
Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 171

FBDVerifier: Interactive and Visual Analysis of Counter-
example in Formal Verification of Function Block Diagram
Eunkyoung Jee1

Div. of Computer Science, Korea Advanced Institute of Science and Technology
Republic of Korea
Email: ekjee@dependable.kaist.ac.kr

Seungjae Jeon
Samsung Electronics Co. Ltd., Republic of Korea
Email: seungjae.jeon@samsung.com

Sungdeok Cha
Dept. of Computer Science and Engineering, Korea University
Republic of Korea
Email: scha@korea.ac.kr

Kwangyong Koh
Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology,
Republic of Korea
Email: goeric1@kaist.ac.kr

Junbeom Yoo
Div. of Computer Science and Engineering, Konkuk University
Republic of Korea
Email: jbyoo@konkuk.ac.kr

Geeyong Park
I&C and Human Factors Center, Korea Atomic Energy Research Institute
Republic of Korea
Email: gypark@kaeri.re.kr

Poonghyun Seong
Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology,
Republic of Korea
Email: phseong@kaist.ac.kr

Manuscript received: 8 October 2008
Communicating Editor: Chiou-Peng Lam

Copyright© 2010, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1 Current address: Department of Computer and Information Science, University of Pennsylvania, 3330 Walnut Street,
Philadelphia PA 19104.

Model checking is often applied to verify safety-critical software implemented in programmable
logic controller (PLC) language such as a function block diagram (FBD). Counter-examples
generated by a model checker are often too lengthy and complex to analyze. This paper describes
the FBDVerifier which allows domain experts to perform automated model checking and intuitive
visual analysis of counter-examples without having to know technical details on temporal logic or

JRPIT 42.3.QXP_Layout 1 22/09/10 12:04 PM Page 171

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010172

the model checker. Once the FBD program is automatically translated into a semantically
equivalent Verilog model and model checking is performed using SMV, users can enter various
expressions to investigate why verification of certain properties failed. When applied to FBD
programs implementing a shutdown system for a nuclear power plant, domain engineers were able
to perform effective FBD verification and detect logical errors in the FBD design.

Keywords: Function Block Diagram, Formal Verification, Counter-example Visualization,
Verilog Translation, Programmable Logic Controller, Model Checking

ACM Classification: D.2.4 (Software/Program Verification – Model Checking), F.3.1
(Specifying and Verifying and Reasoning about Programs – Mechanical verification)

1. INTRODUCTION
Formal methods, especially model checking, are widely accepted as a useful technique when
verifying behaviour of safety-critical embedded software. Such a trend is also true in the nuclear
industry where Programmable Logic Controller (PLC) based software is increasingly replacing
traditional analog systems (NRC, 1997). As an example, Korea Nuclear Instrumentation & Control
System R&D Center (KNICS) has developed a reactor protection system (RPS) in Function Block
Diagram (FBD) which is one of the widely used PLC programming languages defined in the IEC
standard. Model checking has been applied to FBD design as a part of its safety assurance
program.

When performing model checking, despite the advantage that the process is fully automated, one
encounters the following challenges: (1) state explosion, and (2) counter-example analysis often
requires tracking values of several hundred variables over several hundred or thousand steps (See
Figure 6 for an example). Although efficient counter-example analysis has not received as much
research attention as the state explosion problem, it is one of the most significant and practical
obstacles that domain engineers face on real-world projects. In addition, temporal logic theory and
notation often causes engineers to avoid using model checking techniques altogether.

For example, our target system, KNICS RPS, has a natural language specification ranging from
190 pages to 365 pages for three major subsystems. When FBD programs are translated into
Synchronous Verilog (IEEE, 2003) model and model checking is performed using SMV, manual
analysis of a counter-example often involved tracking of more than 100 independent integer
variables, and it often took at least a half-day of engineer time to analyze each case. Considering
that model checking of three subsystems generated over 100 counter-examples, it is apparent that
manual analysis is simply impractical.

To cope with these problems, we developed a tool, the FBDVerifier, which allows an interactive
and visual analysis of counter-examples generated by a model checker. The current prototype
supports the automated conversion of FBDs into semantically equivalent Verilog models and
analysis of SMV counter-examples. The FBDVerifier visualizes a counter-example generated by
SMV in a timing graph manner which is familiar to nuclear engineers. Users can insert and monitor
how values of various expressions change over time to identify causes of unsatisfied properties. The
FBDVerifier allows domain experts to perform automated model checking and intuitive visual
analysis of counter-examples without in-depth technical knowledge on model checking theory or the
SMV model checker.

We verified the Advanced Power Reactor’s (APR-1400) RPS. With the FBDVerifier tool
support, counter-example analysis became a more efficient and less complex task than before.
Furthermore, nuclear engineers were able to complete the entire analysis without the help of formal
methods experts and find logical errors hidden in the preliminary design.

JRPIT 42.3.QXP_Layout 1 22/09/10 12:04 PM Page 172

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 173

The remainder of the paper is organized as follows: Section 2 explains FBD, Verilog and SMV
briefly. Section 3 describes the formal definition of FBD, translation rules from FBD into Verilog
and the FBDVerifier. Section 4 presents a case study for a real industrial system. Section 5 presents
related works, and we conclude this paper at Section 6.

