
1. INTRODUCTION

Software safety [1] is an important issue for embedded
real-time control systems such as those found in nuclear
power plants. When verifying safety-critical software,
formal methods [2] play critical roles in demonstrating
compliance to regulatory requirements. The Korea
Nuclear Instrumentation & Control System R&D Center
(KNICS) [3] project1 used the NuSCR [4] formal
specification language and tool-set [5] to formally specify
and verify software requirements for reactor protection
systems (RPS) for the Advance Power Reactor-1400
(APR-1400) [7]. During the design and implementation
phases, programmable logical controllers (PLC) software
were written in IEC 61131-3 function block diagram (FBD)
[8], and software safety was verified thoroughly. Each
release of FBDs becomes official only when authorities
have verified the software; two types of formal verification,
model checking [6] and equivalence checking, were
applied to our FBDs. While the former examined whether

or not FBD meets required properties, the latter determined
behavioral equivalence between two FBD revisions.
Units of equivalence checking can vary from a small
module to a whole system, and verification tasks fulfill
various needs of FBD programmers and safety engineers.
Formal verification contributes to the demonstration of the
software safety of PLC programs written in FBD.

This paper proposes how the Verification Interacting
with Synthesis (VIS) system [9] can automatically verify
FBDs. VIS is widely used in hardware analysis, and with
its Verilog [10] front-end, it is also suitable for software
analysis. VIS supports computational tree logic (CTL)
model checking [11], language emptiness checking,
combinational and sequential equivalence checking,
cycle-based simulation, and hierarchical synthesis.
Although we explored the possibility of using VIS's
sequential equivalence checking and simulation to verify
FBD programs for the Advance Power Reactor-1400
(APR-1400) RPS, we chose Cadence Symbolic Model
Verifier (SMV) [12] for model checking because VIS's
CTL model checking has restrictions when specifying
properties [13,14].

To enable VIS's equivalence checking using VIS, we
first defined the semantics of FBD as a state transition
system and developed rules for translating FBDs into
semantically equivalent Verilog. We also implemented

VERIFICATION OF PLC PROGRAMS WRITTEN IN FBD
WITH VIS

JUNBEOM YOO, SUNGDEOK CHA1* and EUNKYOUNG JEE2

Konkuk University, Division of Computer Science and Engineering
1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
1 Korea University, Department of Computer Science and Engineering
Anam-dong Seongbuk-Gu, Seoul, 136-701, Republic of Korea (Corresponding Author)

2 KAIST, Department of Electrical Engineering and Computer Science
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea

*Corresponding author. E-mail : scha@korea.ac.kr

Received August 5, 2008
Accepted for Publication September 16, 2008

Verification of programmable logic controller (PLC) programs written in IEC 61131-3 function block diagram (FBD) is
essential in the transition from the use of traditional relay-based analog systems to PLC-based digital systems. This paper describes
effective use of the well-known verification tool VIS for automatic verification of behavioral equivalences between successive
FBD revisions. We formally defined FBD semantics as a state-transition system, developed semantic-preserving translation rules
from FBD to Verilog programs, implemented a software tool to support the process, and conducted a case study on a subset of
FBDs for APR-1400 reactor protection system design.

KEYWORDS : Verification, Equivalence Checking, VIS, Verilog, Function Block Diagram, Programmable Logic Controller, IEC-61131

79NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

1 Goal of KNICS consortium project (2001 ~ 2008) is to develop
a suite of I&C software for use in the next generation Korean
nuclear power plant's advanced power reactor, i.e. APR-1400.

the FBD Verifier 1.1 [13] software tool to automate the
translation and then used it on a subset of FBDs for APR-
1400's RPS. We found VIS equivalence to be effective.

This paper is organized as follows. Section 2
provides background information on FBD and Verilog in
brief. A small translation example from FBD to Verilog
is introduced. In Section 3, we formally define the FBD
as a state transition system and explain the rules used to
translate FBDs into Verilog. Section 4 reports an
experiment conducted on a subset of FBDs for APR-
1400's RPS with VIS equivalence checking. Section 5
discusses related work on PLC program verification, and
Section 6 concludes.

