
Procedural Transformation from Formal Software
Requirement to PLC-based Design

Junbeom Yoo
KAIST

Hojung Bang
KAIST

Sungdeok Cha
KAIST

CS/TR-2004-198

February 20, 2004

K A I S T

Department of Computer Science

Procedural Transformation from Formal Software

Requirement to PLC-based Design

Junbeom Yoo
KAIST

Hojung Bang
KAIST

Sungdeok Cha
KAIST

Abstract

The software of the nuclear power plant digital control system is a safety-critical system where
many techniques must be applied to it in order to preserve safety in the whole system. For-
mal specifications especially allow the system to be clearly and completely specified in the
early requirements specification phase, therefore making it a trusted method for increasing
safety. In this paper, we discuss the formal description of the procedure [12] , which generates
FBD-based PLC design programs from the requirements specification written in NuSCR [11],
a formal requirements specification method. Our discussion includes the formal definition
of all constructs and transformation algorithm, and makes confirms that systematically gen-
erated FBD program has the same behavior with its origin, NuSCR software requirements
specification.

1 Introduction

In the area of nuclear power plant control systems, the software safety [5] becomes more important
with the replacement of existing analog systems, which is based on RLL(Relay Ladder Logic), by
digital systems composed of software process controllers [6]. Therefore, formal software require-
ments specification methods [7] are required to preserve the safety of such systems in the early
phase of the software development process. Also software requirements and design specifications
which are suitable for the characteristics of nuclear power plants system, are becoming a new
research issue by many researchers [10, 9, 4, 1]. NuSCR [11] is a formal specification method
specialized for this purpose, and it is being used to formally specify the software requirements
specification of DPPS(Digital Plant Protection System) RPS(Reactor Protection System), which
is presently being developed at KNICS [4] in Korea. NuSCR has been evaluated as a well qualified
and specialized technique for the nuclear domain [13].

In the analysis phase of the software development process for the control software in nuclear
power plant systems, the software requirement specification written in natural language, s.t. En-
glish or Korean, is prepared. Next, in the design phase, we usually specify the software design
requirements with PLC languages, s.t. SFC(Sequential Function Chart), LD(Ladder Diagram),
and FBD(Function Block Diagram) [2], which PLC(Programmable Logic Controller) can inter-
pret and compile with. It is because that software in nuclear power plants’ control systems is the
embedded one that is implemented on PLC.

In this design phase, the developers usually writes the PLC programs manually from the re-
quirements specification. It is due to that the requirements specification is written in a natural
language. If we use the formal specification method, i.e. NuSCR, as software requirements speci-
fication, we can generate PLC programs from the formal requirements specification, which has a
same behavioral aspect with the formal specification, since it has the formal syntax and seman-
tics. This systematic generation of PLC programs can reduce the possible errors occurring in the
manual design specification, and also the software development cost and time. From this aspect,
we developed the procedure of systematic generation of PLC programs, i.e. FBD, from NuSCR
specification [12].

1

In this paper, we discuss the formal description of the transformation procedure proposed.
Our discussion includes the formal definition of all constructs and transformation algorithm, and
makes confirms that systematically generated FBD program has the same behavior with its origin,
NuSCR software requirements specification. The remainder of the paper is organized as follows:
Section 2 introduces the formal syntax and semantics of NuSCR. In Section 3, we introduce
the procedure of transformation from NuSCR specification to FBD programs and the formal
description of it. We then briefly introduce NuSCR software requirements specification for Reactor
Protection System, which is presently developing in Korea, as a real case study, and described
the whole transformation procedure from NuSCR specification to FBD programs in Section 4.
Conclusion and future work are in Section 5.

2 Formal Syntax and Semantics of NuSCR

NuSCR basically uses four constructs, monitored variable, input variable, output variable, and
controlled variable according to Parnas’ Four-Variable Model [10]. In addition, NuSCR introduces
three other basic constructs, function variable, history variable, and timed history variable. These
three constructs can be defined as SDT(Structured Decision Table), FSM(Finite State Machine),
and TTS(Timed Transition System) respectively. The relationship of all constructs is represented
by FOD, which describes all relationships between all constructs in NuSCR. In this Section, we
begin with the basic definition of constructs for NuSCR.

System Entities System entities constructing NuSCR software requirements specification are
defined as follows:

• VSE is a set of all system entities, defined as VSE = VI ∪ VF ∪ VH ∪ VTH ∪ VO

– VI : a set of system input variables

– VF : a set of function variables

– VH : a set of history variables

– VTH : a set of timed history variables

– VO : a set of system output variables

• DSE : a set of all possible valuation domain for every variables in VSE

System State To specify the meaning of software system written in NuSCR, we need to define
an state valuation σ [8]. If S is the set of all possible states of variables in VSE , σ defines a
correspondence between every variable and the value that is its current contents. Therefore it is
convenient to model σ by function with domain VSE and co-domain DSE :

σ : S = VSE → DSE

Then for any variable set V in VSE , σ[V] is the contents of V in current state. The notation
σ[d/V] is used to update a state. It means the state σ

′
such that σ

′
[V] = d and for all V

′ �= V
in VSE , σ

′
[V

′
] = σ[V

′
]. That is, σ

′
is the same function as σ except at the argument V which is

mapped into d.

