
Formal Verification of FBD-Based PLC Software at Software Design Phase 
 

Han Seong Son, Kee-Choon Kwon, Junbeom Yoo*, Sungdeok Cha* 
 

Korea Atomic Energy Research Institute 
150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353, Korea 

Email: hsson, kckwon@kaeri.re.kr 
*Korea Advanced Institute of Science and Technology and AITrc/SPIC 

373-1 Kusong-dong, Yusong-gu, Daejeon, 305-701, Korea 
Email: jbyoo, cha@salmosa.kaist.ac.kr 

 
ABSTRACT 

This article suggests an approach to formal verification of FBD-based PLC software at design phase. The 
approach involves model checking and equivalence check which is a function some of model checkers 
offer. In this approach, a part of software requirements is translated into FBD in a systematic way and SDS 
includes FBD, which are designed by a software designer. Compliance between SRS and SDS is checked 
through model checking and equivalence check on the FBDs.  
 
INTRODUCTION 

 
As Programmable Logic Controllers (PLC) have been increasingly being used for safety critical systems, 
such as nuclear power plant control systems, there have been many research projects in the field of formal 
verification of PLC software[1]. Most of the researches, however, did not deal with Function Block 
Diagrams (FBD), which is one of the PLC languages defined in the IEC 61131-3 standard [2]. This article 
addresses a formal verification of FBD using a model checker, Verification Interacting with Synthesis 
(VIS) [3]. VIS is a tool that integrates the verification, simulation, and synthesis of finite-state systems. It 
uses a Verilog front end and supports Computational Tree Logic (CTL) model checking. The Verilog front 
end makes it easy to perform formal verification of FBD disregarding its lack of formality. Son and Kwon 
demonstrated that VIS is useful for model checking on FBD in their research [4].  
 
Yoo, et al. proposed a method translating a formal software requirements specification into FBD [5]. 
Assuming that FBD are generally used in the design of PLC based software system, the method may be 
very useful for the verification of the design in view of correctness, consistency, and completeness as well 
as the design activity itself. This is because we can design and/or verify a system using the same terms and 
languages by virtue of the method. Extending the method and utilizing the equivalence checking feature of 
VIS, we propose a formal design verification method, with which makes it easy and systematic to verify 
consistency between software requirements and software design. Figure 1 depicts the verification approach 
of the proposed method. 
 
TRANSLATING SRS TO FBD 
 
In the area of nuclear power plant control systems, the software safety becomes more important with the 
replacement of existing analog systems, which is based on RLL, by digital systems composed of software 
process controllers. Therefore, formal software requirements specification methods [6, 7] are required to 
preserve the safety of such systems in the early phase of the software development process. Also software 
requirements and design specifications, which are suitable for the characteristics of nuclear power plants 
systems, are becoming a new research issue by many researchers. NuSCR [8] is a formal specification 
method specialized for this purpose, and it is being used to formally specify the software requirements 
specification of DPPS RPS, which is presently being developed at KNICS in Korea. Figure 2 illustrates the 
constructs of NuSCR, which are FOD in (a), which shows the overall dataflow and their inter-relationships, 
and other three variable nodes in (b),(c),(d), which define all variable nodes in FOD. NuSCR improves the 
readability and specifying ability by supplying different notations on the basis of their typical operation 
categories, such that state-dependent, timing constrained, and functional operations. 



 
 

Figure 1. Schematic Diagram of the Proposed Method 
 
Software in nuclear power plant control systems is embedded software that is implemented on PLC. 
Therefore, in the design phase, we specify software design requirements with PLC languages, such that 
FBD, which PLC can interpret and compile with. The developer usually writes the PLC programs manually 
from the requirements specification, as the requirements specification is written in a natural language. On 
the other hand, if a formal software specification method, s. t. NuSCR, is used, it has a formal syntax and 
semantics unlike natural languages, so it allows to generate PLC programs form the formal requirements 
specification, which has a same behavioral aspect with the requirements specification. The method [5] 
allows the systematic generation of PLC programs from NuSCR, and it can reduce the possible errors 
occurring in the manual design specification, and also the software development cost and time. 
 
On the other hands, the method [5] increases the generated FBD program by 3 times and its execution also 
takes much time proportionately. To be appropriate for the characteristics of PLC programs, s.t. periodic 
operation with a strict time bound, the additional modification and optimization manually conducted by 
expert developers to reduce the size of generated FBD program from NuSCR specification are required. It 
should be noted that an analysis method to check whether the original generated FBD program and the 
subsequently modified ones are behaviorally equivalent. The authors currently focus on the analysis on the 
behavioral preservation of modifications between FBD programs. 
 