2. BACKGROUND

2.1 FBD Programming
The IEC 61131-3 [8] standard includes five PLC

programming languages: Structured Text (ST), Function
Block Diagram (FBD), Ladder Diagram (LD), Instruction
List (IL), and Sequential Function Chart (SFC). FBD’s
graphical notations and support for networks of software
blocks “wired” together in a manner similar to circuit
diagrams has lead to its widespread use. Each function
block is depicted as a rectangle and is connected to other
input/output variables. Among the 10 function block
groups mentioned in IEC 61131-3, five that are pertinent

80 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

Fig. 2. An FBD for th_X_Pretrip Logic

Fig. 1. Function Blocks Defined in IEC 61131-3

to our discussion are illustrated in Fig. 1. The behavior of
a function block is intuitive as their names imply: ADD,
AND, SEL, etc.

A portion of FBD for fixed set-point rising trip logic
in an RPS BP (Bistable Processor) for APR-1400 is shown
in Fig. 2. It creates a warning signal, th_X_Pretrip, when
the trip (e.g. reactor shutdown) condition remains true for
k_Trip_Delay units of time as implemented in the TOF
function block. The number in parenthesis above each
function block denotes execution order. The output
th_Prev_X_Pretrip from MOVE stores the current value
of th_X_Pretrip for use in the next execution cycle. The
TOF function block also maintains internal variables to
store timing information.

2.2 Verilog Programming
Verilog is one of the most common hardware

description languages (HDLs) used by integrated circuit
(IC) designers. Verilog’s increasing use in the specification
of software logic for process control systems is clear
when one considers that designs described in Verilog are
technology independent, easy to develop and debug, and

are considered more readable than schematics. Verilog
has several variable types. A wire, similar to a physical
wire in a circuit, is used to connect software development
modules. Wires do not store their values. They are driven
by continuous assignment statements or by connecting
them to other module’s outputs. Conversely, regs, used
in procedural assignment blocks beginning with always,
represent data objects that hold their value between
execution cycles.

Fig. 3 shows a Verilog program translated from the
FBD from Fig. 2 according to the translation rules
described in Section 3. They both show the same behavior
as our analyses and experiments verified. There are two
inputs (i.e. f_X and th_Prev_X_Pretrip) and two outputs
(i.e. th_X_Pretrip and th_Prev_X_Pretrip). As input
prefixes “k_” indicate constants, they are not considered
input variables. Th_Prev_X_Pretrip is used as both input
and output. Since it stores the value of th_X_Pretrip using
the MOVE function block in FBD, we defined it as a reg
variable in lines (8) and (32). FBD’s output, th_X_Pretrip,
is produced in the assign statements (12)~(18) by composing
several function blocks in FBD. It also uses the timer

81NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

Fig. 3. A Verilog Program Translated from the FBD in Fig.2

variable to emulate a TOF function block, which we
emulate with procedural assignments using always
statements (19)~(31). We restricted the number of TOF
internal states to six in this example as defined in (1). In
addition, we used the clk variable, reserved for simulation
purposes in VIS, to simulate cyclic executions of the PLC.
Thus, the Verilog module defined in Fig. 3 is executed
every clk-usually 15 to 50 ms.

3. TRANSLATION FROM FBD INTO VERILOG

IEC 61131-3 FBD is a network of function blocks
executed sequentially according to a (their) predefined
order. In this section, we define the FBD programming
language as a state transition system and propose FBD-
Verilog translation rules in a bottom-up manner. Section
3.1 explains function block translation, which is a unit of
FBDs, and Section 3.2 explains component FBD
translation. The translation of system FBD is introduced
in Section 3.3. Unlike “primitive” function blocks whose
translation rules are straightforward, some FBD features
cannot be mapped directly. Such issues are described in
subsection 3.4.

3.1 Function Block Translation
A function block is defined as a tuple composed of

Name, input ports IP, output ports OP, and its behavior
description BD as defined in Def. 1. IP and OP are the
official terms used in IEC 61131-3. The behavior of a
function block is defined as a set of predicates and
assignments on input and output ports, respectively. A
function block is a function from a set of input variables,
which are assigned to input ports of the function block, to
(usually) one output variable, which is assigned to one
output port.

