn

OUT

GT
ANY

OUT := (IN0 > IN1) & (IN1
> IN2) & … (INn-1 > INn)

Comparison Functions

ANY

ANY

BOOL
...

ex) AND, OR, XOR...

ex) GT, GE, EQ... ex) TOF, TON, TP...

G

IN0

IN1

OUT

SEL
BOOL

OUT := IN0 if G = 0
OUT := IN1 if G = 1

Selection Functions

ANY

ANY

ANY

ex) SEL, MAX, MUX...

IN0
IN1

INn

OUT

ADD
ANY_NUM
ANY_NUM

ANY_NUM

ANY_NUM

OUT := IN0 + IN1 + … INn

Arithmetic Functions

...

ex) ADD, MUL, SUB...

Figure 1. Representative examples of func-
tion and function blocks

Figure 2 shows an example FBD network to calcu-
late th Prev X Trip. This is a part of fixed set-point
falling trip logic. th Prev X Trip is set to true if the
processing value has been beyond the trip set-point
for the specified delay time or the value validity error,
module error or channel error occurred.

We will use the FBD in figure 2 as an example to
represent our approach in following sections. To show

the effectiveness of the proposed testing method, we
intentionally inserted 4 kinds of errors into this FBD.
We switched inputs of 1.47(7) LE INT and changed in-
put variable name of 1.23(8) SEL from th Prev X Trip
into th Prev Trip. We used TON function block in-
stead of FBI 1.10(9) TOF function block and omit-
ted an inverter attached to f X Valid input of 1.13(12)
AND BOOL.

Execution of FBD blocks is deterministic in that
they are executed sequentially in each scan cycle by the
predetermined order. The number inside parentheses
on the top of a function block is its execution order.
For example, in figure 2, the 1.44(5) ADD INT function
with the execution number (5) is executed first and the
1.56(14) MOVE function is executed last.

An FBD network includes functions and function
blocks. A function block has defined set of variables for
internal storage and temporary data as well as input
and output variables, while a function has no internal
variables[5]. In figure 1, arithmetic, bitwise Boolean,
selection and comparison groups are function groups
and timer group is a function block group.

2.2. FBD Testing

In this paper, we focus on unit testing of FBD. A
unit of FBD is defined as a meaningful set of function
blocks used to compute a primary output[8]. The pri-
mary output is stored in the memory of the PLC for
external output or internal use in other units. Fig-
ure 2 is considered as a unit FBD because they per-
form the computation of an external primary output
th Prev X Trip.

In [4], FBD testing was performed by transforming
a unit FBD into a flowgraph. Once a flowgraph is
generated from a unit FBD, existing control and data
flow testing techniques can be applied. All functions
of arithmetic, bitwise Boolean, selection and compar-
ison groups are transformed into one out of 3 types
of flowgraph segments. Figure 3 shows flowgraph seg-
ment templates proposed in [4]. Figure 3(a) is a rep-
resentative example of functions in arithmetic, bitwise
Boolean or comparison groups. They are transformed
into single nodes in the flowgraph. Selection group has
SEL, MAX, MIN, LIMIT and MUX functions. Figure
3(b) and 3(c) show the templates for SEL and MUX
functions. Other functions in selection group - MAX,
MIN and LIMIT - are transformed into single nodes.

Transformation from a unit FBD to a flowgraph is
the most fundamental and important process in FBD
testing. The following process describes the transfor-
mation from a unit FBD to a flowgraph briefly.

1. Create the first node with the content that read

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

Switched inputs

Misused inverter

th_Prev_Trip
Misused timer function block

TON

Incorrect variable

Figure 2. FBD for th Prev X Trip

IN1
IN2

INn

OUT

AND
ANY_BIT

 OUT := IN1 & IN2 & … Inn

ANY_BIT

ANY_BIT

ANY_BIT
...

(a) Template for AND function

G

IN0

IN1

OUT

SEL
BOOL

ANY

ANY

ANY

if (G)

OUT := IN0 OUT := IN1

(b) Template for SEL function

switch(K)

OUT := IN0 OUT := IN1

K
IN0

INn

OUT

MUX
ANY_INT

ANY

ANY

ANY_BIT
...