2. BACKGROUND
PLC is an industrial computer system applied to a wide range of control systems. The main
characteristic of a PLC program is its cyclic execution (Mader, 2000). The program reads inputs,
computes new internal states, and updates outputs at each iteration of the permanent loop.

FBD is one of the standard PLC programming languages (IEC61131, 1993). FBD is widely used
because of its graphical notations and usefulness in implementing applications where a high degree
of data flow exists among components. FBD defines system behaviour in terms of flow of signals
among function blocks. A collection of function blocks is wired together in the manner of a circuit
diagram.

Figure 1 shows an example FBD which is a small part of the FBD program for the RPS. Output
variables are calculated by sequential combinations of the function or function block operations.
The output variable TRIP_LOGIC is set to true when the processing value PV_OUT exceeds the
set-point TSP continuously for more than the specified duration, K_DELAY. The TRIP_LOGIC
output takes part in the shutdown logic of a nuclear reactor.

Figure 1: An example FBD: a part of FIX_RISING module of a reactor protection system

JRPIT 42.3.QXP_Layout 1 22/09/10 12:04 PM Page 173

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010174

An FBD program consists of functions and function blocks. Functions (e.g., GE, AND and SEL
blocks in Figure 1) do not have internal states while function blocks (e.g., TON in Figure 1) store
values in internal and output variables (Lewis, 1998).

Verilog (IEEE, 2003) is one of the most popular Hardware Description Languages (HDL) used
by integrated circuit (IC) designers. In order to verify FBD programs, we chose Verilog as a
verification language because the semantics of FBD is similar to that of Verilog. Another reason is
that Verilog models can be used for equivalence checking as well as model checking. In this paper,
we focus only on model checking of FBD programs and visual analysis of counter-examples. (See
Yoo (2005) for a discussion on equivalence checking technique.)

Model checking is a technique to prove whether a system satisfies certain properties or not. We
chose Cadence SMV (SMV, 2008) as a model checker to verify Verilog models generated from FBD
programs. Other Verilog model checkers can also be used. Cadence SMV can verify a model
programmed by Synchronous Verilog (SV) (Chou, 1997) as well as SMV input language. SV is a
subset of Verilog language.

3. FBD VERIFICTION THROUGH VERILOG TRANSLATION
In order to verify FBD, we must first translate the FBD program into a semantically equivalent
Verilog model. We define the function block and the function block diagram formally based on
ideas discussed in Yoo (2005). Next, we discuss what it means for a FBD to be well-formed. The
third subsection shows the translation steps and rules using the example. The last subsection
describes the FBDVerifier’s features for automatic translation and visual counter-example analysis.

3.1 Formal Definition of FBD
An FBD program is a network of function blocks. Each function block is considered as an instance
of a function block type.

Definition 1. (Function Block Type) Function block type is defined as a tuple <Type_name, IP,
OP, BD>, where
• Type_name: a name of function block type
• IP: a set of input ports, {IP1, ... , IPM}
• OP: a set of output ports, {OP1, ... , OPN}
• BD: behaviour description, as functions for each OP,

BDOPn: (IP1, ... , IPM)  OPn, 1 ≤ n ≤ N

Input port (IP) and output port (OP) are official terms used in the IEC standard (IEC61131,
1993). In Figure 1, and1 and and2 are instance names of function block type AND, and sel1-sel4
are instance names of function block type SEL. For a better understanding, we added instance names
manually in the middle of each function block because pSET (PSET, 2008), the PLC editor, which
we used, does not represent instance names of function blocks explicitly. We write sel1.G to indicate
the port named G of the sel1 function instance. The behavioural description of the add1 function
instance is written as add1.BDOUT(add1.IN1, add1.IN2) = add1.IN1 + add1.IN2.

Definition 2. (Function Block Diagram) FBD is defined as a tuple <FBs, V, T>, where
• FBs: a set of function block instances
• V: a set of input and output variables of FBD, V = VI ∪ VO

– VI: a set of input variables into FBD
– VO: a set of output variables from FBD

JRPIT 42.3.QXP_Layout 1 22/09/10 12:04 PM Page 174

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 175

• T: a set of transitions between FBs and FBs, and FBs and V,
T = (VI × FB.IP) ∪ (FB.OP × FB.IP) ∪ (FB.OP × VO)

VI is a set of input variables and each ν ∈ VI has a constant value or the value of the output
variable having the same name. VO is a set of output variables computed at each scan cycle. The
transitions set T includes connections between function blocks and also connections between
function blocks and variables. Figure 2 shows a formal definition of the example FBD in Figure 1.