Condition Statements Condition statements are the predicates on the value of all entities in
VSE . The condition statements in NuSCR are defined as BNF form as follows:

Let r ∈ VSE , vr ∈ DSE, a, b ∈ N , and ⊗ ∈ {=, �=,≤, <,≥, >},
simple condition := r ⊗ vr | r ⊗ r | TRUE | FALSE

2

complex condition := simple condition ∧ simple condition
| ¬simple condition | simple condition

timed condition := [a, b]complex condition

The meaning of timed condition is according to the semantics of timed transition system [3].
The minimum delay a in timed condition means that when the control of timed history node has
resided at some location for at least a time units during which the guard complex condition has
been continuously true, then the transition from this location may occur. The maximum delay b
means that whenever the state of history variable has resided at some location for b time units
during which the guard complex condition has been continuously true, then the transition from
this location has to occur.

Assignment Statements Assignment statements mean the valuation of entities in SE. The
assignment statements in NuSCR are defined as BNF form as follows:

Let r ∈ VSE , vr ∈ DSE, a, b ∈ N , and ⊕ ∈ {+,−, ∗,÷},
assignment := (r := vr) | (r := r) | (r := r ⊕ r) | (r := r ⊕ vr)

Function Variable Function variable in NuSCR is represented by a function variable node in
FOD. It is defined by SDT. Let IFV be the set of input values from other nodes in FOD into the
function variable node itself. Let OFV be the set of output values from this node. They can be
mapped into the set of variables, VFI and VFO respectively. Then comple conditions in SDT are
the predicate on VFI , and actions are the assignments on VFO which is the function variable itself.
Therefore, a function variable node can be defined as a function fFV with input values IFV to
output values OFV as follows.

fFV : IFV −→ OFV

Definition 1 [SDT: Structured Decision Table] SDT is defined as a set of a pair (p, a),
where p ∈ Predicate and a ∈ Action. Predicate is a set of boolean predicates on VFI , which is
the conjunction of complex conditions in SDT condition statements. Action is a set of assignments
to VFO which is just the function variable itself.

• p ∈ Predicate and a ∈ Action

• if p[IFV /VFI]σ = TRUE then a(σ) = σ[OFV /VFO] = σ
′
[VFO] �

History Variable History variable in NuSCR is represented by a history variable node in
FOD. It is defined by FSM which is composed of states, transitions between states, and labels on
transitions. Let IHV be the set of input values from other nodes in FOD into the history variable
node. Let OHV be the set of output values from this node. They can be mapped into the set
of variables, VHI and VHO respectively. Then complex conditions in FSM’s transition labels are
the predicate on VHI and actions are assignments on VHV which is the history variable itself.
Therefore, a history variable node can be defined as a function fHV from input values IHV to
output values OHV as follows.

fHV : IHV −→ OHV

Definition 2 [FSM: Finite State Machine] FSM is defined as a relation FSM = 〈 SH , s0,
C, A, R 〉, where

3

• SH : a set of all states in history variable node

• s0 : initial state in SH

• C : a set of complex conditions

• A : a set of assignments

• R :

– a transition relation SH × C × A × SH

– ∃ r (s, c, a, s
′
) ∈ R and ∃ current state ∈ CSH , such that

if current state = s and c[IHV /VHI]σ = TRUE,
then a(σ) = σ[OHV /VHO]= σ

′
[VHO] and current state

′
= s

′ �

current state in the definition above means the variable in CSH , which indicates the current state
of the history node. It will be used in the definition of the overall NuSCR system.

Timed History Variable Timed history variable in NuSCR is represented by a timed history
variable node in FOD. It is defined by TTS which is a FSM extended with timing constrains
[a, b] in transition labels. a and b means the minimum and maximum delay in the transition
respectively. Let ITHV be the set of input values from other nodes in FOD into the timed history
variable node. Let OTHV be the set of output values from this node. They can be mapped into
the set of variables, VTHI and VTHO respectively. Then timed conditions are the predicate on
VTHI and timing constrains [a, b], and actions are the assignment on VTHV which is the history
variable itself. Therefore, a timed history variable node can be defined as a function fTHV from
input values ITHV to output values OTHV as follows.

fTHV : ITHV −→ OTHV

Definition 3 [TTS: Timed Transition System] TTS can be defined as a relation TTS = 〈
STH , s0, C, A, R 〉, where

• STH : a set of states in timed history variable node × lc, where lc is a local clock in LC

• s0 : initial state in STH

• C : a set of complex conditions or timed condition

• A : a set of assignments

• R :

– a transition relation STH × C × A × STH

– ∃ r (s, c, a, s
′
) ∈ R and ∃ current state ∈ CSTH , such that

if current state = s and c[ITHV /VTHI]σ = TRUE,
then a(σ) = σ[OTHV /VTHO]= σ

′
[VTHO] and current state

′
= s

′ �

current state is a variable in CSTH , which indicates the current state and the current local time.
The behavior of transition relations in TTS is a little different from that of FSM because of the
timing constraints.

