
Development of Software Requirement Analysis Tool for NPP Software Fields
Based on Software Inspection and Formal Method

Seo Ryong Koo*, Han Seong Son*, Poong Hyun Seong*, Junbeom Yoo**, and Sung Deok Cha**

Korea Advanced Institute of Science and Technology
* Department of Nuclear Engineering

** Department of Electrical Engineering & Computer Science, Division of Computer Science
373-1 Gusong-dong, Yusong-gu, Daejeon, Korea 305-701

*{srkoo, phseong}@mail.kaist.ac.kr, **{jbyoo, sdcha}@salmosa.kaist.ac.kr

Dae Seong Son and Seong Soo Choi
Atomic Creative Technology Ltd.

106-5 Eoeun-dong, Yuseong-gu, Daejeon, Korea 305-807
1act@hanafos.com

Abstract

This article introduces a computer-aided software
requirement analysis tool, Software Inspection Support &
Requirement Traceability (SIS-RT), which has inspection,
traceability analysis, and formal analysis capabilities.
Inspection and requirement traceability analysis are
widely believed to be the most effective software
verification and validation (V&V) methods. Though
formal methods are also considered as an effective V&V
harness, they are not easy to be used properly in nuclear
fields because of their mathematical nature. These
techniques are labor-intensive and thus are required to
be partially automated. SIS-RT is designed to partially
automate the software inspection process and
requirement traceability analysis. Toward easy inspection
and effective use of formal method, SIS-RT has three
kinds of view; Inspection View, Traceability View, and
Structure View. After further development efforts, SIS-RT
will turn out to be a unique and promising software
requirement analysis tool.

1. Introduction

The use of digital systems is on increase in nuclear
industry in recent years. Therefore, the importance of
software verification and validation (V&V) is more
emphasized in view of the nuclear safety. Inspection is
widely believed to be an effective software V&V
technique. It can provide a great increase in both
productivity and product quality, by reducing
development time, through removing more defects than is
possible without using inspection, respectively.
Inspection applies to the whole lifecycle. By inspecting

products as early as possible, major defects will be
revealed sooner and will not be propagated through to the
final product. However, software inspection is labor-
intensive, and it can be difficult to justify the investment
in time and money to introduce it. Requirement
traceability analysis is to identify requirements that is
either missing from, or in addition to, the original
requirements. The requirement traceability applied to the
software architecture phase can aid in identifying
requirements that have not been accounted for in the
architecture. Stepwise refinement of the requirements into
the architecture produces a natural set of mappings from
which to derive the requirement traceability. For large
systems, automation is desirable.

Though formal methods, such as Statechart [1], CPN
[2], RSML [3], and SCR [4], are also considered as an
effective V&V harness, they are not easy to be used
properly in nuclear fields because of their mathematical
nature. However, formal specification can lessen
requirements errors by reducing ambiguity and
imprecision and by clarifying instances of inconsistency
and incompleteness. In order to promote the application
of software inspection and formal method, the authors
have been developed a software inspection support tool;
SIS-RT. SIS-RT has three views; Inspection View,
Traceability View, and Structure View. Inspection View
of SIS-RT is designed to partially automate the software
inspection process so that the burden of software
inspection may be reduced. Requirement traceability
analysis, which is considered as one of important
activities of software V&V, is supported through
Traceability View of SIS-RT. Also, Structure View of
SIS-RT supports that the analyzer can easily specify a
system using a formal specification method. Therefore,
this work suggests an integrated approach with inspection
and formal methods in order to support easy inspection

and effective use of formal specification method. For the
sake of convenience, the authors developed SIS-RT in
this work. SIS-RT is expected to be a more effective
requirement analysis tool in nuclear fields.

