

KNS 2011 2011.05.25 ~ 27

Verification Process of Behavioral Consistency between Design and Implementation programs of pSET using HW-CBMC

Lee Dong-Ah Dependable Software Laboratory KONKUK University, Korea

2011.05.26

Contents

- Introduction
- Background
 - Translation from FBDs into Verilog
 - HW-CBMC
- Verification Process
 - Modification of Verilog
 - Verification using HW-CBMC
- Conclusion

Verification Process of Behavioral Consistency between Design and Implementation programs of pSET using HW-CBMC

INTRODUCTION

Introduction

- Controllers in safety critical systems often use Function Block Diagrams (FBDs) to design embedded software
- The FBDs are implemented using programming language
- The implementation must have save behavior with the design
 - The behavior should be verified explicitly

Introduction (cont'd)

- POSAFE-Q Software Engineering Tool (pSET)
 - A part of Korea Nuclear Instrumentation & Control System R&D Center (KNICS) project
- Program POSAFE-Q Programmable Logic Controller (PLC)

Introduction (cont'd)

NDABLE SOFTWARE

- The pSET uses the Function Block Diagram (FBD), Ladder Diagram (LD), Sequential Function Chart (SFC) and C Code (CC) to design a program of PLCs
- The pSET uses the ANSI-C program to implement its design
- The automatic code generator generates ANSI-C program with the FBDs

Introduction (cont'd)

- Mathematical proof of code generator can guarantee the equivalence
 - High expenditure
 - Repetitive fulfillment whenever the generator is modified
- Equivalence checking using the HW-CBMC
 - The HW-CBMC is formal verification tool
 - Verification of equivalence between hardware and software description
 - The HW-CBMC requires two inputs for the checking
 - Verilog for hardware
 - ANSI-C for software
 - Verification of correctness of the code generator indirectly

Verification Process of Behavioral Consistency between Design and Implementation programs of pSET using HW-CBMC

BACKGROUND

Translation from FBDs into Verilog

- *FBDtoVerilog 1.0* translates FBD program into a semantically equivalent Verilog model
 - Well-formed FBD (IEC 61131-1)
 - XML file with PLCOpen format
 - 7 rules
 - Module Declaration
 - Variable type and size decision
 - Initialization of *reg* variables
 - Output assignment for each wire and output variable
 - Declaration of other module instances
 - Stored value assignment for *reg* variables

HW-CBMC

- A common hardware design approach is to first write a quick prototype in a language like ANSI-C
 - The ANSI-C implementation is easer to test and debug
- Two implementations of the same design
 - One written in ANSI-C, which is written for simulation
 - One written in register transfer level HDL, which is the actual product

HW-CBMC

• Verification of the consistency of the HDL implementation using the ANSI-C implementation as a reference

Verification Process of Behavioral Consistency between Design and Implementation programs of pSET using HW-CBMC

VERIFICATION PROCESS

Verification Process

- Equivalence Checking between FBDs and ANSI-C program
 - FBDs translated into Verilog using FBDtoVerilg*
 - Translating FBDs to Verilog is proved in our previous work

*Eunkyung Jee and 6 others, "FBDVerifier : Interactive and Visual Analysis of Counterexample in Formal Verification of Function Block Diagram", JRPIT 2011

Modification of Verilog

Specific feature of Verilog as an input of the HW-CBMC

- A name of variable should be different from the name of module which defines and uses it
 - Every modules and variables must have different name
- Function calls are not allowed
 - Every function calls must be translated into module calls

Modification of Verilog (cont'd)

Translated Verilog Program	Modified Verilog Program
<pre>module module1(clk, In, module1); output module1; function EQUAL; endfunction endmodule</pre>	<pre>module module1(clk, IN, module1_out); output module1_out; endmodule module EQUAL(in1, in2, out) endmodule</pre>

Verification using HW-CBMC

- The ANSI-C program has functions provided by the HW-CBMC
 - *set_inputs()* : synchronize the inputs of ANSI-C and Verilog programs
 - next_timeframe() : make transition of Verilog program once
 - assert(conditions) : check conditions
- Result of Verification
 - Successful
 - FBDs and ANSI-C programs are equivalent
 - Fail
 - FBDs and ANSI-C programs are not equivalent
 - The HW-CBMC provides counterexample
 - The fail condition is traceable through analysis of the counterexample

CONCLUSION

Conclusion and Future Work

- Verification process of behavioral consistency between design and its implementation using HW-CBMC
 - The design written in FBDs
 - The implementation written in ANSI-C
- The process is applicable to FBDs and ANSI-C program of pSET
 - We can verify correctness of automatic code generator of pSET indirectly

Future work

- New translation rules from FBDs into Verilog
- Experiment on examples designed using the pSET