OUT := INn

...

(c) Template for MUX function

Figure 3. Templates for functions

all variables of the unit FBD.

2. Transform a function or function block into a flow-
graph segment based on the corresponding tem-
plate in the execution order.

• If the output of a function or function block is
not specified, create temporary output vari-

able named as ’v[execution number]’ such as
v2 and v5.

• Whenever a node is added into the flowgraph
segment, specify contents for the node.

3. Attach the generated flowgraph segment into the
whole flowgraph.

4. If the untransformed function block exists, repeat
2 for the function or function block with the next
execution number, else finish.

However, in [4], timer function blocks were not con-
sidered. Testing of timer function blocks is not as sim-
ple as testing of functions. Correctness of the FBD
networks containing timer function blocks cannot be
tested in one cycle. In order to test timer function
blocks, test cases must specify inputs covering multi-
ple scan cycles and expected intermediate outputs at
each scan cycle. Considering these issues, we will pro-
pose the flowgraph generation templates for the timer
function blocks in the following sections.

3. Flowgraph Generation for Timer
Function Block

3.1. Timer Function Blocks

According to the international standard IEC 61131-
3[3], timer group includes function blocks such as TOF,

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

IN

PT

Q

TOF

BOOL

Q := 0 if IN = 0 is continued
 for PT delay time
Q := 1 otherwise

TIME ET

BOOL

TIME

(a) TOF function block

t0

t1

t2 t4

t3 t5

t1+PT t5+PT

0

t0

t1

t2

t3 t5

(b) TOF timing diagram

Figure 4. TOF function block and its behav-
ioral definition

TON and TP. Figure 4(a) represents TOF(Off Delay)
function block. TOF has two input variables, IN and
PT, and two output variables, Q and ET. IN is an
input Boolean variable and PT is a variable specifying
delay time. Q is an output Boolean variable and ET
represents elapsed time of the internal timer. TOF
function block outputs Q as 0 when input IN is kept
as 0 during the delay time specified by variable PT
since input IN changed from 1 to 0. Otherwise, the
output Q is 1.

The timers TOF, TON and TP are specified us-
ing timing diagrams. Figure 4(b) is a timing diagram
of TOF describing its behavioral definition. The di-
agrams show the behavior of outputs Q and ET de-
pending on input IN. The time axis runs from left to
right and is labelled ’t’. The Boolean variables IN and
Q change between 0 and 1 and the time value ET in-
creases as shown.

TON and TP are specified with timing diagrams
similarly. Because template generation processes for
all timer function blocks are similar, we therefore only
describe template generation process of TOF function
block. Templates for other timer function blocks can
be generated in the similar way.

3.2. Flowgraph Generation Template for
TOF

To transform TOF into a flowgraph segment, we rep-
resent the behavior of TOF as the condition and action
table. Because TOF is a function block, it has internal
state which is described by combination of values of
internal variables. The condition is composed of input
and internal variables, and the action is an assignment
to output and internal variables. We can identify the
internal variables of TOF as preIN and inT from the
timing diagram definition of TOF. The preIN repre-
sents the value of IN in the previous scan cycle and
the inT represents internal timer. To describe the be-
havior of TOF completely as conditions and actions, we
need to specify all possible cases of related variables.

Variables affecting the condition are preIN, IN, and
inT. The preIN and IN are Boolean. The inT variable
can have infinite number of values. However, we don’t
need to deal infinite number of values because the do-
main of inT can be divided into 3 equivalent classes -
[0,0], (0,PT), [PT,∞] - in the aspect of evaluation re-
sult of the condition. As a result, there are 12 different
evaluations for combination of three variables. Table
1 represents actions of TOF for 12 possible conditions.
Each row represents that when the evaluation condi-
tion for the preIN, IN and inT is satisfied, the corre-
sponding action for Q and inT occurs. The rightmost
column of table 1 specifies the corresponding cases in
figure 4(b).

