KCSE 2020
The 22nd Korea Conference on Software Engineering

A Model Projection Technique

for Compositional Verification using Model Checking

Dong-Ah Lee and Junbeom Yoo
KONKUK University

SOFTWARE
ENGINEERING
SOCIETY

(0 | DEPENDABLE SOFTWARE
5 . LABORATORY

 Introduction
* The Model Projection Technigue
Ccontents

« Case Study

« Conclusion

SOFTWARE

Q I’,) ENGINEERING
SOCIETY
NIVERSI

Introduction

* Model checking

Formal Model Model
. atisties the
Requir ©Q) -
equirements, Model Checker
design, or
source code Property Formal Model ¢ ? Bt
l example
Memory overflow O Om:

“State explosion”
« Checking whether a model meets a specification exhaustively and
automatically

« Demonstrating function correctness of hardware or software
systems

2020-02-05 KCSE 2020 2

SOFTWARE

Q‘) ENGINEERING
SOCIETY

Current Approaches & Limitations

» Code slicing (program slicing)
* Program decomposition by analyzing their features
* Slicing by static analysis
+ Data flow, control flow, etc.
* Independent checking of the sliced programs, but no overall views
« Code slicing by static analysis does not care about dynamic behavior

« Abstraction

« Making an abstract model of a program
» Abstraction on the variables , Abstraction by restriction, etc.

* The bigger abstraction, the bigger gaps
« Abstraction of large-scale software for model checking makes the big
gap

2NON-NDH-NE —C plawla)
2020-02-05 KCSE 2020

SOFTWARE

@‘) ENGINEERING
SOCIETY

The Model Projection Technique

A technical process to identify relevant parts of source code with a
verification purpose by executing a model of software

|dentification of relevant parts by dynamic analysis

More concrete models derived from source code ~ \Verification __Scenario
Requirement Generation

,\:1‘_,‘Simulatior‘y‘£”?
1. Formal modeling at system-level (FM.) | fFM
o P
2. Generating simulation scenarios (S;) Requirement/\ o0t P
Selecting the model checkers of fm, Design
“{.I'raceabi_lifyjj
Simulating system-level model Analysts
ldentifying running parts (P,) Source
Code

Tracing the parts to source code (C)

S

Model checking of the parts (fm))

SOFTWARE
(gg) ENGINEERING
SOCIETY

Case Study

() |DEPENDABLE SOFTWARE
N 4 LABORATORY

* Qplus-AlR
« a RTOS for avionics complying the ARINC 653 by ETRI

Qplus-AlIR Architecture

ARINC s . Applications
A R | N C 6 5 3 S p eC |-F| Ca tl O n (Partition @ Partition 1 Partition 2 Partition 3
Flight Control Mission Control Command & Comm. Monitoring Agent
o T i im - -~ - oo
| L2 TR) YNSRI L8 e
g Qplus-AIR SRD
Oplus-653 Qplus-EXT

Q p | U S_A| R S D D ARINC-653 Qplus Native
e S L | A e a1
L]

| Interrupt Mor. Network Stack

Time Mgmt. | Device Mgr. Sys. Monitoring

Inter Partition Comm.
[SIO0R]

BSP
| (Board Support Pkg.) | | DebygsServer

| Device Driver Channel Sync.

Partition Mgmt.

Proc. Mgmt.

N)
@)
N)
e
T
O
No
S
P
~
~
%4
rm
N
O
N)
(@]
Ul

Case Study

FTWARE

Q‘,) ENGINEERING
SOCIETY

K KONKUK
UNIVERSITY

DEPENDABLE SOFTWARE
LABORATORY

« Formal modeling at system-level using Statemate

~wgoprrttt it s saserenss
'-----4 ------- - LY T -
—quwr I'."_m
PARTITIONS
@SYSTEM_STATE epaRTITIONO | [@PARTITIONI l
L I N R O B f‘ixmrr --------
St (N [T S U 1 B S e A R
ini'r_'rmz_com) mm'_

y h 4 d e @

T 7
@USER_TIMER e N N :

P T T
Formal e i : ; i :
R R a 2
1 T @PROCESS_MGMI — _ = o

O e |ng @SCHED 1 P P
T a a 4
e 7 R R o
P o T T ¥
=ca—— TIMER> Qpiius |SCHED ; ; N
: [1al z 1 z
1] _QRLUS_SCHED ‘}..Qﬂgs CHED o 0 T
i H " ¥ 2

. T s "

: TIME_MGHMT = ¢

5 & o

H u

4 ¥ oprLys AIR

2020-02-05 KCSE 2020

Case Study

SOFTWARE

Q I”) ENGINEERING
SOCIETY

DEPENDABLE SOFTWARE
LABORATORY

* Simulation Scenarios

« Change partition modes

2000-07-05
20UZ0U-Uz-UD

2.31.4 Partition Modes

The SET_PARTITION_MODE service allows the partition to request a change to its operating
mode. The Health Monitor, through its health monitoring configuration data, can also instigate mode
changes. The current mode of the partition is available with the GET_PARTITION_STATUS
service.