This paper is organized as follows. Section 2 gives the
proposed approach for easy inspection and effective use
of formal method in this work. Section 3 introduces
software inspection and the NuSCR approach. NuSCR is
a specification language for describing and verifying a
control system for both nuclear engineering and software
developer in nuclear fields. In section 4, we present main
features of SIS-RT and a brief introduction on three
views of SIS-RT. Finally, we conclude our research in
section 6.

2. Approach for easy inspection and effective
use of formal method

It is very difficult that requirement analyzer
understands design documents written in natural language
at once and then specifies software requirements from
them formally. It is also difficult to assure the quality of
the specification. This is because of the difference of
domain knowledge between designer and analyzer. Thus
it is very important to fill this gap. Design documents
written in natural language is mostly of large amount. It
needs much time and efforts that analyzer understands
and formally specifies the documents.

Using a software requirement analysis support tool
which fills the gap between natural language documents
phase and formal specification phase, the approach
proposed in this research helps a user perform easier
inspection and compose formal specification efficiently.
Figure 1 shows schematic diagram of the approach
proposed in this research.

Figure 1. Schematic diagram of the approach

As shown in Figure 1, our approach consists of two

phases. Phase 1 is inspection supporting to increase
quality of the design documents written in natural
language. As mentioned before, SIS-RT supports various
V&V activity based on Fagan Inspection [5]. SIS-RT is a
PC-based application designed for use by anyone who
needs to manage requirements. A desirable attribute of
inspections is rigor. Using computers to support the
process helps provide this rigor, and improves the

repeatability of the inspection process. Repeatability is
essential if feedback from the process is to be used to
improve it. In phase 1, SIS-RT can support easier
inspection for user.

In phase 2, the document analysis feature of SIS-RT
enables the effective transition into formal specification.
Since it is difficult to generate a formal specification from
a natural language document directly, it is necessary to
extract useful information from design documents.
Structure View of SIS-RT supports the structural analysis
of documents. Through the document analysis, we can
obtain a refined document for formal specification and
this document will be very useful to analyzer. The
structure type from the analysis results is affected by
formal methods that the analyzer uses for software
requirements specification.

In this paper, we propose NuSCR (Software Cost
Reduction for nuclear engineering), a specification
approach that provides environment to verify the
functional requirements of a nuclear control system. The
proposed NuSCR provides not only specification
approach in specifying requirements but also verification
environment. NuSCR is based on the existing AECL
approach [6]. It shares the same notation of describing
system requirements in Function Overview Diagram
(FOD) and in describing each function in tabular notation
using the Structural Decision Table (SDT). However, the
main purpose of the NuSCR is to reduce the specifying
complexity of the AECL approach. The AECL approach
describes all requirements specifications based on
function nodes in FOD and tables in SDT, which makes
timing requirements and history related requirements
difficult to specify, whereas the NuSCR uses automata
and timed-automata to specify such behaviors that are not
easily expressed with the notations of FOD and SDT. In
this case, the structure type should be useful to draw FOD
and SDT. With an Input-Process-Output structure type,
the authors have successfully drawn FOD and SDT using
SIS-RT.

3. Introduction to software inspection and
NuSCR approach

3.1. Software inspection

Since M.E. Fagan first defined the software inspection

process in 1976 [1], there have been many variations of
software inspection. We describe here the original
method.

An inspection team generally consists of four to six
people. Each person has a well-defined role as follows:

Moderator: The moderator is the person in overall

charge of the inspection. It is the moderator’s task to

invite suitable people to join the inspection team,
distribute source materials and to organize and moderate
the inspection meeting itself.

Author: The inspection requires the presence of the
author of the product under inspection. The author can
give invaluable help to the inspectors by answering
questions pertaining to the intent of the document.

Reader: During the inspection meeting, it is the
reader’s job to paraphrase out loud the document under
inspection.

Recorder: It is the recorder’s duty to note all defects
found along with their classification and severity.
Although Fagan indicates that this task is accomplished
by the moderator, another member of the team is usually
chosen, since the workload involved can be quite high,
though mainly secretarial. The recorder is often known as
the scribe.