Definition 3. (Evaluation Function) Each port and variable is evaluated by evaluation function f:
• For input variable vi ∈ VI, f (vi) = vi

• For output variable vo ∈ VO, f (vo) = f (po) where po is an output port and (po, vo) ∈ T
• For input port pi ∈ fb.IP, fb ∈ FBs, f (pi) = f (vi) where vi is an input variable and (vi , pi) ∈ T
• For output port po ∈ fb.OP, fb ∈ FBs, f (po) = fb.BDpo(p1, ..., pM) where fb.IP = { p1, ..., pM}

Output variables of FBD are evaluated with the connected function blocks and the inputs of the
function block. For example, TSP_1 in Figure 1 is evaluated as follows:

f (TSP_1) = f (sel2.OUT)
= sel2.BDOUT (f (sel2.G), f (sel2.IN1), f (sel2.IN2))
= f (sel2.G) ? f (sel2.IN2) : f (sel2.IN1)
= f (ton1.Q) ? sub1.BDOUT (f (sub1.IN1), f (sub1.IN2)) : TSP
= ton1.BDQ (f (ton1.IN), f (ton1.PT)) ? (f (sub1.IN1) - f (sub1.IN2)) : TSP
= ton1.BDQ (f (and1.OUT), K_DELAY) ? (TSP - HYS) : TSP
= ton1.BDQ (((PV_OUT >= TSP) && ! TRIP_LOGIC), K_DELAY) ? (TSP - HYS) : TSP

3.2 Well-formed FBD
We assume that the FBDs to be verified are well-formed. Informal description for the well-formed
FBD is stated in IEC 61131-3, but it does not necessarily mean that FBD design is logically correct.
A well-formed FBD must satisfy the following criteria:

Output variables are not overwritten
• Every output variable must have a unique name so that its value can be assigned only once in

each cycle.

Each function block is evaluated in specific and predetermined order
• Output variables are evaluated in predetermined order chosen based on data and control

dependency. For the ordered set of output variables VO = {vo1, ..., voN}, computation starts from
vo1 and ends at voN within a cycle.

< FBs, V, T>
FBs = { ge1, and1, ton1, sel1, ..., add1, sel4 }
V_I = { PV_OUT, TSP, TRIP_LOGIC, K_DELAY, HYS, TRIP_LOGIC_1, TSP_1}
V_O = {IN_TIME, TRIP_LOGIC_1, TSP_1, TRIP_LOGIC, TSP}
T = { (PV_OUT, ge1.IN1), (TSP, ge1.IN2), (ge1.OUT, and1.IN1), (¬TRIP_LOGIC, and1.IN2),

(and1.OUT, ton1.IN), (K_DELAY, ton1.PT), ... , (and2.OUT, sel4.G), (TSP_1, sel4.IN1),
(add1.OUT, sel4.IN2), (sel4.OUT, TSP) }

Figure 2: A formal definition of the FBD program in Figure 1

JRPIT 42.3.QXP_Layout 1 22/09/10 12:04 PM Page 175

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010176

All input ports and output ports are connected to a variable or suitable port
• Every output port is connected to a variable or an input port.

∀po: po ∈ fb.OP, fb ∈ FBs ⇒ (∃v: v ∈ V ∧ (po, v) ∈ T) or (∃pi: pi ∈ FB.IP ∧ (po, pi) ∈ T)
• Every input port is connected by a variable or an output port.

∀pi: pi ∈ fb.IP, fb ∈ FBs ⇒ (∃v: v ∈ V ∧ (v, pi) ∈ T) or (∃po: po ∈ FB.OP ∧ (po, pi) ∈ T)

FBD is type safe
• ∀(x, y) ∈ T, x and y should have the same data type. FBD data types are defined in the standard.

Basically, if an FBD program is not well-formed, it cannot be translated into a semantic-
preserving Verilog model automatically. The FBDVerifier provides some assistant functions to
support FBD programs which are not well-formed. If an FBD development tool allows overwriting
of output variables, the FBDVerifier automatically changes output variables to unique names. If an
execution order is not explicitly specified, the FBDVerifier calculates the execution order of each
block automatically according to the general rules included in the IEC standard. Most PLC editors
check unconnected wiring and unmatched types before compiling.

3.3 Translation Rules
Translation rules of a well-defined FBD into a Verilog model follow the template in Figure 3.

//Rule 1. Module declaration
module main (clk, [input_ports], [output_ports]);

// Rule 2. Variable type and size decision for each variable v ∈ V
input | reg | wire | output [size(v) : 0] v;

// Rule 3. Initialization of each reg variable vreg
initial begin
vreg = [initial_value_of_ vreg];
end

// Rule 4. Output assignment for each wire and output variable v ∈ VO ∈ VW
assign v = f(v);

// Rule 5. Declaration of other module instances
MODULE1 module1_instance_name(clk, [input_ports], [output_ports]);

// Rule 6. Stored value assignment for each reg variable vreg:
always @ (posedge clk) begin
vreg = [stored_value];
end

// Rule 7. Insertion of properties
always begin
{if [condition]} assert [label]: [assertion];
end
endmodule

module MODULE1 (clk, [input_ports], [output_ports]);
…
endmodule

Figure 3: Verilog model generation template

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 176

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 177

Rule 1. Module declaration
A module is the principal design entry in Verilog. The first line of a module declaration specifies the
module name and list of input/output ports.

Rule 2. Variable type and size decision
All variables are declared with their type, bit size, and name in Rule 2. Each variable in the FBD is
mapped to one of the Verilog variable types; input, reg, wire and output. Variable type detection can
be automated by analyzing the usage of variables in the target FBD.