In table 1, we can see four nonexistent cases - b8,
b9, b11, and b12. These cases never occur because
inT is always 0 when preIN is 1. Table 2 is a reduced
version of table 1: conditions for the same action are
logically combined. We define that two actions of a
TOF are identical if the value of Q and the action
of inT are identical. We classified the actions of inT,
internal timer, into 5 different cases: ’remains stopped’,
’continues increasing’, ’stops and remains’, ’stops and
is reset’ and ’is reset and starts’. Because the actions of
b4, b5 and b6 cases in table 1 are identical, these three
cases are logically combined into ’preIN = 0 and IN =
1’, r4 case in table 2. By combining conditions for the
same action, the behavior of TOF can be described by
7 distinct cases represented in table 2.

With this result, we make a template to transform
the TOF function block into a flowgraph segment. Fig-
ure 5 is a resulting template for TOF. The rightmost
column in table 2 specifies the corresponding nodes of
figure 5 for each case. The first and second number
in the rightmost column of table 2 are node numbers
representing the condition and action, respectively.

Templates for TON and TP of timer group can be

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

Table 1. Condition and action table describing the behavior of TOF
Condition ActionCases

preIN IN inT Q inT
Cases in fig.4(b)

b1 0 0 0 0 remains stopped [0,t0)
b2 0 0 0<inT<PT 1 continues increasing (t1,t1+PT, (t3,t4), (t5,t5+PT)
b3 0 0 inT>= PT 0 stops and remains [t1+PT,t2), [t5+PT,-)
b4 0 1 0 1 stops and is reset t0
b5 0 1 0< inT<PT 1 stops and is reset t4
b6 0 1 inT>=PT 1 stops and is reset t2
b7 1 0 0 1 is reset and starts t1,t3, t5
b8 1 0 0< inT<PT - nonexistent case -
b9 1 0 inT>=PT - nonexistent case -
b10 1 1 0 1 remains stopped (t0,t1),(t2,t3), (t4,t5)
b11 1 1 0<inT<PT - nonexistent case -
b12 1 1 inT>=PT - nonexistent case -

Table 2. Reduced condition and action table describing the behavior of TOF
Condition ActionCases

preIN IN inT Q inT
Cases in table 1 Nodes in fig.5

r1 0 0 0 0 remains stopped b1 10,12
r2 0 0 0<inT<PT 1 continues increasing b2 1,3
r3 0 0 inT>=PT 0 stops and remains b3 2,5
r4 0 1 - 1 stops and is reset b4,b5, b6 4,7
r5 1 0 0 1 is reset and starts b7 6,9
r6 1 1 0 1 remains stopped b10 8,11
r7 1 - 0<inT - nonexistent case b8,b9, b11,b12 -

IN

PT

Q

TOF

BOOL

TIME ET

BOOL

TIME

if (preIN=0 & IN=0 & 0<inT<PT)

if (preIN=0 & IN=0 & inT>=PT)

if (preIN=0 & IN=1)

if (preIN=1 & IN=0 & inT=0)

if (preIN=1 & IN=1 & inT=0)

if (preIN=0 & IN=0 & inT=0) 12

Q=1, inT continues
increasing

Q=0, inT stops and remains

Q=1, inT stops and is reset

Q=1, inT is reset and starts

Q=1, inT remains stopped

Q=0, inT remains stopped
preIN = IN

10 11

13

8

4

32

1

5

6 7

9

Figure 5. Template for the TOF function block

generated similarly. Moreover, this template genera-

tion process also can be applied to other kinds of func-
tion blocks besides timer group.

Figure 6 is a flowgraph transformed from the unit
FBD with seeded errors in figure 2. After creating the
first node 0 which reads all variables used in the FBD
except temporary output variables, each function or
function block was transformed into the correspond-
ing flowgraph segment according to its execution order.
The generated flowgraph segment was attached to the
whole flowgraph.