Inspector: Any remaining team members are cast as
inspectors. Their only duty is to look for defects in the
document.

For effective use of software inspection, Fagan

describes five stages in the inspection process as follows:

Overview: The entire team is present during the

overview. The author describes the general area of work
then gives a detailed presentation on the specific
document he has produced. This is followed by
distribution of the document itself and any necessary
related work to all members.

Preparation: Each team member carries out individual
preparation, consisting of studying the document to gain
an understanding of it. Errors in the document will be
found during this stage, but in general not as many as will
be found at the next stage. Checklists of common defect
types can help the inspectors concentrate on the most
beneficial areas of inspection. Each inspector produces a
list of comments about the document, indicating defects,
omissions and ambiguities.

Inspection: The inspection meeting involves all team
members. The reader paraphrases the document, covering
all areas. During this process inspectors can stop the
reader and raise any issue until a consensus is reached. If
an issue is agreed to be a defect, it is classified as missing,
wrong or extra. Its severity is also classified (major or
minor). At this point the meeting moves on. No attempt is
made to find a solution to the defect; this is carried out
later. After the meeting, the moderator writes a report
detailing the inspection and all defects found. This report
is then passed to the author for the next stage.

Rework: During rework, the author carries out
modifications to correct all defects found in the document
and detailed in the moderator’s report.

Follow-Up: After the document has been corrected,
the moderator ensures that all required alterations have

been made. The moderator then decides whether the
document should be re-inspected, either partially or fully.

3.2. NuSCR approach

The Atomic Energy of Canada Limited (AECL)

approach specifies a methodology and format for the
specification of software requirements for safety critical
software used in real-time control and monitoring systems
in nuclear generating systems. It is a SCR-style SRS
verification method based on Parnas’ four variable
method. A system reads environment states through
monitored variables that are transformed into input
variables. The output values of the output variables are
calculated and are changed into control variables. The
AECL provides two different views of the requirements.
A larger view is the FOD and each of the function in it is
described by the smaller view of the SDT. The AECL
approach specifies all requirements of the nuclear control
system in the FOD and SDT notations. This is somewhat
complex in cases where timing requirements and history
related requirements are considered. This difficulty of
specification is modified in the NuSCR approach.

The NuSCR approach is an extended formal
verification method of the existing SCR-style AECL
approach. The NuSCR specification language was
originally designed to simplify the complex specification
techniques of certain requirements in the AECL approach.
It is an improved method in describing behavior of the
history related requirements and timing requirements of
the nuclear control system by specifying them in
automata and timed-automata respectively. In the existing
AECL method, all specifications including history related
requirements and timing requirements are specified with
only one type of function node in the FOD and with SDT
tables. However, the NuSCR uses three different types of
nodes in the FOD to specify the properties derived from
the requirements. The types consist of nodes that specify
history related requirements that are described in
automata [7], timing requirements that are described in
timed-automata [8], and nodes that specify all other
requirements exclusive of the previous two types of
functional requirements.

4. SIS-RT

In this section we describe SIS-RT, which is a

computer-aided software inspection support tool
developed in this work. SIS-RT stands for Software
Inspection Support and Requirement Traceability. As
mentioned before, we have integrated requirement
traceability analysis capability into the software
inspection support tool because requirement traceability
analysis is considered as one of the items of software
inspection. Additionally, formal requirement analysis and

inspection meeting support capability are integrated in
SIS-RT. That is, SIS-RT composes of a document
analysis tool, a traceability analysis tool, a formal analysis
tool and an inspection meeting support tool. SIS-RT is
designed to support inspection of all software
development products. In addition, SIS-RT is a PC-based
application designed for use by anyone who needs to
manage requirements. Now we describe SIS-RT in view
of the features of tool support.