Definition 1 (Function Block) A function block is
defined as a tuple FB = < Name, IP, OP, BD >, where

Name: a name of function block
IP: a set of input ports, {ip1, ip2, … , ipn}
OP: a set of output ports, {op1}
BD: behavioral description ∑(pFB, aFB), where

- pFB : a predicate on IP
- aFB : assignments on OP

Let VFB-I = {v1, v2, ..., vn} be a set of function block
input variables which has n input ports, and VFB-O = {vo} be
a set of function block output variables. If we define Ii as
a set of input domains of the input variable vi (1<=i<=n)
and IFB = I1 I2 ... In, and also OFB = Oo in the same way,
then a function block is defined as follows: fFB: IFB OFB

The five rules shown below define how to translate a
function block into an equivalent Verilog function. The
translation rules are straightforward because there exists
little semantic gap between the two. They both receive
inputs, process data, and emit outputs. The output port
type (i.e. Boolean, integer, or bit vector) determines the
corresponding Verilog function type as Rule 1. Explicit
type conversion might be needed when the output type of
a function block is not supported by Verilog, i.e. real type
variables. Similarly, each input and its type is declared as
described in Rule 2. Function behavior is translated next
as shown in Rules 3 and 4. As an example, Fig. 4 illustrates
how the SUB and SEL function blocks are translated into
Verilog.

82 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

Fig. 4. Verilog Function Definitions for SUB and SEL
Function Blocks

Unlike simple function blocks, translation rules are
more complex when it comes to timer operations. One
must use reg type variables to track internal information.
In addition, a timer's internal variable has to have discrete
bounds. As a Verilog function cannot hold procedural
assignments that treat reg variables, we use Verilog module
feature instead.

3.2 Component FBD Translation
A Component FBD is a logical block of independent

function blocks to which a number of function blocks are
interconnected to generate meaningful outputs. Fig. 2 is
an example of a component FBD for th_X_Pretrip logic.
A component FBD is defined as a tuple composed of a
set of function block FBs, a set of transitions T between
the function blocks, a set of input ports I, and a set of
output ports O. Inputs to a component FBD come from
other component FBDs or system input variables.

Definition 2 (Component FBD) Function block diagram
is defined as a tuple Component_FBD = < FBs, T, I, O >,
where

FBs: a set of function block FBs
T:

- a set of transitions (FBi.OPm, FBj.IPn) between
function blocks FBi and FBj in FBs (provided that i
≠ j, and FBj.IPn means nth input port of function
block FBj)

- (FBi.OPm, FBj.IPn) T, FBi has sequential
execution precedence on FBj

I: a set of FB.IP which do not appear in T and are
assigned by Vcomp_FBD-I

O: a set of FB.OP which do not appear in T and are
assigned by Vcomp_FBD-O

The semantics of a component FBD are defined as a
function from a set of input variables to output variables.
Let VComp_FBD-I = {vci1,vci2,...,vcim} denote a set of input
variables entering the FBD and VComp_FBD-O = {vco1,vco2,...,vcon}
a set of output variables leaving the FBD. Variables in
VComp_FBD-I are assigned to input ports I, and those in
VComp_FBD-O are assigned to output ports O. If we define I
as a set of input domains of input variable vci (1<= <=m)
and IComp_FBD = I1 I2 ... Im, and OComp_FBD = O1 O2 ...

On in the same way, a component FBD is defined as
the following function: fComponent_FBD: IComp_FBD OComp_FBD

When translating a component FBD, we use the
Verilog module construct and assume that all function
blocks have already been translated into Verilog
functions. A module invokes functions or other modules
according to their predefined execution order in the FBD
program. First, the component FBD's name and ports are
declared in Rules 6 through 8. Rule 9 declares and
initializes reg type variables. If an output variable is also
used as input, it is declared as reg type as its value is to
be used in the next cycle. Variable th_Prev_X_Pretrip in

Fig. 2 is such an example. Verilog provides a number of
features, i.e. for loops, while loops, and case statements,
to support succinct description of complex behavior. In
Rule 10, [Verilog_function_calls] calls every Verilog
function according to its execution order to generate
outputs of the component FBD. Every function block is
separately translated as a Verilog function and included
in the definition of module for the component FBD. A
Verilog definition ends with the reserved word endmodule
in Rule 12.

