A MC/DC and Toggle Coverage Measurement Tool for FBD Program Simulation

Eui-Sub Kim, Sejin Jung, Jaeyeob Kim, Junbeom Yoo
Dependable Software Laboratory
KONKUK University

2016.05.13
Functional Verification of FBD

- Functional verification of FBD (Function Block Diagram) is important
 - FBD is a design model for PLC (and FPGA in the NuDE framework)
 - Detection errors early (design phase) ➔ Can reduce costs and increase quality
 - Software design errors are often only detected during final test or after delivery

Diagram:

- Requirement ➔ Design ➔ Implementation
 - SRS ➔ FBD ➔ C ➔ PLC
 - FBD ➔ HDL ➔ Netlist ➔ Layout ➔ FPGA

< The NuDE framework >
How Adequately the Testing has been Performed?

“Test Done = Test Plan Executed and All Codes Executed”

Functional Coverage
- = Requirements Coverage
- This coverage will be defined by the user
- User will define the coverage points for the functions to be covered
- 100% of functional coverage is always required

Code Coverage
- = Structural Coverage
- How many lines are executed, how many times expressions, branches executed, etc.
- Code coverage is collected by the simulation/testing tools.
- Users use code coverage to reach those corner cases which are not hit by the test cases.
 - Unfortunately, errors and bugs are often found in the corner cases.
- To assure a high quality of functional verification, code coverage is important as well as functional coverage
Introduction

• We applied two code coverages to FBDs

 • (1) Toggle coverage, (2) MC/DC coverage

 • Defined coverage criteria for FBD simulation

 • If the coverages is not 100%, it means that the verification may be insufficient or the FBD may have unintended errors or bugs.

• We developed a set of supporting CASE tools

 • Developed two CASE tools ‘FBDSim’ and ‘FBDCover’

 • Can simulate FBDs and measure the code coverages of the FBD simulation

 • Objective: measuring the coverages during simulation (a sequential/continuous operation environment, not a single execution)
Toggle Coverage & MC/DC Coverage

• **Toggle Coverage**

 • One of the oldest measurements of coverage in hardware design
 • Measures the bits of logic that have toggled during simulation
 • Can be measured in logic simulation
 • Ex) 1-to-0 and 0-to-1 \rightarrow 100% toggle coverage

• **MC/DC Coverage**

 • Control flow-based structural coverage of the most highest level, in practice
 • Widely applied to C/Java programs

<table>
<thead>
<tr>
<th>Case #</th>
<th>A</th>
<th>B</th>
<th>OUT</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100% MC/DC \Rightarrow (T,T), (F,T), (T,F)
Toggle Coverage in FBDs

- **Toggle Coverage in the FBD**

 - Two application targets: (1) Output toggle, (2) Block toggle
 - (1) Output toggle: an output is toggle during the simulation
 - (2) Block toggle: a function block’s output is toggle during the simulation
 - Ex) If an output is not toggled, we may doubt that
 - the output variable is not tested \Rightarrow simulation may be insufficient.
 - the output variable is unreachable \Rightarrow the logic may have dead codes \rightarrow a logic-fix requires

```
10
RNG_MIN
PV OUT
10000 \rightarrow 15000 \rightarrow 25000
AND_BOOL 1 \rightarrow 0
PV OUT
RNG_MAX
20000
MDL E 0
AI E 0
TRIP LOGIC 0
OR BOOL 4 0 \rightarrow 1
AND BOOL 0 \rightarrow 1
OR INIT ST 0
TRIP
```

Toggled!
MC/DC Coverage in FBDs

- **MC/DC Coverage in the FBD**

 - Based on the typical MC/DC principle
 - Measure the MC/DC coverage of a function block
 - Ex) If any block does not cover 100% MC/DC coverage, we may doubt that
 - the block is not tested → simulation may be insufficient
 - the block is unreachable → the logic may have dead codes → a logic-fix requires

<table>
<thead>
<tr>
<th>Inputs</th>
<th>MC/DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND IN1, IN2</td>
<td>(0,1) (1,0) (1,1)</td>
</tr>
<tr>
<td>OR IN1, IN2</td>
<td>(0,0) (0,1) (1,0)</td>
</tr>
</tbody>
</table>
Block Toggle Coverage (An Example of Insufficient Simulation)

- Insufficient simulation?
- If the variable ‘PV_OUT’ is always located between MIN and MAX,
 - The block ‘LT_INT_2’ is never toggled. \(\rightarrow \) 0% toggle coverage
- User can add more test cases to toggle the function block
 - Ex) PV_OUT = 0~9 and next PV_OUT > 10 (again)

 \(0 \rightarrow 1 \) \(1 \rightarrow 0 \)
Output Toggle Coverage (An Example of Unreachable Code)

• Unreachable?