4. FBD Unit Testing

4.1. Timer Function Block Testing

After transforming of a unit FBD into a flowgraph,
we select proper test coverage criteria and generate the
satisfying set of test cases. When a unit FBD includes
only functions, one scan cycle testing is sufficient. On
the other hand, if a unit FBD includes timer function
blocks, one cycle testing is insufficient because timer

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

7

11

17

9

14 15

16

8

13

10

12

0

1

2

4

3

5 6

21

18

19 20

22

23

24

pre_v8 = v8

if (pre_v8=1 & v8=1 & 0<inT9<k_Trip_Delay)

if (pre_v8=1 & v8=1 & k_Trip_Delay<=inT9)

if (pre_v8=1 & v8=0)

if (pre_v8=0 & v8=1 & inT9=0)

if (pre_v8=0 & v8=0 & inT9=0)

v5 = k_X_Trip_Setpoint
+ k_X_Trip_Hys

v6 = (f_X <= v5)

v7 = (k_X_Trip_Setpoint <= f_X)

if (th_Prev_Trip)

v8 = v6’ v8 = v7’

Read f_X, f_X_Valid,
f_Channel_Error,
f_Module_Error,
th_Prev_Trip,
th_Prev_X_Trip,
pre_v8, inT9

if (v9)

v10 = 0 v10 = 1

v11 = v10 & f_Channel_Error’

v12 = f_X_Valid & f_Module_Error’

th_X_Trip = v11 & v12

th_Prev_X_Trip = th_X_Trip

v9=0,
inT9 continues increasing

v9=1, inT9 stops and remains

v9=0, inT9 stops and is reset

v9=0, inT9 is rest and starts

v9=0, inT9 remains stopped

Figure 6. Flowgraph generated from the FBD
unit for th Prev X Trip

function blocks have internal state, i.e., generate dif-
ferent outputs for the same inputs according to its in-
ternal state. In order to test FBD networks including
timer function blocks sufficiently, it is desired to gen-
erate test cases to cover combination of input variables
and internal states of timer function blocks as much as
possible.

We can generate a set of test cases which covers
every internal states of timer function blocks at least
once by applying All-Edges coverage criteria to the pro-
posed flowgraph. With stronger coverage criteria than
All-Edges, we can generate more sophisticated set of
test cases.

The most distinct feature of FBD testing with timer
function blocks is that we should specify a precondition
for each test case. Precondition is combination of eval-
uations of internal variables of timer function blocks.
For the test case with a precondition, test stubs that
lead to the state in which the precondition is satisfied
are required.

4.2. Control Flow Testing

Control flow testing coverage criteria include All-
Nodes, All-Edges and All-Paths. Table 3 shows a set
of test cases that satisfies the All-Edges test coverage
criteria in the flowgraph of figure 6. All-Edges cover-
age criterion requires that all edges in flowgraph should
be executed at least once. Prev Trip, Prev X Trip,
X, Ch Err, Md Err and Valid in table 3 represent
th Prev Trip, th Prev X Trip, f X, f Channel Error,
f Module Error and f X Valid variables respectively.
The last two columns represent the actual output and
the expected output for the variable th Prev X Trip.
Test case CT1 means that if inputs are 1, 0, 100,
0, 0 and 1 for th Prev Trip, th Prev X Trip, f X,
f Channel Error, f Module Error and f X Valid vari-
ables, respectively when pre v8 and inT9 timer is 0,
the expected output th Prev X Trip is 1 and the ac-
tual output is 0. Because actual output, 0, is different
from expected output, 1, we can find an error from this
test case. We can see that preconditions are specified
for each test case because the unit FBD has a timer
function block.

4.3. Data Flow Testing

In order to apply data flow testing strategy to the
flowgraph, we identify du-paths for each variable after
identifying the definition and usage nodes for all the
variables. Then, we apply data flow testing coverage
criteria such as All-Defs or All-Uses to the flowgraph.
We should consider the following points to reflect char-
acteristics of FBD in FBD data flow testing.

First, extra variables should be handled in the same
way as original input and output variables. There are
two types of variables in the flowgraph generated from
a unit FBD. Original variables are input and output
variables which appear in the source FBD and extra
variables are newly generated ones during the trans-
formation process such as v5 and inT9. We need
to extract du-path information for extra variables as
well as original variables. For example, in figure 6,
we identified du-path information for temporary out-
put variables such as v5 – v12 and internal variables
of the timer function block such as pre v8 and inT9
as well as original input variables such as f X and
f Channel Error.