To produce optimal Verilog code, the use of Verilog
functions must be avoided when equivalent expressions
exist. For example, GE_INT in Fig. 2 can be translated
into the built-in “f_X >= k_X_Pretrip_Setpoint” expression
or a user-defined function GE_INT; the former translation
is preferred. Fig. 3 shows how Rules 1 through 12 are
applied to the FBD shown in Fig. 2. Complete technical
details are available elsewhere [15].

3.3 System FBD Translation
The whole FBD software system is composed of a

number of component FBDs and their interconnections.
A System FBD defines the whole software system as a
tuple composed of component FBDs Component_FBD, a
set of transitions T between component FBDs, a set of
input ports I, and a set of output ports O as defined in Def. 3.

Definition 3 (System FBD) System FBD is defined as a
tuple System_FBD = < FBDs, T, I, O >, where
- FBDs: a set of component FBDs component_FBDs
- T:

83NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

- a set of transition (FBDi.Om, FBDj.In) between FBDi

and FBDj in FBDs (provided that i ≠ j and FBDj.In

is an n-th input port of FBDj.
- (FBDi.Om, FBDj.In) T, FBDi has a sequential

execution precedence on FBDj

- I: a set of FBD.I which do not appear in T and are
assigned by VSys_FBD-I

- O: a set of FBD.O which do not appear in T and re
assigned by VSys_FBD-O

Similarly, a system FBD is defined as a function from
a set of system input variables VSys_FBD-I = {vsi1,vsi2,...,vsim} to
a set of system output variables VSys_FBD-O = {vso1,vso2,...,vson}.
If we define Isv as a set of input domains of the input
variable vsiv(1 <= v <= m) and ISys_FBD = Is1 Is2 ... Ism,
and also OSys_FBD = Os1 Os2 ... Osn in the same way,
then the system FBD can be regarded as a function:
fSystem_FBD: ISys_FBD OSys_FBD

A system FBD contains a number of component FBDs
and their sequential interconnections. While translation
rules for system FBDs look similar to the rules of component
FBDs, it uses [Verilog_module_instantiations_for_vo]
instead of [Verilog_function_calls]. Verilog modules are
instantiated and called according to their execution order
with outputs communicated. For example, the Verilog

program for the g_LOG_PWR module, a larger system
depicted in Fig. 5, instantiates 6 modules, M_f_X_Generation
~ M_th_X_Trip into SIM_PURPOSE ~ EE, respectively.
The Verilog module th_X_Pretrip in Fig. 3 corresponds
to a module instantiation “M_th_X_Pretrip EE” in Fig. 5.

84 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

Fig. 5. A Verilog Program for g_LOG_PWR System FBD

It is important that all component FBDs should be a
priori defined as Verilog modules and that their transition
relations be defined in T of System_FBD. Verilog module
instantiations should precisely reflect these transition
relations. One can translate the whole FBD program into
an equivalent Verilog program hierarchically in a similar
manner.

3.4 Practical Considerations on Translation Rules
When applying the above rules to large and complex

real-world situations, the following guidelines are useful.
First, one must distinguish “intermediate” FBD outputs
from “externally visible” FBD outputs. That is, outputs of
FBD subsystems must not be mapped as output variables.
Rather, they must be declared as “internal” reg variables
in the higher-level Verilog modules. Variable th_Prev_X_
Pretrip in Fig. 2 is such an example. Correctness on data
dependency and proper ordering among the outputs of
FBD subsystems are critical in translation.