Function Overview Diagram FOD in NuSCR describes the relationship between constructs
in VSE . Let IFOD be the set of input values from out of FOD(i.e. environment or other FODs)
into the FOD. Let OFOD be the set of output values from FOD. They can be mapped into the

4

set of variables, VFODI and VFODO respectively. Also as all nodes in FOD have partial orders
according to their execution order and all nodes are defined as functions, fFOD can be represented
as a function composition of all nodes in FOD according to the partial orders on their precedence.
Therefore, FOD can be defined as a function fFOD from input values IFOD to output values
OFOD.

fFOD = fn ◦ · · · ◦ f2 ◦ f1

fFOD : IFOD −→ OFOD

Definition 4 [FOD: Function Overview Diagram] FOD is defined as a tuple of FOD = 〈
N , T 〉, where

• N

– a set of all nodes in FOD

– all nodes in VF and VH and VTH are defined as functions

– VFODI in VI is a set of input variable nodes in FOD, which mapped as σ[IFOD/VFODI]
= σ

′
[VFODI]

– VFODO in VO is a set of output variable nodes in FOD, which mapped as σ[OFOD/VFODO]
= σ

′
[VFODO]

• T

– a set of transition (n1, n2) between all nodes n1, n2 in N

– ∀ t = (n1, n2) ∈ T , n1 has a precedence on n2 �

Definition 5 [NuSCR Software System] NuSCR software system is defined as a tuple NSS
= 〈 S, S0, R, d 〉, in which

• S : a set of system states, which is defined as σ[VSE × CSH × CSTH]

• S0 : initial state in S

• R : a set of transition relation S × I −→ S
′ × O, where I and O are system’s input and

output values respectively.

• d : system scan cycle time in which the system get the changed valuation function σ peri-
odically �

NuSCR software system NSS uses the definitions of all three basic constructs and FOD. NSS
gets inputs I from the out of system(i.e. environment), calculates with them, and then emits
outputs O to the outside. In each time that NSS emits outputs, NSS changes its internal system
states according to the behavior of NSS. The states of NSS is defined as σ[VSE × CSH × CSTH],
where CSH and CSTH mean the set of current state of history variable node and timed history
variable node respectively. The states of NSS means the current contents of all variables used in
NSS. The behavior of NSS is defined based on a function fFOD defined above. That is, between
system states, there exists transition relation s.t. R, and it corresponds to O = fFOD(I). NSS
also operates periodically with system scan cycle time d. With every time interval d, it gets the
changed valuation function σ for the inputs and outputs of NSS. This periodic behavior of NSS
is an essential part for digital plant protection system in nuclear power plants, which requires the
strict scan cycle time.

5

3 Transformation Procedure from NuSCR to FBD

The overall process that generates FBD program from NuSCR requirements specification [12] has
4 steps. At first we perform the consistency and completeness analysis of the whole individual
nodes in FOD, which are defined as SDT, FSM, or TTS. After modifying all nodes to be complete
and consistent, we make out 2C-Table for the nodes defined as FSM and TTS. 2C-Table is an
intermediate notation that are used to facilitate the FBD generation process for FSM and TTS. In
the next step, FBDs are generated from SDTs or 2C-Tables. FBDs generated in this step are the
individual and independent FBDs, which are in FOD and defined as SDT, FSM, and TTS. After
generating the individual FBDs, we analyze the dependency between all nodes in FOD and decide
the total execution order for all nodes in the FOD. This order is also applied to the individual
FBDs generated in the same way. PLC executes its application programs sequentially and this
execution ordering step is essential.

3.1 Step 1. Completeness and Consistency Checking

For the effective generation of FBD from 3 kinds of nodes in NuSCR, we perform first the analysis
about the completeness and consistency of whole individual nodes in FOD. After this first step,
we get the complete and consistent three constructs of NuSCR.

SDT, which defines the function variable, is a table consisting of condition and action state-
ments, and duplicated conditions or actions need to be analyzed. The nondeterministic actions
resulted from the duplicated conditions also have to be analyzed for the consistent behavior of
SDTs.

Definition 6 [Completeness and Consistency for SDT] For an SDT Sdt = Σ(p, a), where
the number of p in Sdt is n,

• Completeness : ∀ (p1, a1), ... ,(pn, an) ∈ Sdt, p1(σ) ∨ ... ∨ pn(σ) = TRUE

• Consistency : ∀ pairs (p1, a1), (p2, a2) ∈ Sdt, p1(σ) ∧ p2(σ) = FALSE �

FSM and TTS, which define the history variable and timed history variable respectively, also
have to be analyzed and modified in the same way. Automata, s.t. FSM and TTS, has a feature
that if there is no condition satisfied to transit other states in current state, then it maintains the
current state. In this case, we need to specify the implicitly omitted transitions explicitly for the
completeness. In case of no action statement in the transition label in FSM and TTS, NuSCR
regards that the output is set to the same value in the previous scan cycle. We need the explicit
addition for such cases. Also as the case of SDT, we have to check whether or not they have the
same condition, which have different actions, for consistency.