TRANSLATING FBD TO VERILOG 
 
A specification in Verilog consists of one or more modules. Component modules normally have input and 
output ports. Events on the input ports cause changes on the outputs. Modules can be specified either 
behaviorally or structurally, or by a combination of the two. A behavioral specification defines the behavior 
of a module using programming language constructs. A structural specification expresses a module as a 
hierarchical interconnection of sub modules. These facts on Verilog enable us to directly translate FBDs to 
Verilog modules because FBD has the same properties as the Verilog modules.  
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Figure 2. NuSCR specification 
 
On the other hand, we need to abstract FBD in view of events to translate it to Verilog. In Verilog, events 
can be either changes in the values of wire variables (i.e., combinational variables) or in the values of reg 
variables (i.e., register variables), or can be explicitly generated abstract events. Generally, FBD-based PLC 
software distinguishes between combinational variables and register variables. Unfortunately, in some 
cases, it is difficult to represent them as Verilog variables without abstraction although most of them can be 
directly translated. Obviously, explicitly generated abstract variables must be defined in terms of Verilog 
through understanding the meaning of FBD and/or the connections between FBDs. Figure 3 shows the 
counter function blocks and their translated Verilog descriptions. 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The correspondences between Figure 3 (a) and the Verilog script for ‘module counter(clk)’ can be easily 
traced because a function block in Figure 3 (a) corresponds to a functional statement in the script. Note that 
the clock variable, clk, was implemented within the FBDs for counter cell to emulate a real clock. In Figure 
3 (b), we can see the emulating part in the upper portion. In the figure, we can easily have the pick of wire 
(combinational) variables and reg (register) variables. In other words, carry_i0 of function block 8 and 
carry_o0 of function block 10 are input and output wire variables, respectively. On the other hand, value0 
of function block 9 and pre_value0 of function block 8 correspond to an identical reg variable. The lower 
portion of Figure 3 (b) describes the function of a counter cell, which can be directly translated into Verilog 
scripts in the always block of ‘module counter_cell(clk, carry_in, carry_out)’.  
 
FORMAL VERIFICATION USING VIS 
 
Formal verification was performed automatically by virtue of VIS. Figure 4 shows the results of model 
checking. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
The property we wanted to check is “invariantly eventually the counter count till 8” which is expressed in 
CTL as “AG AF bit2.carry_out”. The model checker VIS delivered a result that the formula has passed and 
thus the counter invariantly eventually the counter count till 8. 
 
VIS makes it possible to check the equivalence of two software models (i.e., networks). The command 
comb_verify verifies the combinational equivalence of two networks. In particular, any set of functions, 

module counter(clk); 
input clk;  
wire out0, out1, out2;  
counter_cell bit0 (clk, 1, out0); 
counter_cell bit1 (clk, out0, out1); 
counter_cell bit2 (clk, out1, out2);  
endmodule 
 
module counter_cell(clk, carry_in, carry_out); 
input clk, carry_in; 
output carry_out; 
reg value;  
assign carry_out = value & carry_in;  
initial value = 0;  
always @(posedge clk) begin  
        case(value) 
                0: value = carry_in; 
                1: if (carry_in ==0) 
                        value = 1; 
                else value = 0; 
        endcase 
end 
endmodule 

(b) FBDs for counter cell (c) Verilog scripts for counter and counter cell 

Figure 3. FBDs and their Verilog expressions for a counter cell 

VIS RELEASE 1.4 (COMPILED 3-SEP-02 AT 2:32 PM) 
VIS> READ_BLIF_MV COUNTER.MV 
WARNING: SOME VARIABLES ARE UNUSED IN MODEL COUNTER. 
VIS> INIT_VERIFY 
VIS> LANG_EMPTY -D 0 
# LE: LANGUAGE IS NOT EMPTY 
VIS> MODEL_CHECK -D 0 COUNTER.CTL 
# MC: FORMULA PASSED --- AG(AF(BIT2.CARRY_OUT=1)) 

Figure 4. Results of formal verification 
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defined over any set of intermediate variables, can be checked for equivalence between two networks. Two 
networks are declared combinationally equivalent if and only if they have the same outputs for all 
combinations of inputs and pseudo-inputs. The command seq_verify tests the sequential equivalence of two 
networks. In this case the set of intermediate variables has to be the set of all primary inputs. This produces 
the constraint that both networks should have the same number of primary inputs. The set of functions can 
be an arbitrary subset of node of the networks. The command verifies whether any state, where the values 
of two corresponding functions differ, can be reached from the set of initial states of the product machine. 
If this happens, a debug trace is provided.  
 
CONCLUSIONS 
 
FBD-based PLC programs take an important role in the actual software development for nuclear power 
plants control systems. In the design phase, the developers usually write the PLC programs manually from 
the requirements specification. It is mainly due to that the requirements specification is written in natural 
language. This paper proposes a formal design verification method, with which makes it easy and 
systematic to verify consistency between software requirements and software design. We have adopted a 
systematic FBD-based PLC program generation technique from NuSCR formal requirements specification 
and utilized the model checking and equivalence checking features of VIS.  
 
This article demonstrated that VIS can make it systematic to formally verify FBD-based PLC software. For 
further researches, we suggest that defining formal semantics of FBD would produce more sophisticated 
rules that are needed to completely translate FBD to Verilog.  
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