Second, the translation of timer blocks (e.g. TOF and
TON) requires synchronization between the global system
clock, clk, and multiple local clocks. Fig. 6 describes a
template for translating a TOF function block, which has
IN and DELAY as inputs, and OUT and TIME as outputs.
IN is an input Boolean variable, and DELAY is a variable
specifying time delay. OUT is an output Boolean variable,
and TIME represents the elapsed time of its internal timer.
Output value OUT is 0 if input IN remained 0 during
DELAY time periods since input IN changed from 1 to
0. Otherwise, the output is 1. The TOF described in Fig.
6 has up to 3 bits delay, or 23=8 clock time. Output TIME
is excluded in the Verilog code because it is used to
monitor elapsed time of the local timer for simulation and
debugging purposes only. The local clock of the timer is
synchronized with the global clock clk using the “always
@(posedge clk) begin”' statement. Each timer block can
be declared as a separate Verilog module, and the behavior
of multiple timers can be unfolded within the component
FBD's definition as shown in Fig. 3.

Third, one must be careful in deciding the number of
bits used to represent timer delay values. Larger values
exponentially increase the number of states to be explored.
In the worst case, state explosion may occur in SMV
model checking or VIS equivalence checking. Other
blocks (e.g. Bistable or Counters) share the same issue.

4. VIS EQUIVALENCE CHECKING

We applied the proposed translation techniques to a
subset of FBDs [16] for APR-1400's RPS BP currently
under development in Korea and performed VIS
equivalence checking on them. As the safety of APR-1400’s
RPS must be rigorously demonstrated, regulatory bodies
strongly recommend that formal verification techniques
be used. While model checking verifies whether or not

FBD meets required properties, it is inadequate for
verifying the behavioral equivalence between two FBD
versions. On the other hand, VIS equivalence checking is
particularly useful for checking if FBD design optimizations
do not introduce errors.

In order to evaluate the effectiveness of the proposed
approach, we conducted a case study using a subset of
the preliminary version of bistable processor (BP) design.
BP, as a part of a reactor protection system, is large and
complex in that its design specifications, Rev. 02 released
in 2006, consist of 1,355 function blocks and 1,038
variables; when translated using FBD Verifier 1.1, the
Verilog program was 7,862 lines long. Section 4.1
introduces an overview of the VIS equivalence checking
process, and the detailed experimental results are explained
in Section 4.2.

4.1 An Overview of Verification Process
Fig. 7 shows an overview of the VIS equivalence

checking process. FBD designs are programmed with the
pSET [17] commercial engineering tool developed by the
PLC vendor POSCON. The designs are subsequently
compiled into executable code. FBD Verifier 1.1 translates
the design into equivalent Verilog programs in “.v”' format.
As the VIS verification system has no graphical user
interface, we executed the VIS in a Cygwin environment
where equivalence checking was performed. A program
(vl2mv [18]) in the VIS verification system translates
Verilog programs from the “.v” into the “.mv”' format,
which VIS can read and analyze. If any evidence of
inequivalence is found, VIS generates a counterexample
illustrating how changes on values of various variables
lead to different behavior.

4.2 Experimental Result
We performed the proposed automatic verification on

85NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

Fig. 6. A Verilog Program for TOF Timer Function Block

a subset of FBDs for APR 1400's RPS BP. The FBD is
depicted in Fig. 2. It is an important part of BP logics, and
was excerpted from a preliminary release of FBDs [16] for
the purpose of this experiment. A different version of FBD
is shown in Fig. 8. It should have the same behavior as the
FBD in Fig. 2 because it was mechanically synthesized
from the same NuSCR requirements specification [19]
using a synthesis technique previously reported [20].
Synthesis version allows FBD engineers to validate
manually developed and optimized FBD programs even

if the synthesized FBDs do not become part of an official
release.

When VIS equivalence checking was performed, to
our surprise, VIS determined the behaviors of the two
FBD programs to be different and generated a seven-step
counterexample (Fig. 9)2. For example, on transition from
state 0 to 1, the value of “timer” changed from “T0” to “T1.”
Such changes are caused by the input f_X of “1011110.”
According to the counter-example, the inequivalence
occurred when the pretrip fired (th_Prev_X_Pretrip = 0
in state 6), and then the pretrip condition was released in
the next state 7 on input “0010110.” As the VIS counter-
example does not show different output values explicitly
in the final state, we must use the simulation facility of
VIS to fully investigate the cause for the in-equivalence
and fix the errors.