Definition 7 [Completeness and Consistency for FSM, TTS] For an FSM, TTS Aut = 〈
SAut, s0, C, A, R 〉, where the number of condition c ∈ C on the state s in SAut is n,

• Completeness : for some s ∈ SAut, ∀ c1 in (s, c1, a1, s1), ... , cn in (s, cn, an, sn), c1(σ)
∨ ... ∨ cn(σ) = TRUE

• Consistency : for some s ∈ SAut, ∀ pairs r1 = (s, c1, a1, s1), r2 = (s, c2, a2, s2) ∈ R, c1(σ)
∧ c2(σ) = FALSE �

3.2 Step 2. 2C-Table Generation

All nodes in FOD are modified into the consistent and complete ones at the previous step 1.
In the second step, among three kinds of variables, the complete and consistent FSM and TTS

6

are transformed into 2C-Tables. 2C-Table is an intermediate notation to generate FBDs from
automata systematically and it is generated in such a way that they have the same behavior
with the original automata, s.t. FSM and TTS. 2C-Table has the same shape with SDT, but the
different is that it has an additional action part, which is used for indicating the state transitions
of automata.

Definition 8 [2C-Table] 2C-Table is defined as a set of (sc, p, a, sta) where,

• sc : state condition, which indicates the current ”state” of FSM or TTS. (the current value
of current state variable)

• p : boolean predicate on VSE , which is the conjunction of complex conditions in FSM, or
timed complex conditions inTTS predicates

• a : assignment to the variable, which is the 2C-Table itself

• sta : state transition assignment to the state variable current state, which means the next
state of FSM or TTS. �

Let I2C−Table be the set of input values from other nodes in FOD into the history or timed
history variable node. Let O2C−Table be the set of output values from this node. They can
be mapped into the set of variables, V2C−Table−I and V2C−Table−O respectively. V2C−Table−I are
mapped to VHI or VTHI , and V2C−Table−O are mapped to VHO or VTHO. timed complex conditions
or complex conditions p are the predicate on V2C−Table−I and actions a are the assignments on
V2C−Table−O , which is the history variable itself. Then, a (timed) history variable node can be
defined as a function f2C−Table from input values I2C−Table to output values O2C−Table as follows:

f2C−Table : I2C−Table −→ O2C−Table

The condition statements in the generated 2C-Table have the exclusive feature, because they
are generated from the complete and consistent automata. This feature of 2C-Table makes the
number of generated function blocks from the 2C-Table compact. It also lets us analyze and esti-
mate the number and kinds of FBs used previously. Algorithm 1 describes 2C-Table generation
procedure from FSM or TTS.

Algorithm 1 [From FSM,TTS to 2C-Table] Given FSM or TTS Aut = 〈 SAut, s0, C, A, R
〉, generates a 2C-Table 2C Table = Σ(sc, p, a, sta),

0 from Aut to 2CTable(Aut) {
1 for all s ∈ SAut {
2 for all possible transition relation r = (s, c, a′, s′) {
3 sc := s;
4 sta := s′;
5 p := c;
6 a := a′;
7 }
8 }
9 } �

Theorem 1 [Behavioral Preservation for 2C-Table] 2C-Table generated for FSM or TTS
by Algorithm 1 has the same behavior with that of its source, FSM or TTS.

7

proof In the generation Algorithm 1 above, for each possible state transition relation, the corre-
sponding 2C-Table element is produced. As all contents of FSM or TTS are mapped into 2C-Table
without omission, the generated 2C-Table and its origin FSM or TTS are behaviorally equivalent.
�

3.3 Step 3. Basic FBD Generation

In this step, we generate an FBD for each SDT or 2C-Table. The FBD generated corresponds to
each node in FOD. FBD is composed of a number of FBs(Function Blocks) and their transition
relations. Each arithmetic and logical expression complex conditions and assignments statements
in SDT or 2C-Table can be mapped into a corresponding unique FB. Timing expression, s.t.
[a, b], also has its corresponding FB. 〈Fig.1〉 describes the representative FBs, which are used
for developing SW controllers in nuclear power plants system, and their formal definitions. We
described the case of restricted inputs for the convenience. With the function blocks defined, we
can define FBD.

Definition 9 [FB: Function Block] Function block FB is defined as a tuple 〈 Name, IP , OP ,
BP 〉, where

• Name : name of function block

• IP : a set of input ports

• OP : a set of output ports

• BP : behavior description, which is Σ(pFB, aFB), where

– pFB : predicate on IP , which is a conjunction of (timed)complex conditons

– aFB : assignment on OP �

Theorem 2 [1:1 Correspondence between NuSCR operational operators and FBs]
There exists a unique function block for every NuSCR operation operators, s.t. arithmetic, logical,
selection, and timing operators.