Second, the first node of the flowgraph should be a
definition node for all variables except temporary out-
put variables. Since a unit FBD is a part of whole
FBD program, definitions of some variables of current
testing unit may be in another unit. In this case, data
anomaly can occur in the form of undefined use. This

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

Table 3. Test cases satisfying All-Edges test coverage criterion
Test Precondition Inputs th Prev X Trip
Cases pre v8 inT9 Prev Trip Prev X Trip X Ch Err Md Err Valid Actual Expected
CT1 0 0 1 0 100 0 0 1 0 1
CT2 0 0 0 0 100 0 0 1 0 1
CT3 1 50 0 0 100 0 0 1 0 1
CT4 1 100 0 0 100 0 0 0 0 1
CT5 1 100 1 1 80 0 0 1 0 1

data anomaly leads to fictitious errors. To prevent
this, we create the first node of the flowgraph with
the content of reading all variables of the unit FBD.
Only temporary output variables are exempts because
they always have their definition nodes in the gener-
ated flowgraph. We can see that all variables of the
unit FBD except temporary output variables are read
in the first node 0 of the flowgraph in figure 6.

Third, sequences of test cases are important. Table
4 represents du-paths for variables in figure 6 and ta-
ble 5 shows test cases satisfying All-Uses test coverage
criteria. A set of test cases in table 5 was generated
based on the identification of du-paths in table 4. We
can observe the characteristics of FBD data flow test-
ing in the table 4. The du-path no.3 represents that
the variable f X is defined at node 0 and used at node
3. This du-path is covered by a single test case exe-
cuted within a single scan cycle. On the other side, the
du-path no.25 represents that a definition node of the
variable inT9 is node 9 and its use node is node 7 of
the next cycle. In this case, the du-path is not covered
by a single test case. In order to cover this kind of
du-path, a sequence of two test cases is required. For
example, du-path no.20 is covered by the sequence of
test cases DT1 and DT2 and du-path no.25 is covered
by the sequence of DT6 and DT7.

4.4. Case Study

We applied the proposed approach to the BP trip
logic of RPS in digital plant protection system, which
is being developed at KNICS. This section explains how
we could find various errors in a unit FBD using the
proposed FBD testing method. We seeded four differ-
ent errors into the unit FBD in figure 2. All seeded
errors are frequently occurred ones in FBD program-
ming. More errors occurring in FBD programming are
explained and classified in [7]. The seeded errors were
all found by a set of test cases satisfying All-Edges cov-
erage criteria in table 3. A set of test cases satisfying
All-Uses coverage criteria in table 5 could also find all
seeded errors.

Table 4. Du-paths for variables of the flow-
graph in figure 6

Du-Path No. Variable Def node Use node
...
3 f X 0 3
...
19 v8 6 14
20 pre v8 17 next 7
...
25 inT9 9 next 7
...

• Case 1 (Misused timer function block): FBD pro-
grammers often make a mistake in use of timer
function blocks because TOF and TON have sim-
ilar functionality. We inserted TON instead of
(9)TOF. This error was found by the CT2 and
CT3 test cases of the table 3 in control flow test-
ing and by the DT3, DT4, DT6 and DT7 test cases
of the table 5 in data flow testing.

• Case 2 (Switched inputs): One of the frequently
occurring errors in FBD programming is switched
inputs. While the change of the input order in
AND BOOL function is not a problem, switched
inputs in SEL, MUX, or LE functions can cause
errors. We reversed inputs of the (7)LE INT func-
tion. This error was found by the CT5 test case
in control flow testing and by the DT10 test case
in data flow testing.