Although the details are beyond the scope of this paper,
the SEL function block numbered (15) in Fig. 2 has G
input wired to th_Prev_X_Pretrip. It means that if the
value is 1 then it is currently in a normal state, otherwise
it is in a pretrip state. Although Timer function blocks
should not be used when the system is in a pretrip state
(i.e., th_Prev_X_Pretrip = 0), TOF timer block numbered
(16) is executed after the SEL function block. Such
redundant use of the TOF timer gave rise to different
behavior, and domain engineers fixed the error by
separating the TOF block so that it is used only when the
system is in the normal state. Fig. 10 shows the modified
FBD in which the computation on the TOF block takes
prior to that of the SEL block. The VIS equivalence
checking result was also a success (Fig. 11). The modified
FBD was used in later releases.

We also applied VIS equivalence checking to the

86 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

2 We edited and visualized it to aid understanding.Fig. 8. A Mechanically Synthesized FBD for th_X_Pretrip Logic

Fig. 7. An Overview of VIS Equivalence Checking

FBDs for “manual reset variable set-point trip logic” of
the APR-1400 RPS BP, which is more complex than the
“fixed set-point rising trip logic” used above. We found
several critical errors in both the manually developed and
the synthesized FBD versions (Table 1). In addition to
syntactic and trivial mistakes made by FBD engineers,
we also detected several logical errors, which included
some critical discrepancies between the two FBDs. Such
errors could not easily be solved by changing the order of
the function blocks or by replacing them. We even found
logical errors in the NuSCR requirements specification
[19]. All errors were fixed, and the requirements and

design specification documents were updated.
As mentioned earlier, analyzing the results of VIS

equivalence checking counterexamples is often time
prohibitive for FBD engineers and verifiers. VIS is
executed in Cygwin or Linux environments in text mode,
and the counterexample generated contains a lot of value
information at the bit-level. We also had to rely on VIS's
simulation to understand the output of FBDs. Even though
VIS's equivalence checking is an efficient and useful
automatic verification technique, the above obstacles
render its widespread use in developing FBD programs
difficult. We are currently developing a tool to assist visual

87NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

Fig. 9. A Counter-Example of VIS Equivalence Checking

Fig. 10. A Modified FBD for th_X_Pretrip

equivalence analyses of counterexamples. Fig. 12 shows
an interface design of a VIS Analyzer 0.8 prototype. Fig.
12a shows two Verilog programs read, and Fig. 12b is a
result of the automatic execution of several VIS operations,
i.e. vl2mv, seq_verify, and simulate.

5. RELATED WORK

Many approaches, including a PLCTOOLS tool-set
[22], for the formalization of PLC programs written in
LD, ST, and FBD indented for formal verification,
validation, and simulation exist in the literature [21].
FBD programs are modeled with high-level timed petri
nets (HLTPN), and those nets are then used for design
validation and code generation. MATLAB/SIMULINK
provides a means for specifying and simulating plants.
While PLCTOOLS focuses on designing, simulation, and
PLC code generation, it does not support formal verification
such as VIS equivalence checking.

Higher order logic (HOL) has been used to model
requirements specifications [23]. There are no restrictions
on data types in this approach since function blocks are
modeled as relations on HOL streams. The Verilog we
use has several restrictions on data types, i.e. Verilog has
no real number type variables. It treats time implicitly,

88 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

Fig. 12. A VIS Analyzer 0.8 Screen-Dump

(a) Two Verilog programs read (b) VIS equivalence checking and simulation result

Table 1. VIS Equivalence Checking Result for APR-1400 RPS BP

Trip Logic

Fixed Set-Point Rising Trip

without Operating Bypass

Manual Reset Variable Set-Point Trip

without Operating Bypass

Error Type

Syntactic

Logical

Syntactic

Logical

Synthesized FBD (Num. of Errors)

0

0

0

6

Original FBD (Num. of Errors)

0

1

3

2

Fig. 11. VIS Verification Result after the Modification

which is contrary to the Verilog and VIS verification
systems. However, proofs are done with the help of the
Isabelle/HOL [24] theorem prover. Compared to automatic
verification using VIS, its cost is prohibitive.

