NuSCR 정형 요구사항형식으로부터 FBD 프로그램 자동생성을 위한 도구 (NuSCRtoFBD) 개발

백형부 a, 유준범 a, 차성혁 b
a 건국대학교 컴퓨터공학부
b 고려대학교 컴퓨터학과
qorgudqn@konkuk.ac.kr, jbyoo@konkuk.ac.kr, scha@korea.ac.kr

(NuSCRtoFBD : A CASE Tool for automatic FBD Program Generation from NuSCR Formal Specification)

Hyungbu Back a, Junbeom Yoo a, Sungdeok Cha b
a Division of Computer Science and Engineering, Konkuk University
b Department of Computer Science and Engineering, Korea University

1. 서론

NuSCR은 안전성이 요구되는 원자력 발전소의 제어 시스템 소프트웨어를 명세 하는데 적합하게 수정 보완된 정형명세 기법으로 인정받고 있다. 원자력 발전소 제어 소프트웨어들은 PLC(Pro grammable Logic Controller)를 기반으로 하므로 설계 단계에서 PLC에서 소프트웨어 요구 사항들이 어떻게 구현되는 가에 대해 PLC를 구동하기 위해서 사용되는 프로그래밍 언어인 SFC(Sequential Function Chart), LD(Ladder Diagram), FBD(Function Block Diagram)들을 이용하여 명세 한다.


2. 본론

NuSCR는 Parnas’ Four-Variable Mode에 기반을 두고 추가적으로 수학적인 함수 관계를 나타내고 테이블 형태인 SDT(Structured Decision Table)에 의해 표현되는 function variable과 상태의 흐름을 중심으로 명세 되고 오토마타 형태인 FSM(Finite State Machine)에 의해 표현되는 history variable, 이에 시간적 점적 액이 추가되고 TTS(Timed Transition System)에 의해 표현되는 timed-history variable의 세가지 모델을 사용한다. 또한 각 노드간의 흐름을 DFD(Data Flow Diagram)의 한 종류인 FOD(Function Overview Diagram)을 통해 표현한다. 정형명세 기법인 NuSCR로부터 PLC기반의 FBD프로그램을 생성하는 과정은 완전성 및 일관성 분석, FSM과 TTS에 대한 2C-Table 생성, 기본 FBD 생성, FBD의 실행순서 결정 순으로 4단계로 이루어진다.

완전성과 일관성 분석 작업은 NuSCR상의 모든 변수들이 흐름상의 오류가 없는지 확인 하는 작업이다. FSM과 TTS는 완전성과 일관성을 확인한 후에 각 상태에 존재하는 transition condition들을 그 condition이 만족 할 때 가지는 출력 값과 다음 상태로 구성된 2C-Table 형태로 변환 된다. 다음 단계에서는 수정된 SDT나 추가적으로 생성된 2C-Table을 기반을 FBD를 생성한다. SDT는 Condition들만을 분리해서 온라인 개선이 이루어 preprocessing part FBD의 구체적인 개선을 수행하는 output processing part FBD로 구분되어서 작성되며, FSM과 TTS는 preprocessing part FBD와 output processing part FBD외에도 오토바타의 상태를 개선하기 위한 state-variable processing part FBD가 추가 작성된다. 마지막 단계에서는 각각의 FBD의 실행 순서를 지정해 주는 작업이 진행된다. FBD 생성 알고리즘에 대한 자세한 설명과 수학적인 증명, 본 연구에서 개발한 도구 NuSCRtoFBD를 실제 프로젝트에 적용한 실례는 [2]에 자세히 소개되어 있다.

NuSCRtoFBD는 앞서 언급한 NuSCRtoFBD 생성과정을 거쳐 후 FBD를 자동으로 생성하고 그 과정에서 얻어지는 다양한 정보들을 제공하는 Tool이다. 전체적인 화면구성은 그림1과 같다. 상단에 위치한 메뉴들을 통해 NuSCR 노드 정보 load 및 분석, 완전성과 일관성 여부 확인, combination condition 정보 제공, FOD내의 노드 등의 정보 제공 기능 등을 제공한다. 좌측에 위치한 HierarchyWindow를 통해 노드들의 상하 관계를 tree 형태로 파악 할 수 있고, DescriptionWindow를 통해 condition들의 논리 오류 여부를 파악할 수 있다. 또한 수축에 위치한 tabControl에 의해 좌측의 HierarchyWindow의 tree에서 선택된 노드에 대한 2C-Table과 FBD의 정보들을 파악
3. 결론

본 논문에서는 NuSCR로부터 PLC기반의 FBD프로그래밍을 자동으로 생성하는 기법을 지원하는 도구인 NuSCRtoFBD를 소개하였다. 조건한 도구를 이용하여 NuSCR로부터 FBD의 자동생성 과정에서 얻어지는 정보들과 FBD를 한눈에 볼 수 있고, 명령어에서 중 발생한 오류들도 파악할 수 있다. 또한 이 도구에 의해 FBD 자동 생성 기법이 좀 더 널리 사용될 것으로 예상된다.

향후 계획으로는 자동 생성된 FBD를 표준 XML 포맷으로 저장함으로써, 추후 FBD programming tools에서 열람 사용할 수 있는 interface를 추가로 개발할 계획이다. 또한, NuSCR 경영 도구인 NuSRS 2.0과의 유기적인 연동을 위해서도 도구의 기능을 통합한 NuSRS 3.0을 개발 중이다. 기 발행된 원자력발전소의 NuSCR 정형명세와 FBD 명세를 사용하여, 제안된 도구로부터 자동 생성된 FBD와 공식적으로 발행된 FBD와 동일한 행위를 가지는 가정의 적용으로 심혈함으로써, 제안된 도구 NuSCRtoFBD의 정확성과 견전성을 확보하기 위한 노력도 꾸준히 진행될 예정이다.

참고문헌