• Case 3 (Misused inverter): The inverter, drawn by
small circle, is often added in unnecessary position
or omitted in necessary position. We omitted a
necessary inverter of IN1 input in the (12)AND
function. In the control flow testing, this error
was found by the CT4 test case and it was found
by the DT8 test case in data flow testing.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

Table 5. Test cases satisfying All-Uses test coverage criteria
Test Precondition Inputs th Prev X Trip
Cases pre v8 inT9 Prev Trip Prev X Trip X Ch Err Md Err Valid Actual Expected
DT1 0 0 0 0 91 0 0 1 0 0
DT2 0 0 1 0 100 0 0 1 0 1
DT3 0 0 0 0 100 0 0 1 0 1
DT4 1 50 0 0 80 0 0 1 0 1
DT5 0 0 0 0 80 1 1 1 0 0
DT6 1 50 0 0 100 0 0 1 0 1
DT7 1 100 0 0 80 0 0 1 0 1
DT8 1 100 0 0 100 0 0 0 0 1
DT9 1 100 0 0 100 0 0 1 1 1
DT10 0 100 1 1 100 0 0 1 0 1

• Case 4 (Incorrect variable): Variable names
are often written incorrectly. Incorrect variable
names result in wrong value assignments or com-
putations. We wrote an input of (8)SEL as
th Prev Trip instead of th Prev X Trip. This er-
ror was found by the CT1 test case in control flow
testing and by the DT2 test case in data flow test-
ing.

5. Conclusion

We proposed a structural testing technique on the
FBD networks including timer function blocks. We
transformed a unit FBD including timer function
blocks into a flowgraph based on several templates and
applied existing structural testing techniques for the
generated flowgraph. We presented how to generate
transformation templates for the timer function blocks
and described how the characteristics of timer function
blocks are reflected in control and data flow testing.

To demonstrate the effectiveness of the proposed
method, we use a trip logic of BP in RPS which is be-
ing developed at KNICS in Korea as a case study. We
seeded frequently occurring errors into the unit FBD
and could find all the seeded errors by executing the
test cases generated by the proposed approach.

By the proposed method, systematic structural test-
ing for the FBD including timer function blocks became
possible while there was no structural testing method
for them before. This approach also has an advantage
that it can be applied to any FBD, whatever its inter-
mediate format is.

We have a plan to support FBD testing automation.
Integration testing of FBD which focuses on interfaces
and interactions between tested units should also be
considered.

Acknowledgments

This work was partially supported by the Korea
Science and Engineering Foundation(KOSEF) through
the Advanced Information Technology Research Cen-
ter(AITrc) and also partially supported by the In-
formation Technology Research Center(ITRC), Soft-
ware Process Improvement Center(SPIC) and Inter-
net Intrusion Response Technology Research Cen-
ter(IIRTRC).

References

[1] http://www.framatome-anp.com.
[2] KNICS(Korea Nuclear Instrumentation and Con-

trol System research and development center),
http://www.knics.re.kr/english/eindex.html.

[3] IEC. International Standard for Programmable Con-
trollers: Programming Languages (Part 3), 1993.

[4] E. Jee, J. Yoo, and S. Cha. Control and data flow test-
ing on function block diagrams. In proceedings of the
24th International Conference on Computer Safety, Re-
liability and Security (SAFECOMP 2005), LNCS 3688,
pages 67–80, September 2005.

[5] R. Lewis. Programming industrial control systems using
IEC 1131-3 Revised Edition(IEE Control Engineering
Series). The Institute of Electrical Engineers, 1998.

[6] A. Mader. A classification of plc models and applica-
tions. In proceedings of WODES 2000: 5th Workshop
on Discrete Event Systems, August 2000.

[7] Y. Oh, J. Yoo, S. Cha, and H. Son. Software safety
analysis of function block diagrams using fault trees.
Reliability Engineering and System Safety, 88(3):215–
228, 2005.

[8] J. Yoo, S. Park, H. Bang, T. Kim, and S. Cha. Di-
rect control flow testing on function block diagrams. In
proceedings of the 6th International Topical Meeting on
Nuclear Reactor Thermal Hydraulics, Operations and
Safety(NUTHOS-6), October 2004.

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)
0-7695-2685-3/06 $20.00 © 2006

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 25, 2008 at 04:32 from IEEE Xplore. Restrictions apply.