Document Handling: SIS-RT supports document

handling very well. It supports cross-referencing from
one document to another. As mentioned before, since
most inspection documents are produced on computer, it
is natural to allow browsing of documents online.
Everyone has access to the latest version of each
document, and can cross-reference documents using, for
example, hypertext. SIS-RT has all these features. SIS-RT
can deal with the comments produced by inspectors. They
are a major part of the inspection process, as they indicate
when an inspector takes issue with a part of the document.
SIS-RT allows the comments to be stored on-line, linked
to the part of the document to which they refer. They can
then be available for all inspectors to study both before
and, more importantly, during the inspection meeting.

Individual Preparation: SIS-RT does not have the
ability of automated defect detection yet. However,
finding them automatically enables inspectors to
concentrate on the more difficult defects that cannot be
automatically found and that have a greater impact if not
found. Thus we are planning to include this capability
into SIS-RT. As mentioned before, computer support for
software inspection can provide further help during
individual preparation in that, by keeping the checklists
on-line, the inspector can easily cross-reference between
them. On-line checklists can be used by SIS-RT to ensure
that each check has been applied to the document. In
addition, on-line standards in SIS-RT can assist the
inspector in checking a document feature for compliance.

Meeting Support: SIS-RT can help avoid taking many
meetings to complete an inspection. By allowing a
distributed meeting to be held using web meeting
technology, it becomes easier for team members to
‘attend’ the inspection meeting.

Data Collection: Computer support allows metrics
from the inspection to be automatically gathered for
analysis. This is a very important aspect. SIS-RT,
however, does not have data collection capability. Further
development effort for SIS-RT will bring the ability of
data collection to it.

In order to support these features, SIS-RT has three

kinds of views; Inspection View, Traceability View, and
Structure View.

4.1. Inspection View

The support of document analysis with Inspection

View is a main function of SIS-RT. It supports an
extraction function that reads a text file and copies
paragraph numbers and requirement text to a SIS-RT file.
It can read any text data that is convertible to ‘.txt’ format.
It also supports manual addition of individual
requirements and import from various formats.

Inspection View permits users to associate database
items by defining attributes; attributes attached to
individual database items provide a powerful means to
identify subcategories or database items and manage
requirements. Inspection View of SIS-RT supports
normal parent/child links to manage requirements.
Furthermore, it supports peer links between items in the
database and general documents to provide an audit trail
showing compliance to quality standards or contractual
conditions.

Figure 2 shows a screen shot of the Inspection View of
SIS-RT. Inspection View reads source document,
identifies requirement, and extracts them for import into
the database. Inspection View automatically finds and
extracts requirements based on a set of keywords defined
by the user. As requirements are found, they are
highlighted as shown in Figure 2. The user may also
manually select and identify requirements. Inspection
View enables us to produce a user-defined report that
shows various types of inspection results. Users build up
the architecture of the reports that they want to produce
on the right-hand side window shown in Figure 2. If a
user writes down checklists in the window, SIS-RT can
directly support the software inspection with this
functional window. Requirements to be found by tool are
located in suitable checklist site using various arrow
buttons in the window. In this way, each inspector
examines requirements and generates the inspection result
documents through the supporting of SIS-RT.

Figure 2. Inspection View of SIS-RT

4.2. Traceability View

As mentioned before, SIS-RT supports normal

parent/child links and peer links between items in the
database and general documents. This is a function
related to requirement traceability analysis. Figure 3
shows a screen shot of Traceability View representing the
requirement traceability function of SIS-RT. Figure 3
shows that SIS-RT provides mechanisms to easily
establish and analyze traceability through the real-time
visual notification of change. This capability allows users
to pinpoint its impact across the project and assess
coverage for verification and validation. Through the
Traceability View, we can analyze traceability between
source requirements and destination requirements. As
shown Figure 3, the column number represents a
requirement of source file and the row number represents
destination file. The relationships between source and
destination are expressed in the matrix window using
linked and unlinked chain. That is, the linked chains mean
that source requirements are reflected into destination
requirements. The unlinked chains represent that source
and destination requirements are changed, thus it is
necessary to verify the change between source and
destination documents. The question marks mean that is
difficult to define traceability between requirements. At
this time, it is necessary to verify requirements by other
analyzer. In order to more easily support traceability
analysis, Traceability View has an additional function
calculating the similarity between requirements. Through
this function, Traceability View can automatically
represent the similarity by percentage and then this
similarity result is very helpful to user and analyzer. Now,
we proposed algorithms to calculate the similarity for
both English and Korean documents.