Non-Boolean values are represented as bit vectors in Synchronous Verilog accepted by SMV.
Determining the number of bits (e.g., range) to be allocated for a variable is a crucial choice to be
made based on domain knowledge. If it is too large, model checking may fail due to the state
explosion problem while attempting to exhaustively search all reachable states. If it is too small,
incomplete state analysis will be performed and incorrect results returned. Such an error is
especially critical if the model checker finds the properties to be true. While the bit size of the input
and reg variables should be given by a user, the bit size of the wire and output variables can be
computed with connected variables and function blocks automatically.

Rule 3. Initialization of reg variables
The reg variables are initialized in Rule 3. Usually initial values of reg variables are specified in the
FBD program. If not, they are determined by a user or assigned default values.

Rule 4. Output assignment for each wire and output variable
In Rule 4, the target FBD represented by a set of connected function blocks is translated into
assignment statements from top to bottom in accordance with the execution order of the FBD.
While a function which does not have internal state is mapped into a Verilog operator, a function
block which stores the internal state is mapped into a Verilog module.

The assignment expression for an output variable v has the same form as f (v) in definition 3.
We defined and implemented an evaluation function for each output variable of all functions and
function blocks of IEC 61131-3 except numerical functions, because numerical functions such as
SIN and LOG cannot be handled properly by an SMV model checker.

Rule 5. Declaration of other module instances
A user-defined function or function block can be defined in PLC programming. When an FBD
program has a hierarchical structure with user-defined blocks, corresponding a Verilog model, it
also consists of a hierarchy of modules. In Rule 5, instances of other modules are declared. Other
modules are declared outside the main module.

Rule 6. Stored value assignment for reg variables
The stored values are assigned to the reg variables in Rule 5. @(posedge clk) means the positive
edge of the clock signal, i.e., the beginnings of each cycle. As the updated value of a reg variable
becomes available at the next time unit, the new value is read at the next cycle (McMillan, 2001).

Rule 7. Insertion of properties
The template always begin – end is generated automatically and properties are embedded by a user
after automatic generation of a Verilog model.

Verilog model generation example
Figure 4 shows a Verilog model generated from the FIX_RISING FBD module in Figure 1. To
translate the FIX_RISING program into a Verilog model, we detect the variable type first. As HYS,

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 177

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010178

1 module main (clk, HYS, K_DELAY, PV_OUT, TRIP_TIMER__ET, TRIP_TIMER__Q);
2
3 input clk;
4 input [1:0] HYS;
5 input [4:0] K_DELAY;
6 input0 [7:0] PV_OUT;
7 reg TRIP_LOGIC;
8 input TRIP_TIMER__ET;
9 input TRIP_TIMER__Q;
10 reg [7:0] TSP;
11
12 wire TRIP_TIMER__IN;
13 wire [4:0] TRIP_TIMER__PT;
14 wire IN_TIME;
15 wire TRIP_LOGIC_1;
16 wire [7:0] TSP_1;
17 wire TRIP_LOGIC_out;
18 wire [8:0] TSP_out;
19
20 //constants
21 assign HYS = 1;
22 assign K_DELAY = 10;
23
24 initial begin
25 TRIP_LOGIC <= 0;
26 TSP <= 90;
27 end
28
29 assign TRIP_TIMER__IN = ((PV_OUT >= TSP) && ! TRIP_LOGIC);//-- ton1, and1, ge1
30 assign TRIP_TIMER__PT = K_DELAY; //-- ton1
31 assign IN_TIME = TRIP_TIMER__ET; //-- ton1
32 assign TRIP_LOGIC_1 = (TRIP_TIMER__Q ? 1 : TRIP_LOGIC); //-- sel1
33 assign TSP_1 = (TRIP_TIMER__Q ? (TSP - HYS) : TSP); //-- sub1, sel2
34 assign TRIP_LOGIC_out = (((PV_OUT =< TSP_1) && TRIP_LOGIC_1) ? 0 :

TRIP_LOGIC_1); //-- sel3, and2, le1
35 assign TSP_out = (((PV_OUT =< TSP_1) && TRIP_LOGIC_1) ? (TSP_1 + HYS) : TSP_1);

//-- sel4, add1, and2, le1
36
37 TON TRIP_TIMER(.clk(clk), .IN(TRIP_TIMER__IN), .PT(TRIP_TIMER__PT),

.Q(TRIP_TIMER__Q), .ET(TRIP_TIMER__ET)); //-- ton1
38
39 always @ (posedge clk) begin
40 TRIP_LOGIC <= TRIP_LOGIC_out;
41 TSP <= TSP_out;
42 end
43
44 always begin

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 178

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 179

PV_OUT and K_DELAY appear only in the input variable set VI, they have input type.
TRIP_LOGIC, and TSP are reg type variables whose values are stored and used at the next cycle.
TSP_1 and TRIP_LOGIC_1 appear in both the input and output variable sets. Their values are
assigned in wires and become inputs to evaluate other variables, but they are not stored for the
next cycle, i.e., wire type. TRIP_TIMER__ET, TRIP_TIMER__Q, TRIP_TIMER__IN and
TRIP_TIMER__PT are variables related to the TON timer function block with the instance name
TRIP_TIMER. For the input and output ports of a function block, wire and input type variables are
declared. They are used to connect the main module with a separate function block module, as
shown in line 37.