Definition 10 [FBD: Function Block Diagram] Function block diagram FBD is defined as
a tuple 〈 FBs, V , T 〉, where

• FBs : a set of function blocks

• V : input and output variables of FBD, s.t. VFBD−I ∪ VFBD−O

• T : a set of transitions between FBs and V, s.t.

– VFBD−I × FB.IP

– FB.OP × FB.IP

– FB.OP × VFBD−O �

Let IFBD be the set of input values from other FBDs and OFBD be the set of output values
from this FBD. They can be mapped into the set of variables, VFBD−I and VFBD−O respectively.
V2C−Table−I or VFI in previous step is also mapped to VFBD−I , and V2C−Table−O or VFO is mapped
to VFBD−O. Then we can say that the input of 2C-Table, I2C−Table, is IFBD and the output of
2C-Table, O2C−Table, is OFBD. Therefore, a 2C-Table, which represents a (timed) history node

8

Logical Operation (and, or, >, >=, =, <=, <)

AND_(Type)

IN
1

IN
2

OUT

OUT = IN 1 & IN 2

Arithmetic Operation (+, - , *, /)

ADD _(Type)

OUT = IN 1 + IN 2

Selection Operation (SEL, MUX)

SEL

G

OUT = IN0 if G = 0
OUT = IN1 if G = 1

MUX

K OUT

OUT = IN
0

if K = 0
OUT = IN

1
if K = 1

...
OUT = IN

n
if K = n

...

IN
0

IN
n

Timer Operation (TOF)

TOF

IN

DELAY

OUT

OUT = 0 if IN = 0 is continued
for DEALY time

OUT = 1 Otherwise

TIME

FB
AND_(Type)

= < Name , IP , OP , BD >

Name : AND_(Type)

IP : {IN
1
, IN

2
}

OP : {OUT}
BD : {(IN

1
= 1 ¡ IN

2
= 1, OUT = 1), (IN

1
= 1 ¡ IN

2
= 0, OUT = 0),

(IN
1

= 0 ¡ IN
2

= 1, OUT = 0), (IN
1

= 0 ¡ IN
2

= 0, OUT = 0)}

IN
1

IN
2

OUT FB
ADD_(Type)

= < Name , IP , OP , BD >

Name : ADD_(Type)

IP : {IN
1
, IN

2
}

OP : {OUT}

BD : {(- , OUT = IN
1

+ IN
2
)}

IN
1

IN
2

OUT FB
SEL

= < Name , IP , OP , BD >

Name : SEL

IP : {G, IN
0
, IN

1
}

OP : {OUT}
BD : {(G = 0, OUT = IN

0
), (G = 1, OUT = IN

1
)}

FB
MUX

= < Name , IP , OP , BD >

Name : MUX

IP : {K, IN0, IN1, IN2}

OP : {OUT}
BD : {(K = 0, OUT = IN

0
), (K = 1, OUT = IN

1
),

… , (K = n, OUT = IN
n
)}

FB
TOF

= < Name , IP , OP , BD >

Name : TOF

IP : {IN, DELAY}

OP : {OUT, TIME}
BD : {([DELAY, DELAY] IN = 0, OUT = 0), (IN = 1, OUT = 1)}

Logical Operation (and, or, >, >=, =, <=, <)

AND_(Type)

IN
1

IN
2

OUT

OUT = IN 1 & IN 2

Arithmetic Operation (+, - , *, /)

ADD _(Type)

OUT = IN 1 + IN 2

Selection Operation (SEL, MUX)

SEL

G

OUT = IN0 if G = 0
OUT = IN1 if G = 1

MUX

K OUT

OUT = IN
0

if K = 0
OUT = IN

1
if K = 1

...
OUT = IN

n
if K = n

...

IN
0

IN
n

Timer Operation (TOF)

TOF

IN

DELAY

OUT

OUT = 0 if IN = 0 is continued
for DEALY time

OUT = 1 Otherwise

TIME

FB
AND_(Type)

= < Name , IP , OP , BD >

Name : AND_(Type)

IP : {IN
1
, IN

2
}

OP : {OUT}
BD : {(IN

1
= 1 ¡ IN

2
= 1, OUT = 1), (IN

1
= 1 ¡ IN

2
= 0, OUT = 0),

(IN
1

= 0 ¡ IN
2

= 1, OUT = 0), (IN
1

= 0 ¡ IN
2

= 0, OUT = 0)}

IN
1

IN
2

OUT FB
ADD_(Type)

= < Name , IP , OP , BD >

Name : ADD_(Type)