In IEC 61499 [25] interactions were defined between
controllers and overall systems (plants) using FBDs; they
were formalized [26] with a single-net systems (SNS) [27]
model. The controller code was defined in FBD format,
and the overall system was organized in IEC 61499
function blocks. In this approach, the complete structure
is automatically translated into an SNS model using the
Verification Environment for Distributed Environment
(VEDA) tool. For the combined plant-controller model,
model checking was performed using Singal/Event System
Analyzer (SESA) [28]. While VIS equivalence checking
verifies FBD programs from a unit module to a whole
system, it focuses on the interactions between IEC 61499
function blocks, which correspond to subsystems and not
detailed IEC 61131-3 function block diagrams.

In case of the automatic formal verification model
checking of Verilog programs, there are several
approaches using different model checkers. We have
used the SMV model checker as previously implemented
and experimented upon [13, 14]. As explained in Section
1, VIS's CTL model checking has some rigorous
restrictions. We used Cadence SMV’s LTL model
checking to avoid them. CBMC [29] checks Verilog for
consistency with ANSI-C programs. VCEGAR [30]
performs model checking on Verilog using a counter-
example guided abstraction refinement framework.
However, these approaches have not yet been applied to
the development of safety-critical software in industry
except for the SMV approach.

6. CONCLUSION AND FUTURE WORK

This paper described effective use of VIS, a well-known
verification tool, for automated software verification of
PLC programs written in FBD. We formally defined
FBD semantics as a state-transition system, developed
translation rules from FBD to Verilog programs,
implemented FBD Verifier 1.1 software tool to automate
the translation, and performed VIS verification-equivalence
checking on a subset of FBDs currently under development
for an APR-1400 nuclear power reactor. The case study
demonstrated that behavioral equivalence checking using
VIS is an effective and useful verification technique that
can easily be used in developing PLC programs.

As we perform VIS equivalence checking in Cygwin
or Linux environment in text mode, automating the
verification process and visualizing analysis results
including VIS simulation would promote its applicability
and usability remarkably. We also introduced a prototype
tool design. We are planning on developing a tool suite
supporting development, verification, and safety analysis

throughout entire lifecycle phases from requirements
specification to implementation.

ACKNOWLEDGEMENTS
The Korean Research Foundation Grant funded by the

Korean Government (KRF-2008-331-D00524) and a
Korea University Grant supported this research. This
research was also partially supported by the MKE (Ministry
of Knowledge Economy), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the IITA(Institute of Information Technology
Advancement) (IITA-2008-(C1090-0801-0032)).

REFERENCES_______________________________
[1] N.G. Leveson, SAFEWARE, System safety and Computers,

Addison Wesley, 1995.
[2] D.A. Peled, SOFTWARE RELIABILITY METHODS,

Springer, 2001.
[3] KNICS, Korea Nuclear Instrumentation & Control System

R&D Center, http://www.knics.re.kr/.
[4] J. Yoo, T. Kim, S. Cha, J.S. Lee, and H.S. Son, “A formal

software requirements specification method for digital
nuclear plants protection systems,” Journal of Systems and
Software, 74, 1, pp.73-83, 2005.

[5] NuSRS, http://dependable.kaist.ac.kr/~nusrs.
[6] E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic

verification of finite-state concurrent systems using
temporal logic specifications,” ACM Trans. Programming
Languages and Systems, 8, 2, pp.244–263, 1986.

[7] J. Cho, J. Yoo, and S. Cha, “NuEditor - a tool suite for
specification and verification of NuSCR,” SERA2004:Second
ACIS International Conference on Software Engineering
Research, Management and Applications, pp.298–304, 2004.

[8] IEC, International standard for programmable controllers:
Programming languages 61131- Part 3, 1993.