System specification states that HYS and K_DELAY have constant values and TRIP_LOGIC
and TSP have specific initial values; they are coded in lines 21 through 27. In lines 29 through 35,
each wire and output variable is assigned by a specific expression according to Rule 4. After
generation of a Verilog model from the FBD program, properties are embedded using if and assert
structures in lines 44 through 48.

3.4 FBDVerifier Tool
3.4.1 Automatic Translation
We developed a tool, the FBDVerifier, to automate the FBD verification framework. Figure 5 is a
screen dump of the FBDVerifier. It takes the LDA file format as input and converts it into a Verilog
model automatically. The LDA format is used in pSET (PSET, 2008) which is the PLC software
development environment used in the study. In the translation process, the FBDVerifier allows a
user to choose the bit size and initial values of the variables. After the Verilog translation is
completed, a user inserts properties to be verified into the Verilog model and executes the Cadence
SMV with one click in the FBDVerifier. The left-side window of the FBDVerifier shows the FBD
in textual format and the right-side window shows the translated Verilog model.

Figure 4: A Verilog model for the FIX_RISING FBD program in Figure 1

45 if (PV_OUT = TSP) && IN_TIME = K_DELAY) assert P1: TRIP_LOGIC_out == 1;
46 if (TRIP_LOGIC && PV_OUT = TSP) assert P2: TRIP_LOGIC_out == 1;
47 end
48 endmodule
49
50 module TON (clk, IN, PT, Q, ET);
51 input clk, IN;
52 input [4:0] PT;
53 output Q;
54 output [4:0] ET;
55 reg [4:0] t;
56 initial t = 0;
57 assign ET = t;
58 assign Q = IN && (ET = PT);
59 always @ (posedge clk)
60 t <= IN ? ((t < PT) ? t+1 : PT) : 0;
61 endmodule

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 179

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010180

3.4.2 Counter-example Visualization
When a target FBD has a lot of variables and the properties do not hold, counter-examples are often
lengthy and complex. It is difficult to analyze counter-examples only with the table-style trace view
provided by the Cadence SMV. Figure 6 shows a counter-example for a sub module of the BP which
contains about 1,000 rows of variables and more than 20 columns of steps.

To enhance the readability of a counter-example, we implemented a graphical display of a
counter-example in the FBDVerifier. The FBDVerifier displays a counter-example generated by
SMV in the form of a timing graph as shown in Figure 7. Variables are highlighted in different
colours and shapes for effective visualization.

In order to aid effective counter-example analysis, the FBDVerifier enables users to insert user-
defined expressions and monitor changes to their values. For example, in the FIX_RISING
program, if domain engineers wish to know if and when the processing value (PV_OUT) meets or
exceeds the trip set-point (TSP), an expression, PV_OUT >= TSP, can be typed in the counter-

Figure 5: A screen dump of the FBDVerifier

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 180

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 181

example view window. A corresponding timing graph is displayed at the bottom of the right
window. It is important to note that expressions accepted by the FBDVerifier are at the problem
domain (e.g., variables) rather than bit vectors processed by a model checker.

The FBDVerifier also provides several features to simplify counter-example analysis while not
compromising accuracy. For example, variables with the same values through all steps are grouped
in a timing graph. Users can choose which aspects of the timing graph are to be displayed (e.g.,
outputs only). Likewise, display of each graph can be turned on or off anytime. Domain experts find
timing graphs intuitive and easy to analyze so that little training is necessary when using the tool.
They also do not have to possess in-depth technical knowledge on temporal logic or model
checkers.

4. CASE STUDY
4.1 Target System
We have applied the proposed technique to the APR-1400 Reactor Protection System (RPS)
(RPSSDS, 2006) which consists of a Bistable Processor (BP), a Coincidence Processor (CP), an

Figure 6: A complex counter-example of BP in Cadence SMV

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 181

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010182

Automatic Test and an Interface Processor (ATIP) and a Cabinet Operation Module (COM)
subsystem. BP, CP and ATIP subsystems are safety-critical systems while COM is safety-related.
The regulatory organization requires safety-critical systems be formally verified as a part of its
safety assurance program.

Table 1 shows relevant statistics on the RPS. The software design specification document for the
RPS has approximately 700 pages and the FBD program for the RPS is composed of approximately
20,000 function blocks and 9,000 variables. The Verilog model generated from the FBD for the RPS
consists of more than 14,000 lines.

Figure 7: Counter-example visualization of the FBDVerifier

RPS #pages of #function #lines of
subsystems natural lang. spec. blocks

#variables
Verilog model

BP 190 1,335 1,038 7,862

CP 163 1,623 820 3,085

ATIP 365 18,359 7,024 3,401

Table 1: RPS system information

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 182

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 183

4.2 Properties and Verification Results
We used the Cadence SMV model checker to verify a Verilog model translated from an FBD
program. Properties are inserted as a form of “assert label: cond;” between always begin and end
in the Verilog model.

Properties to be verified were derived jointly by nuclear engineers and formal methods experts.
In the RPS system, trip, i.e. reactor shutdown signal, is the most critical output. The trip output must
be generated only when the trip condition is met. Otherwise, a safety hazard may occur. It is also
essential that the reactor is not erroneously shut down to avoid substantial financial losses. Loss of
public confidence in nuclear safety is another risk which is too great to quantify. Table 2 shows
examples of properties which a module in BP must satisfy.