IP : {IN
1
, IN

2
}

OP : {OUT}

BD : {(- , OUT = IN
1

+ IN
2
)}

IN
1

IN
2

OUT FB
SEL

= < Name , IP , OP , BD >

Name : SEL

IP : {G, IN
0
, IN

1
}

OP : {OUT}
BD : {(G = 0, OUT = IN

0
), (G = 1, OUT = IN

1
)}

FB
MUX

= < Name , IP , OP , BD >

Name : MUX

IP : {K, IN0, IN1, IN2}

OP : {OUT}
BD : {(K = 0, OUT = IN

0
), (K = 1, OUT = IN

1
),

… , (K = n, OUT = IN
n
)}

FB
TOF

= < Name , IP , OP , BD >

Name : TOF

IP : {IN, DELAY}

OP : {OUT, TIME}
BD : {([DELAY, DELAY] IN = 0, OUT = 0), (IN = 1, OUT = 1)}

Figure 1: Representative function blocks and their formal definitions

9

or SDT, can be defined as a function fFBD from input values IFBD to output values OFBD as
follows:

fFBD : IFBD −→ OFBD

Algorithm 2 [From 2C-Table to FBD] Given 2C-Table 2C Table = Σ(sc, p, a, sta), generates
an FBD Fbd = 〈 FBs, V , T 〉,

0 from 2CTable to FBD(2C Table) {
1 for all conditions and assignments in p and a {
2 Construct corresponding partial FBD using FBs;
3 }
4
5 for all k elements of 2C Table, which have the same sc {
6 Construct partial FBD using k - 1 ”SEL” FBs to have one output;
7 }
8
9 for all m partial FBDs, which have different outputs {
10 Construct an overall FBD using a ”MUX” FB to have one final
11 output of FBD and use variable status as input port K in ”MUX” FB;
12 Construct the other same FBD, which use the variable status
13 as the output and input port K in ”MUX” FB;
14 }
15 } �

Algorithm 3 [From SDT to FBD] Given SDT Sdt = Σ(p, a), generates an FBD Fbd = 〈
FBs, V , T 〉,

0 from 2CTable to FBD(Sdt) {
1 for all conditions and assignments in p and a {
2 Construct corresponding partial FBD using FBs;
3 }
4
5 for all k elements of 2C Table, which have the same sc {
6 Construct an overall FBD using k - 1 ”SEL” FBs to have one output;
7 }
8 } �

(Explanation for Algorithm 2 & 3 is required.)

Theorem 3 [Behavioral Preservation for FBD generatd] FBD generated from 2C-Table
by Algorithm 2, or generated from SDT by Algorithm 3 have the same behavior with that of its
source, 2C-Table or SDT, respectively.

3.4 Step 4. Total FBD Generation

The individual FBD generated from SDT or 2C-Table in step 3 is corresponding to each node in
FOD. In the final step, the execution order for all FBDs, which are corresponding to all nodes in
an FOD, is analyzed and decided, and then all FBDs are executed sequentially. FOD in NuSCR
describes the relationship between all nodes in the FOD. Also as all nodes in FOD have partial
orders according to their execution order and all nodes are defined as functions, so an FOD can
be represented as a function composition of all nodes in FOD according to to the partial orders
on their precedence as explained in Section 2. Therefore, the execution order in FOD is used as a

10

sequential execution order among generated FBDs in step 3, and the total FBD can be represented
as a function composition of all individual FBDs according to their sequential execution orders.

Definition 11 [Total FBD] The total FBD, which is corresponding to an FOD, is defined as a
tuple 〈 FBDs, T 〉, where

• FBDs :

– a set of all individually generated FBDs.

– all nodes in FBDs, which are the individual FBDs, are defined as functions

– VFBD Total I , which is a set of input variables in all FBDs, is mapped as σ[IFBD Total/VFBD Total I]
= σ

′
[VFBD Total I]

– VFBD Total O, which is a set of output variables in all FBDs, is mapped as σ[OFBD Total/VFBD Total O]
= σ

′
[VFBD Total O]

• T :

– a set of transition (n1, n2) between all nodes n1, n2 in FBDs

– ∀ t = (n1, n2) ∈ T , n1 has a sequentially execution precedence on n2 �

Let IFBD Total be the set of input values from out of the total FBD into the total FBD, and
OFBD Total be the set of output values from the total FBD. They can be mapped into the set of
variables, VFBD Total I and VFBD Total O respectively. The total FBD fFBD Total is defined as:

fFBD Total = fFBD n ◦ · · · ◦ fFBD 2 ◦ fFBD 1

fFBD Total : IFBD Total −→ OFBD Total

Definition 12 [FBD System] FBD system is defined as a tuple FBDS = 〈 S, S0, R, d 〉, where

• S : a set of system states, which is defined as σ[VFBD Total I × VFBD Total O]

• S0 : initial state in S

• R : a set of transition relation S × I −→ S
′ × O, where I and O are FBD system’s input

and output values respectively, where O = fFBD Total(I).

• d : system scan cycle time in which the system get the changed valuation function σ peri-
odically �

Theorem 4 [Behavioral Preserving Transformation from NSS to FBDS] From the
definitions and theorems previously proposed, FBD system FBDS, which is generated from NuSCR
specification using the proposed systematic generation method, has the same behavior with NuSCR
software system NSS.