Partition modes and their state transitions are shown in the following diagram:

1b
Cold_Start < 2 Warm_Start
4a 3b
A
3a 6a <> 4b 5b
5a :
Idle Normal
3c

Case Study

SOFTWARE

Q‘,) ENGINEERING
SOCIETY

K hOI\KLh
UNIVERSITY

DEPENDABLE SOFTWARE
LABORATORY

« Simulation of the System-level Model with the Scenarios

PARTITIONS
INIT TIHE com) NT | D

* A 4 @ @

I Fs
@USER TIMER @ N N ;;

P T T
QPLUS yJCHED 2 - R E
R R a 2
T @PROCESS _MGMI — _ = I;-
@SCHED 7 4 2 H

T a a
I R R =
o T T g
RIELLLL . TIHER> Tﬂua_ SCHED £ ; o
: : - f-—--- 7

. » I z
! cLock » 4 TIEE _QBUS_SCHED |4 . QEBLYUS_SCHED o o T
. : H N N g
TIME MGMT o ¢ C p—
EETTTRE. ! o o “ e
M M LI
M o QPLUS™ |

2020-02-05 KCSE 2020

SOFTWARE

(% lk,) ENGINEERING
SOCIETY

Case Study (KU SR
UNIVERSITY

IDEPENDABLE SO ARE
BORATORY

* Traceability Analysis from Model to Source Code

ARINC-653 SRS SDS Source Code
Std. 1 Req. 1 » Dsgn. 1.1 » Module a
N TN TN
A1 N Nl
= .. NEE ot

/

-

System FM
Chart A l

Chart C

2020-02-05 KCSE 2020 10

Case Study

SOFTWARE
Q) ENGINEERING
SOCIETY

DEPENDABLE SOFTWARE
LABORATORY

* CBMC

* Bounded model checking
for ANSI-C programs

« Checking pointer safety, array bound,
overflow, divided by zero, etc.

« User defined assertion checking

Carnegie Mellon

r Bounded Model Checking -,
Homena for Software /

Aboit CBMC

CBMC is a Bounded Model Checker for C and C++ programs. It supports
C89, C99, most of C11 and most compiler extensions provided by gcc
and Visual Studio. It also supports SystemC using Scoot. We have
recently added experimental support for Java Bytecode.

CBMC verifies array bounds (buffer overflows), pointer safety, excep-
tions and user-specified assertions. Furthermore, it can check C and
C++ for consistency with other languages, such as Verilog. The
verification is performed by unwinding the loops in the pregram and

passing the resulting equation to a decision procedure. B

While CEMC is aimed for embedded software, it also supports dynamic
memory allocation using ma | loc and new. For questions about CBMC, contact Daniel Kroemng

CBHC is available for most flavours of Linux (pre-packaged on Debian, Ubuntu and Fedora),
Solaris 11, Windows and MacOS X. You should also read the CBMC license.

CBMC comes with a buili-in solver for bit-vector formulas that is based on MiniSat. As an
alternative, CBMC has featured support for external SMT solvers since version 33 The
solvers we recommend are (in no particular order) Boolector, MathSAT, Yices 2 and Z3. Note
that these solvers need to be installed separately and have different licensing conditions.

flattening | CNF

un-

C/C++ |parse| parse
Source | tree CFG

;wind

frontend AUFBV

formula

\ SMT

2020-02-05 KCSE 2020

SOFTWARE

Q‘,) ENGINEERING
SOCIETY
UNIVERSITY

Case Study

« Property specification

« All the defined and undefined mode changes

Cold_Start < 2 Warm,_Start

3b

[P >
ET 50

2020-02-05 KCSE 2020 12

SOFTWARE

Q I"”) ENGINEERING
SOCIETY

Case Study T

DEPENDABLE SOFTWARE
LABORATORY

« Found violations among undefined mode changes

Verification Condition -
Description

COLD_START WARM_START Impossible
IDLE IDLE Possible
IDLE NORMAL Possible

NORMAL NORMAL Impossible

cize of program expression: 352 steps

slicing removed 167 assignments

Generated 1 UCC<{s>», 1 remaining after simplification
Pazzing probhlem to proposzitional reduction

. ot d S8R
\/|O|_AT|ON |D|_E - |D|_E ;LDL::.:.;Elgiupusitiunal reduction

Post—processing

Solving with MiniSAT 2.2.1 with zimplifier

2554762 variables, 4846737 clauses

SAT checker inconsistent: instance iz UNSATISFIABLE
Runtime decision procedure: 2.121s

UERIFICATION SUCCESSFUL

-

2020-02-05 KCSE 2020 13

SOFTWARE

Q I’,) ENGINEERING
SOCIETY
UNIVERSITY

Other Case Studies

» Verification of communications B

* Model checker SPIN: the formal verification of multi-threaded SW ____ - =
applications =

2020-02-05 KCSE 2020 14

SOFTWARE

Q I"”) ENGINEERING
SOCIETY
UNIVERSITY

Conclusions

* The model projection technigue to identify relevant parts
with verification purposes

« Compositional verification with systematic analysis about
relation and influence between components at a system
level

FUTURE PLAN

« An elaborate model and a tool for traceability analysis to
make projection much easier and quicker