We verified the BP mostly on safety properties and found 10 distinct errors among 47 errors in
total. Similar results were obtained when CP and ATIP systems, more complex than BP, were
analyzed using FBDVerifier. Entire analysis took three man-months which is considered a short-
time compared to similar analysis conducted previously.

Table 3 summarizes the verification results. We categorized detected errors into five categories
according to their root causes. Errors in the Incorrect logic category are the most serious ones.
Errors belonging to the Ambiguous logic category are potentially serious if certain environmental
conditions are met. The Incorrect FBD category represents the cases where the FBD specification

No. Properties (in natural language)

1 When the trip condition is satisfied, trip should occur.

2 When the trip release condition is satisfied, trip should release.

3 Trip set-point value should be in valid range.

4 When trip and pretrip did not occur, trip set-point and pretrip set-point should keep the
specified difference.

5 When the processing value is in invalid range, range error should occur.

6 When the heartbeat of the other system is unsound, heartbeat error should occur.

Table 2: Examples of verification properties for the BP

Target subsystems BP CP ATIP

#properties 216 83 126

Detected Incorrect logic 14 6 23
errors

Omission 0 2 0

Ambiguous logic 4 0 3

Incorrect FBD 13 5 9

Incorrect SDS 16 0 11

Total #errors 47 13 46

Distinct #errors 10 3 14

Table 3: Verification result for RPS

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 183

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010184

is wrong while software design specification (SDS) written in natural language is correct. Errors of
the category Incorrect SDS are the opposite cases.

Detected errors where a misused variable name (e.g. use of TRIP_LOGIC instead of
_1_TRIP_LOGIC), incorrect operator (e.g. use of >= instead of >), missing range check,
uninitialized values, inconsistency between natural language specification and FBD, or failure to
remove temporary testing logic, etc. Most of these errors had not been detected with other V&V
activities such as inspection, traceability analysis and safety analysis for RPS conducted by domain
experts. The RPS system was subsequently updated to reflect corrections.

Although the overall FBD verification was successful, there were practical challenges we had to
overcome. First, the RPS system has to process a large number of inputs and internal variables, and
the state explosion problem occurred while model checking. When each of 18 trip modules in BP
was subject to model checking separately, the state explosion problem occurred. In order to make
verification feasible, we had to apply manual abstraction techniques. In some cases, a module had
to be divided into several sub modules and model checking applied separately. Second, variable
encoding, when translating to a Verilog model, posed another challenge. The range should be large
enough to cover all feasible values a system might experience in operation yet small enough not to
cause a state explosion. Such a constraint is an inherent limitation associated with the model
checking technique. Whenever possible, we relied on automated range detection logic built-in to the
FBDVerifier. In other cases, domain experts provided guidance to maintain valid ranges.

5. RELATED WORK
There have been many approaches to formalize existing PLC programs for the purpose of formal
verification, validation, simulation and analysis (Bani Younis and Frey, 2003). However, model
checking of PLC code is relatively new, and interactive analysis of counter-examples has received
little research attention to date. In a toolset named PLCTOOLS (Baresi, Mauri, Monti and Pezze,
2000), FBD programs are modeled and described as High Level Timed Petri Nets (HLTPN) (Ghezzi,
Mandrioli, Morasca and Pezze, 1991). PLCTOOLS supports validation of the design and code
generation by using HLTPN, but it does not support formal verification such as model checking.

Vyatkin and Hanisch (2000) translated controller code in FBD format and the overall system
organized in IEC 61499 (IEC61499, 2000) Function Blocks into Signal-Net-Systems (SNS)
(Starke, 2000). On the combined model of a plant and controller modeled by SNS, model-checking
is performed using the Signal/Event System Analyzer (SESA) (Starke and Roch, 2000) which is a
model-checker for Signal-Net models. The main difference between our approach and the technique
of Vyatkin and Hanisch (2000) is that our approach follows the IEC 61131 while their approach
follows the IEC 61499. IEC 61499 is the newly adopted standard for distributed control systems
and follows on from the IEC 61131 standard for PLCs (Vyatkin, 2007). Although IEC 61499 uses
the same term “function block” as IEC 61131, the function block of each standard have different
characteristics (i.e. terms are not yet fully harmonized). IEC 61499 defines the term generically in
terms of a distributed, event-driven architecture, and IEC 61131-3 defined it in terms of the
centralized, scanned architecture. There is no longer a sequential control function for interacting
function blocks in IEC 61499 as it would be the case in IEC 61131 (IEC61499, 2000). The approach
proposed by Vyatkin and Hanisch (2000) cannot be applied directly to our FBD program
verification, and vice versa.

There are other Verilog HDL model checkers. CBMC (CBMC, 2008) checks Verilog for con -
sistency with an ANSI-C program. VCEGAR (Jain, Sharygina, Kroening and Clarke, 2005) performs
model checking on Verilog using the counter-example Guided Abstraction Refinement (Clarke,

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 184

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 185

Grumberg, Jha, Lu and Veith, 2003) framework. Verilog models generated from FBD programs in
our framework can also be verified using other Verilog model checkers instead of the Cadence SMV.
In order to support visualization of counter-examples from other model checkers, the current
prototype of the FBDVerifier needs to be extended.