4 Case Study: RPS Example

In this section, we introduce a fixed set-point trip wtih operating bypass example, a trip logic
of BP(Bistable Logic) in DPPS(DIgital Plant Protection System) RPS, which is presently at
developing in KNICS [4] in Korea. Then, we describe the whole transformation procedure from
NuSCR requirements specification to corresponding FBD program with RPS example.

〈Fig.2〉 describes a fixed set-point rising trip logic in RPS. It means that the trip set-point is
fixed and trip occurs if the input value falls below the set-point. 〈Fig.2 (a)〉 is the FOD of this

11

f_X

f_Module_Error

f_Channel_Error

f_X_OB_Ini

f_X_Vali
d
1

th_X_Pretrip
4

th_X_Pretrip

th_X_Trip
5

th_X_Trip

f_X_OB_
Perm

2

h_X_OB_Sta
3 h_X_OB_Sta

f_X_OB_Perm

Cond_a : f_X >= k_X_Trip_Setpoint
Cond_b : [k_Trip_Delay, k_Trip_Delay] (f_X >= k_X_Trip_Setpoint and h_X_OB_Sta = 0)
Cond_c : f_X < k_X_Trip_Setpoint - k_X_Trip_Hys
Cond_d : f_X_Valid = 1 or f_Module_Error = 1 or f_Channel_Error = 1)

Waiting Normal

Cond_a
and not cond_d

not cond_a
and not cond_d

Trip_By
_Logic

Cond_c and not
Cond_d
/ th_X_Trip := 1

Cond_d
/ th_X_Trip := 0

Cond_b and not Cond_d
/ th_X_Trip := 0

Cond_d
/ th_X_Trip := 0

not Cond_d
/ th_X_Trip := 1

Trip_By
_Error

Cond_d
/ th_X_Trip := 0

(a) Function Overview Diagram

(b) Timed History Variable Node
defined by TTS

No_OB
_State

OB_Stat
e

f_X_OB_Perm = 1 and
f_X_OB_Ini = 1 /

h_X_OB_STA := 1

f_X_OB_Perm = 0
/ h_X_OB_STA := 0

(c) History Variable Node defined by
FSM

(d) Function Variable Node
defined as SDT

: Input or output node

: function node

: history node

: timed-history node

: data flow

< legend >

Figure 2: NuSCR specification for a part of RPS

12

trip logic module. The timed-history variable node th X Trip, which is represented as an ellipse in
〈Fig.2 (a)〉, is defined in 〈Fig.2 (b)〉. The history variable node h X OB Sta, which is represented
as an rounded rectangle, is defined in 〈Fig.2 (c)〉. The function variable node f X Valid, which
is represented as a circle, is also defined in 〈Fig.2 (d)〉. We used the timed-history variable node
th X Trip as the representative to generate the corresponding FBD program as the proposed
approach in the previous section.

At the first step, we perform the analysis about the completeness and consistency of whole
individual nodes in FOD for the effective generation of FBD. The timed-history variable node
th X Trip defined as TTS in 〈Fig.2 (b)〉 is analyzed, and then the modified TTS is 〈Fig.3 (a)〉. We
specified explicitly the omitted transitions and performed the consistency checking for transitions
as Definition 7. In step 2, we generated 2C-Table for the modified TTS in 〈Fig.3 (a)〉 as Algorithm
1. The generated 2C-Table for th X Trip is described in 〈Fig.3 (b)〉. As known from Theorem 1,
this generated 2C-Table has the same behavior with its origin TTS node th X Trip.

Cond_a : f_X >= k_X_Trip_Setpoint
Cond_b : [k_Trip_Delay, k_Trip_Delay] (f_X >= k_X_Trip_Setpoint and h_X_OB_Sta = 0)
Cond_c : f_X < k_X_Trip_Setpoint - k_X_Trip_Hys
Cond_d : f_X_Valid = 1 or f_Module_Error = 1 or f_Channel_Error = 1)

not cond_a
and not cond_d

/ th_X_Trip := prev

Waiting Normal

Cond_a
and not cond_d

/ th_X_Trip := prev

Trip_By
_Logic

Cond_c and not
Cond_d
/ th_X_Trip := 1

Cond_d
/ th_X_Trip := 0

Cond_b and not
Cond_d
/ th_X_Trip := 0

Cond_d
/ th_X_Trip := 0

not Cond_d
/ th_X_Trip := 1

Trip_By
_Error

Cond_d
/ th_X_Trip := 0

not (not Cond_d)
/ th_X_Trip :=
prev

not (Cond_d
or (Cond_b and not Cond_d))
/ th_X_Trip := prev

not (Cond_d
or (not Cond_a and not Cond_d)
or (Cond_b and not Cond_d))
/ th_X_Trip := prev

not (Cond_d
or (Cond_c and not Cond_d))
/ th_X_Trip := prev

(a) Modified complete and consistent TTS for th_X_Trip

(b) Generated 2C-Table for th_X_Trip

Figure 3: Step 1 & 2 for TTS node th X Trip

In step 3, we generate an FBD for th X Trip node from its 2C-Table as algorithm 2. 〈Fig.4
(a)〉, which is a preprocessing part, is the generated partial FBD corresponding to line 0 ∼ 3
in Algorithm 2. The line 5 ∼ 7 in Algorithm 2, which generates the individual SEL function
blocks, corresponds to the four blocks of SEL function blocks whose output ports are the input
of MUX INT function block in 〈Fig.4 (b)〉. The line 9 ∼ 11 also corresponds to the MUX Int
function block 〈Fig.4 (a)〉, and line 12 ∼ 14 operates as the same way. As known from Theorem 3,
the generated FBD from 2C-Table as Algorithm 2 has the same behavior with that of its source.