• If the variable ‘OB_INT_ST’ is always true?
 – The output variable ‘TRIP’ is never toggled. → 0% toggle coverage

• User can modify the logic
 • Ex) remove ‘AND_BOOL’ block
 • Ex) change the ‘OB_INT_ST’ variable (i.e., constant) to an (simulation) input variable
MC/DC Coverage (An Example of Insufficient Simulation)

If \((\text{always})\) 10 ~ 20000

- If the variable ‘PV_OUT’ is always located between MIN and MAX,
 - The input of ‘AND_BOOL’ is always \((1, 1)\) → 33% MC/DC coverage

- User can add more test cases to toggle the function block
 - Ex) PV_OUT = 0~9 and PV_OUT = over 20000
 (0, 1) (1, 0)

• Insufficient simulation ?

100% MC/DC \(\Rightarrow (1,1), (0,1), (1,0)\)
MC/DC Coverage (An Example of Unreachable Code)

- Unreachable?
- If two inputs of the upper ‘LT_INT_2’ are exchanged (due to a logic error)
 - It means “PV_OUT < MIN and PV_OUT < MAX”
 - The condition (1, 0) is never generated. → The max MC/DC is 66%
- User may have a chance to identify the (hypothetical) error and fix the logic

100% MC/DC → (1,1), (0,1), (1,0)
THE TOOL DEVELOPMENT
The Tool Development

- We develop two tools: (1) FBDSim (2) FBDCover
FBDSim

- **FBD Simulation Tool**

 - **Input:** (1) FBD program in PLCopen TC6 XML format, (2) Simulation scenario
 - **Output:** (1) Simulation result, (2) Coverage information
 - **Embedded in FBD Editor**
FBDCover

- **Coverage Measurement Tool**
 - **Input:**
 - Coverage information from FBDSim
 - **Output:**
 - Graphical coverage result
 - Embedded in FBD Editor
 - Notifies ranks of scenarios
 - Notifies uncovered elements

Screen Capture
- **Total Toggle Coverage**
- **Total MCDC Coverage**
- **Ranking**
- **Toggle/MCDC Coverage** of a scenario
- **Uncovered Toggle Coverage**
- **Uncovered MC/DC condition**
Ranks of FBDCover

- Highest rank scenario vs. Lowest rank scenario of toggle coverage

- Provide valuable information to improve simulation scenarios
Uncovered Elements of FBDCover

- Notify elements which are not simulated
- After improving the scenarios, user can re-simulate them seamlessly
CASE STUDY
Case Study

• We performed a case study with an example replicating a KNICS APR-1400 RPS BP

• ‘FBDSim’ automatically simulates a set of FBD scenarios and checks toggle and MC/DC coverage

• We used our tool-set of
 – FBD Editor
 – Scenario Generator
 – FBDSim
 – FBDCover
Case Study

- We found uncovered elements and improved the scenarios and then re-simulated with the scenarios.
Case Study (Example)

- We found that we missed to simulate the bypass, with the MC/DC coverage.
Case Study (Example)

- Finally, we were able to get 100% toggle and MC/DC coverage.

- Of course, it is not sufficient to assure that the program is free from bug or error.

- It is possible to fail with 100% code coverage.

- However, we always try to improve on the quality of verification with every possible means.

- The tool is helpful because it notify engineers about that there are uncovered elements.
 - The uncovered elements imply that the simulation is not sufficient or the FBD has unintended errors or bugs.
Conclusions and Future Work

- We applied toggle and MC/DC coverage to the FBD.
 - If the coverages are not 100%, user should analyze whether it is reasonable.
 - If it is not reasonable, it means that the simulation may be insufficient or the logic may have unintended errors or bugs.
 - We are trying to evaluate the efficiency/applicability of the coverages proposed.
 - All condition coverage is also applicable.

- We developed two CASE tools.
 - We developed two CASE tools ‘FBDSim’ and ‘FBDCover’
 - We can simulate the FBD and measure the coverages of the simulation
 - It produces a rank of scenarios and uncovered elements.
Conclusions and Future Work

- We are now planning to extend the coverage technique and tools to develop a full coverage-based scenario generation tool.

 - NuDE 2.0
 - IST-FPGA

THANK YOU

http://dslab.konkuk.ac.kr
jbyoo@konkuk.ac.kr