Several approaches to visualize SMV counter-examples were proposed (Smv2vcd, 2008;
Goldsby, Cheng, Konrad and Kamdoum, 2006; Simmons, Pecheur and Srinivasan, 2000). The
smv2vcd (Smv2vcd, 2008) converts SMV counter-examples into industrial standard format,
Variable Change Dump (VCD). Generated VCD files can be viewed and analyzed by a wide variety
of tools. To the best of our knowledge, VCD viewers do not support interactive analysis or
monitoring expression function which are supported by the FBDVerifier. Theseus (Goldsby et al,
2006) visualizes counter-examples from SPIN (Holzmann, 2003) or SMV model checkers in terms
of UML. They verify formal specifications generated from UML models and counter-examples are
visualized on the state and sequence diagrams. Simmons et al (2000) proposed the idea that the state
transitions in the SMV counter-example are translated into a log file format that the visualization
tool associated with the original high-level language expects. Both Theseus and the possible tool of
Simmons et al (2000) cannot be utilized in our work because our target language is FBD. None of
the aforementioned counter-example visualization tools offer interactive variable slicing or
monitoring expression function.

6. CONCLUSION
We proposed a formal verification technique for FBD which is a commonly used PLC programming
language. We suggested the translation rules from an FBD program into a Verilog model and
developed the FBDVerifier to automate the FBD verification framework and support visual and
interactive counter-example analysis. We performed model checking for the Verilog models
generated from industrial FBD programs and successfully found errors that other V&V techniques
failed to detect.

Contributions of this paper follow: First, FBD program could be thoroughly verified by model
checking using the FBDVerifier. Second, the FBDVerifier aids efficient analysis of counter-example
generated by the Cadence SMV by providing functions such as counter-example visualization,
declaration of monitoring expressions, and slicing. The FBDVerifier considerably reduces time and
efforts necessary for analyzing why properties did not hold. Third, we conducted an industrial case
study in which we verified the FBD programs of the KNICS APR-1400 RPS with the proposed
method. Large and complex FBD programs were verified effectively in a short time, and found
errors contributed to the improvement of the system safety. Domain experts were able to use the
FBDVerifier without having to know much about model checking or temporal logic.

The current FBDVerifier receives only LDA file format used in pSET. We are extending the
FBDVerifier to support other FBD storing formats such as XML. We have a plan to extend the
FBDVerifier to support other PLC programming languages besides FBD. More systematic abstraction
method instead of manual abstraction for the FBD verification is also a promising research topic.

ACKNOWLEDGEMENT
This research was partially supported by the National IT Industry Promotion Agency (NIPA) under
the program of Software Engineering Technologies Development and also partially supported by
the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology
Research Center) support program supervised by NIPA. Project names are NIPA-2010-(C1090-
1031-0001), NIPA-2010-(C1090-0903-0004) and NIPA-2010-(C1090-1031-0003).

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 185

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010186

REFERENCES
BANI YOUNIS, M. and FREY, G. (2003): Formalization of existing PLC programs: A survey. In Proc. of Computing

Engineering in Systems Applications (CESA), Lille, France.
BARESI, L., MAURI, M., MONTI, A. and PEZZE, M. (2000): PLCTools: Design, formal validation, and code generation for

programmable controllers. In Proc. of the IEEE Int Conf on System, Man, and Cybernetics, Nashville, USA, 2437–2442.
CBMC (2008): Bounded model checking for ANSI-C. http://www.cs.cmu.edu/~modelcheck/cbmc. Accessed 30-Sep-2008.
CHOU, C.T. (1997): Synchronous Verilog: A proposal. Fujitsu Laboratories of America.
CLARKE, E., GRUMBERG, O., JHA, S., LU, Y. and VEITH, H. (2003): Counter-example-guided abstraction refinement

for symbolic model checking. Journal of the ACM, 50(5): 752–794.
GHEZZI, C., MANDRIOLI, D., MORASCA, S. and PEZZE, M. (1991): A unified high-level petri net model for time-critical

system. IEEE Transactions on Software Engineering, 17(2):160–172.
GOLDSBY, H., CHENG, B.H.C., KONRAD, S. and KAMDOUM, S. (2006): A visualization framework for the modeling

and formal analysis of high assurance systems. Model Driven Engineering Languages and Systems (MoDELS), LNCS
4199, 707–721.

HOLZMANN, G. (2003): The spin model checker. Addison-Wesley.
IEC61131 (2003): IEC61131-3, International standard for programmable controllers: Programming languages Part 3.

International Electrotechnical Commission.
IEC61499 (2000): IEC61499, Function blocks for industrial process measurement and control systems. International

Electrotechnical Commission, Tech. Comm. 65, Working group 6, Committee draft.
IEEE (2003): IEEE Standard 1364-2001, Standard hardware description language based on the Verilog hardware description

language. IEEE.
JAIN, H., SHARYGINA, N., KROENING, D. and CLARKE, E. (2005): Word level predicate abstraction and refinement for

verifying RTL Verilog. In Proc. 42nd Design Automation Conference (DAC), Anaheim, USA.
LEWIS, R. (1998): Programming industrial control systems using IEC 1131-3 Revised Edition (IEE Control Engineering

Series). The Institute of Electrical Engineers.
MADER, A. (2000): A classification of PLC models and applications. In Proc. 5th Int Workshop on Discrete Event Systems

(WODES), Ghent, Belgium.
McMILLAN, K.L. (2001): Getting started with SMV. Cadence Berkeley Labs.
NRC (1997): Digital instrumentation and control systems in nuclear power plants: Safety and reliability issues. U.S. NRC.