In step 4, finally the execution order for all 5 FBDs in FOD, which are generated as step 3,
is analyzed and the decided. The possible execution orders for the 5 nodes composed in FBD in
〈Fig. 2 (a)〉 is as follows: At first, there are two partial orders between the 5 nodes in FOD as
their input/output relationships. The node numbered 4 has no interaction with other nodes, so it
is the independent one.

Partial execution order 1 : (1 −→ 5)
Partial execution order 2 : (2 −→ 3 −→ 5)

13

(a) Preprocessing part FBD for th_X_Trip

(b) Input processing part FBD for th_X_Trip

Figure 4: Step 3 for TTS node th X Trip

Independent execution: (4)

We can get the whole possible execution order below from these partial ordering and indepen-
dent relationships. The independent node, numbered 4, can be located at any locations. In this
way, we can get the sequentially executable FBD programs generated from NuSCR requirements
specification.

Execution order 1 : (Input) −→ 1 −→ 2 −→ 3 −→ 5 −→ (4) −→(Output)
Execution order 2 : (Input) −→ 2 −→ 1 −→ 3 −→ 5 −→ (4) −→(Output)
Execution order 3 : (Input) −→ 2 −→ 3 −→ 1 −→ 5 −→ (4) −→(Output)

5 Conclusion and Future Work

In this paper, we describe the formal procedure for the transformation procedure from NuSCR
requirements specification to FBD-based design specification. We presented a formal definition of
a set of function blocks, which are sufficient to develop software controller in nuclear power plants
system. With the formal definition of FBD derived from function blocks and the description of
the transformation algorithm in each step, we make confirms that systematically generated FBD
design specification has the same behavior with its origin, NuSCR requirements specification.

As we mentioned in [12], the proposed transformation method increases the generated FBD
program by 3 times and its execution also takes much time proportionately. To be more appropriate
for the characteristics of PLC programs, s.t. periodic operation with a strict time bound, even
if 3 times execution time does not result in a problem for the most PLC programs in nuclear
power plants domain, the additional modification and optimization manually conducted by expert
developers to reduce the size of generated FBD program from NuSCR specification are required.
For this FBD optimization, an analysis method to check whether the original generated FBD
program and the subsequently modified ones are behaviorally equivalent. We currently focus on
the analysis on the behavioral preservation of modifications between subsequently modified FBD
design specification.

14

References

[1] Edmund M. Clarke and Jeannette M. Wing. Formal method: State of the art and future
direction. ACM Computing Survey, 28(4):626–643, December 1996.

[2] IEC(International Electrotechnical Commission). International standard for programmable
controllers: Programming languages, 1993. part 3.

[3] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems. In REX
Workshop, pages 226–251, 1991.

[4] KNICS. Korea nuclear instrumentation and control system research and development center.
http://www.knics.re.kr/english/eindex.html.

[5] Nancy G. Leveson. SAFEWARE, System safety and Computers. Addison Wesley, 1995.

[6] U.S. NRC. Digital Instrumentation and Control Systems in Nuclear Power Plants: safety
and reliability issues. National Academy Press, 1997.

[7] Doron A. Peled. SOFTWARE RELIABILITY METHODS. Springer, 2001.

[8] R.D. Tennent. The denotational semantics of programming languages. Communicatin of the
ACM, 19(8):437–453, 1976.

[9] A.J. Schouwen Van, D. Parnas, and J. Madey. Documentation of requirements for computer
systems. In RE’93: IEEE International Symposium on Requirements Engineering, pages
198–207, 1993.

[10] WolsongNPP2/3/4. Software work practice, procedure for the specification of software re-
quirements for safety critical software. 00-68000-SWP-002, Sept. 1991.

[11] Junbeom Yoo and Sungdeok Cha. A formal software requirements specification method for
digital nuclear plants protection systems. Journal of Systems and Software accepted, 2003.

[12] Junbeom Yoo, Sungdeok Cha, Changhui Kim, and Duck Yong Song. From formal software
requirement to plc-based design. Reliability Engineering and System Safety submitted, 2003.

[13] Junbeom Yoo, Sungdeok Cha, Younju Oh, and Changhui Kim. Toward the formal software
requirements specification for digital reactor protection systems. IEEE transaction on Nuclear
Science submitted, 2003.

15

