

Case study : ECML Verification Using SpaceEx

Jaeyeon Jo, Sanghyun Yoon, Jumbeom Yoo, Hae Young Lee, Won-Tae Kim

KonKuk Univ, ETRI

Contents

1. Introduction

2. Background

- 1. ECML
- 2. Hybrid Automata
- 3. Verification of Barrel-filler Model
 - 1. ECML model of Barrel-filler
 - 2. Verification of barrel-filler system
- 4. Conclusion

Hybrid System

- Hybrid system
 - Models combination of continuous elements and discrete elements
 - Used in automotive, medical, and avionic systems
 - Linear hybrid automata
 - ax + b = 0, a and b are constants
- Hybrid system verification tools
 - Reachability Analysis HyTech, PHAVer, SpaceEx
 - Deductive Proving KeyMaera, HSolver
- ECML
 - Hybrid System Modeling Language
 - Extends DEV & DESS
 - ETRI proposed it to develop a cyber physical system

ECML Verification Using SpaceEx

- Previous studies
 - ECML and DEV & DESS are translated into linear hybrid automata for verification using HyTech
 - ECML and DEV & DESS restricted by linearity
- SpaceEx
 - A tool framework for non-linear hybrid automata
 - Contains PHAVer which verifies linear hybrid automata
- ECML Verification Using <u>SpaceEx</u>
 - Using translation from ECML into Hybrid Automata
 - Extends scope of verifiable ECML model
 - Models Barrel-filler system to show translation

Hybrid Automata

DEPENDABLE SOFTWARE LABORATORY

Hybrid Automata of SpaceEx

- SpaceEx contains PHAVer
- PHAVer verifies hybrid automata that consists of linear dynamics or hybrid automata with affine dynamics
 - Flow(l) is a continuous dynamics of the form $A\dot{x}(t) + b_0 \bowtie 0$
 - Asgn is of the form $x' \bowtie Ax + b_0$
 - \bowtie ∈ {<, ≤, =} is an operator
- SpaceEx verifies non-linear hybrid automata
 - Flow(l) is a continuous dynamics of the form $\dot{x}(t) = Ax(t) + Bu(t) + b_0$, $u(t) \in U$
 - Asgn is of the form $x' = Ax + Bu + b_0$
 - U is nondeterministic input set

Semantic Difference of Two Language

- Input/output
 - ECML has input/output port structure
 - Hybrid automata have no input/output structure
- Type of transition
 - ECML has external transition and state transition those are executed when condition is satisfied
 - Hybrid Automata has transitions those are depend on invariant condition
- Coupling
 - ECML have coupling structure using connecting ports
 - Hybrid Automata uses synchronization label

Barrel-filler System Specification

- System description
 - Barrel-filler system fills a barrel with a specific inflow rate
 - Puts the barrel whenever the barrel is filled up to specific water level(10)
- Components
 - on_off input determines starting or stopping filling barrels
 - switch have state of on or off
 - Inflow is input water flow to barrel
 - **barrel** contains water
 - contents is the level of water in barrel
 - *full filled barrel* is a signal about when a barrel is filled to a specific level
- Valve States
 - open inflow rate is 1 to 2
 - closing inflow rate is 1 and waits 1 time unit
 - closed inflow rate is 0

Barrel-filler - ECML

DEPENDABLE SOFTWARE LABORATORY

Barrel-filler Model - Hybrid Automata

Trajectory of Barrel-filler System

- Trajectory of barrel-filler system
 - shows same behavior of ECML model and LHA
- Point of time
 - T0 The value is closed and the barrel is empty
 - **T1** Filling is initiated by the discrete input signal on
 - T2 Input signal off and filling is stopped
 - **T5** Filling starts again by input signal on
 - T8~9 closing valve and contents is about to 10

Safety Property

- Safety Property of Barrel-filler system
 - Property : Contents must not exceeds 10 and system cannot be error state
 - Forbidden states : contents > 10 v loc(barrelfiller) = error
 - *contents* > 10 : Contents is a level of barrel, It must not exceeds 10
 - *loc(barrelfiller) = error*: Barrel system control modes not in error states
 - Result : Forbidden state are not reachable – satisfy safety property

• •		
Model Specification Options Output Advanced	Console	Reports
System barrelfiller_system Update System barrelfiller_system Controlled : e. contents_switch, inflow, barrel, on_off, t Controlled : e. contents_switch, inflow, barrel, on_off, t Controlled : e. contents_switch, inflow, barrel Base components : barrelfiller_I, montor_1 Initial states E E E E E E E E E E E E E E E E E E	Computing reachable states 0.10s elapsed Found fixpoint after 1 iterations. 0.01s Computing reachable states done after 0.01s 5paceEx output file : output (bxt). Forbidden states are not reachable. 0utput of reachable states 0s Graphics {}	
Analysis Start Stop		

Conclusion

- Background
 - ECML is a modeling language for hybrid system, but verification tool is not developed yet
 - SpaceEx is a reachability analysis tool for hybrid automata
- Contribution
 - Proposed a translating approach for formal verifications of ECML models using hybrid automata as an example of barrel-filler system
- Limitation & Future works
 - An ECML model with non-linear dynamics has not been verified yet
 - Try to verify ECML model as non-linear hybrid automata using SpaceEx

Q & A