National Academy Press.
PSET (2008): pSET, POSCON Software Engineering Tool. http://rnd.poscon.co.kr. Accessed 30-Sep-2008.
RPSSDS (2006): KNICS-RPS-SDS231 Rev.01, Software design specification for reactor protection system. Doosan Heavy

Industries and Construction Co., Ltd.
SIMMONS, R., PECHEUR, C. and SRINIVASAN, G. (2000): Towards automatic verification of autonomous systems. In

IEEE/RSJ International conference on Intelligent Robots & Systems, 1410–1415.
SMV (2008): Cadence SMV. http://www.cadence.com. Accessed 30-Sep-2008.
SMV2VCD (2008): smv2vcd. http://www.cs.cmu.edu/~modelcheck/smv2vcd.html. Accessed 30-Sep-2008.
STARKE, P. (2000): Symmetries of signal-net systems. In Proc. of the Workshop on Concurrency, Specification and

Programming, Berlin, 285–297.
STARKE, P. and ROCH, S. (2000): Analysing signal-net systems. Report, Humboldt University Berlin, Institut fur Informatik.
VYATKIN, V. and HANISCH, H.M. (2000): Modeling of IEC 61499 function blocks – a clue to their verification. In Proc.

of the XI Workshop on Supervising and Diagnostics of Machining Systems, Karpacz, Poland, 59–68.
VYATKIN, V. (2007): IEC 61499 Function blocks for embedded and distributed control systems design. ISA.
YOO, J. (2005): Synthesis of function block diagrams from NuSCR formal specification. Ph.D thesis. Korea Advanced Institute

of Science and Technology (KAIST), Korea.

BIOGRAPHICAL NOTES
Eunkyoung Jee was a PhD candidate at the Korea Advanced Institute of Science
and Technology (KAIST) when working on this research. She received her BS,
MS, and PhD degrees in computer science from KAIST. Her research interest
includes safety-critical software, software testing, and formal method. She is
currently a postdoctoral researcher at the University of Pennsylvania.

Eunkyoung Jee

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 186

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010 187

Seungjae Jeon received his BS and MS degrees in computer science at KAIST.
He implemented the initial version of the FBD Verifier which contained
Verilog translation logic and visualization feature for analyzing counter-
example. He is currently employed as a software quality assurance member in
Samsung Electronics. His research interest is program static analysis for
embedded domain.

Sungdeok (Steve) Cha, corresponding author, is a professor in the College of
Information and Communiction at Korea University in Seoul, Korea. He is
also the director of the Center for Enginering and Education of Dependable
Software (CEEDS) at Korea University. Prior to joining Korea University, he
was a professor in the Computer Science Division at KAIST from 1994 to
2008. His research interests include software engineering, software safety, and
computer security. Cha received his BS, MS and PhD degrees in Information
and Computer Science from UC Irvine.

Kwangyong Koh received the BS degree in Nuclear Engineering from
Hanyang University in 2004 and the MS degree in Nuclear and Quantum
Engineer ing from Korea Advanced Institute of Science and Technology
(KAIST) in 2006. Since 2006, he has been a PhD student in Nuclear and
Quantum Engineering at KAIST. His research interests include software safety
analysis, model checking and formal specification and verification.

Junbeom Yoo is an assistant professor in Konkuk University’s Department of
Computer Science and Engineering. His research interests include require -
ments engineering, safety analysis and formal methods. Yoo has a PhD in
computer science from the Korea Advanced Institute of Science and
Technology in 2005.

Geeyong Park received the MS degree (1992) and PhD degree (1996) in
nuclear engineering from Korea Advanced Institute of Science and Technology
(KAIST), Daejeon, Korea. From 1996, he was involved to the Instrumentation
& Control and Human Factors division of Korea Atomic Energy Research
Institute (KAERI). His research interests cover software safety analysis,
reliability and security analyses of nuclear digital systems, software
verification and validation, control and monitoring of nuclear systems.

Seungjae Jeon

Sungdeok Cha

Kwangyong Koh

Junbeom Yoo

Geeyong Park

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 187

FBDVerifier: Interactive and Visual Analysis of Counter-example in Formal Verification of Function Block Diagram

Journal of Research and Practice in Information Technology, Vol. 42, No. 3, August 2010188

Poonghyun Seong is currently a professor in Nuclear Engineering at KAIST,
Korea. He received his BS degree from Seoul National University in 1977, MS
and PhD degrees from MIT, USA in 1984 and 1987, respectively. He worked
for the Agency for Defense Development as a research scientist from 1977 to
1982. He also worked for AT&T Bell laboratories from 1987 to 1991. He
joined KAIST as a professor in 1991. His research interest includes Nuclear
Power Plant I&C and Human System Interactions.

Poonghyun Seong

JRPIT 42.3.QXP_Layout 1 22/09/10 12:05 PM Page 188