In this way, we can represent the traceability between
documents. In the Traceability View of SIS-RT, we can
also support the comparing function between
requirements. This function helps us to recognize a
changed requirement easily.

Figure 3. Traceability View of SIS-RT

4.3. Structure View

Structure View of SIS-RT enables the effective

transition into NuSCR editor. Figure 4 shows a screen
shot of Structure View of SIS-RT. Through the Structure
View, we can analyze design documents in view of
system’s structure and then the analysis results help us
generate a formal specification from a natural language
document. For the structural analysis of systems, it is the
most important to define inputs/outputs and functions.
Therefore, we proposed Input-Process-Output structure
type in this work. In the Structure View, several tabular
forms help users build up Input-Process-Output structure
easily and Input-Process-Output structure is represented
in right-hand side window as a tree type. After structure
analysis, Structure View generates a result file written in
XML language and then it is transferred to NuSCR editor.
With this file, FOD can be drawn automatically in the
NuSCR editor. Figure 5 shows a screen shot of NuSCR
editor. The NuSCR Editor is a platform independent tool
made with JAVA for formally specifying the SRS of the
nuclear control system. It provides environment to draw
FOD and SDT and allows automata diagrams to be built
from the nodes of the FOD. The Editor also gives a
hierarchical view of the SRS described as can be seen on
the left side of Figure 5.

Figure 4. Structure View of SIS-RT

Figure 5. NuSCR editor

5. Conclusions

In this research, we proposed an approach for easy
inspection and effective use of formal method and then
we developed SIS-RT which is a computer-aided
software requirement analysis support tool based on our
approach. SIS-RT supports software inspection
systematically and has requirement traceability analysis
capability. SIS-RT can also support the formal
specification using NuSCR editor developed in this work.
Through SIS-RT, we can minimize some difficulties
caused by the difference on domain knowledge between
designer and analyzer. After further development efforts,
SIS-RT will turn out to be a unique and promising
software requirement analysis tool.

6. References

[1] M.E. Fagan, “Design and Code Inspections to Reduce

Errors in Program Development,” IBM system
Journal, Vol. 15, No. 3, pp. 182-211, 1976.

[2] D. Harel, "Statecharts: A Visual Formalism for
Complex Systems," Science of Computer
Programming, vol. 8, pp.231-274, 1987.

[3] Kurt Jensen, “Coloured Petri Nets (Basic Concepts,
Analysis Methods and Practical Use Volume 1),
Second Edition”, Springer-Verlag Berlin Heidelberg,
1997.

[4] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D.
Reese, "Requirements Specification for Process-
Control Systems," IEEE Transaction on Software
Engineering, vol.20, no.9, sept. 1994.

[5] C. Heitmeyer and B. Labaw, “Consistency Checking
of SCR-style Requirements Specification”,
International Symposium on Requirements
Engineering, March, 1995.

[6] WolsongnNPP 2/3/4, “Software Work Practice
Procedure for the Specification of SR for Safety
Critical Systems,” Design Document no. 00-68000-
SWP-002, Rev. 0, Sept. 1991.

[7] J. Hopcroft and J. Ullman, “Introduction to Automata
Theory,” Language and Computation, Addison-
Wesley, 1979.

[8] R. Alur and David L. Dill, “A theory of Timed
Automata,” Theoretical Computer Science Vol. 126,
No. 2, pp. 183-236, April 1994.