[9] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli,
F. Somenzi, A. Aziz, S.T. Cheng, S.A. Edwards, S.P. Khatri,
Y. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary,
T.R. Shiple, G. Swamy, and T. Villa, “VIS : A system for
verification and synthesis,” the Eighth International
Conference on Computer Aided Verification,” CAV ’96,
pp.428–432, 1996.

[10] D.E. Thomas and P.R. Moorby, The Verilog Hardware
Description Language, Kluwer Academic Publishers, 1991.

[11] E.M. Clarke, O. Grumberg, and D.A. Peled, Model
Checking, MIT Press, 1999.

[12] Cadence SMV, http://www.cadence.com.
[13] S.J. Jeon, “Verification of Function Block Diagram through

Verilog Translation,” Master’s thesis, Korea Advanced
Institute of Science and Technology, 2007.

[14] J. Yoo, E. Jee, and S. Cha, “A Verification framework for
FBD based software in nuclear power plants,” The 15th
Asian Pacific Software Engineering Conference (APSEC
2008), pp.385-392, 2008.

[15] J. Yoo, Synthesis of Function Block Diagrams from NuSCR
Formal Specification, Ph.D. thesis, Korea Advanced
Institute of Science and Technology, 2005.

[16] KAERI, SDS for reactor protection system, KNICS-RPS-
SDS101 Rev.00 Draft, Sept. 2003.

[17] S. Cho, K. Koo, B. You, T.W. Kim, T. Shim, and J.S. Lee,

89NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

“Development of the loader software for PLC programming,”
Conference of the Institute of Electronics Engineers of
Korea, pp.959–960, 2007.

[18] S.T. Cheng and R.K. Brayton, “Compiling verilog into
automata,” Tech. Rep. UCB/ERL M94/37, EECS Department,
University of California, Berkeley, 1994.

[19] KAERI, SRS for Reactor Protection System, KNICS-RPS-
SRS101 REV.00, Feb. 2003.

[20] J. Yoo, S. Cha, C.H. Kim, and D.Y. Song, “Synthesis of
FBD-based PLC design from NuSCR formal specification,”
Reliability Engineering and System Safety, 87, 2, pp.287-
294, 2005.

[21] G. Frey and L. Litz, “Formal moethods in PLC programming,”
IEEE Conference in System Man and Cybernetics:SMC
2000, 2000.

[22] L. Baresi, M. Mandrioli, S. Morasca, and M. Pezz`e, “Plctools:
Design, formal verification, and code generation for
programmable controllers,” the IEEE Conference on System,
Man, and Cybernetics (SMC), Nashville, USA, pp.2437-
2442, Oct. 2000.

[23] B.J. Kramer and N. Volker, “A higher dependable computer
architecture for safety critical control applications,” Real-

Time Systems Journal, 13, 3, pp.237-251, 1997.
[24] T. Nipkow, L.C. Paulson, and M. Wenzel, Isabelle/HOL -

A Proof Assistant for Higher-Order Logic, LNCS, vol.2283,
Springer, 2002.

[25] IEC, Function blocks - Part 1: Architecture (IEC 61499-1),
2005.

[26] V. Vyatkin and H.M. Hanisch, “Modeling of IEC 61499
function blocks - a cue to their verification,” XI Workshop
on Supervising and Diagnostics of Machining System,
pp.59-68, 2000.

[27] P.H. Starke, “Symmetries of signal-net systems,” Workshop
on Concurrency, Specification and Programming, pp.285-
297, 2000.

[28] P.H. Starke and S. Roch, “Tools for formal specification,
verification, and validation of requirements,” the 12th Annual
Conference on Computer Assurance, COMPASS ’97, pp.35-
47, 1997.

[29] Bounded Model Checking for ANSI-C, http://www.cs.cmu.
edu/~modelcheck/cbmc.

[30] H. Jain, N. Sharygina, D. Kroening, and E. Clarke, “Word
level predicate abstraction and refinement for verifying rtl
verilog,” 42nd Design Automation Conference (DAC), 2005.

90 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.41 NO.1 FEBRUARY 2009

YOO et al., Verification of PLC Programs Written in FBD with VIS

