
VIS Analyzer: A Visual Assistant for

VIS Verification and Analysis

Sehun Jeong

College of Info. and Comm.

Korea University

Seoul, South Korea

gifaranga@korea.ac.kr

Junbeom Yoo

College of Info. and Comm.

Konkuk University

Seoul, South Korea

jbyoo@konkuk.ac.kr

Sungdeok Cha

College of Info. and Comm.

Korea University

Seoul, South Korea

scha@korea.ac.kr

Abstract—Formal verification plays an important role in
demonstrating the quality of safety-critical [1] systems such as
nuclear power plants. We have used the VIS verification system
[2] to determine behavioral equivalence between two successive
revisions in developing the KNICS RPS (Reactor Protection
System) [3] in Korea. The VIS accepts a high-level programming
language Verilog [4] as input, and its verification results contain
valuable information about one reason of the failure. However
the VIS offers no graphical interface, and partially displays
relevant information necessary to understand the full verification
scenario accurately. Many nuclear engineers and verification
experts found the information insufficient, and it makes hard
to the wide use of the VIS verification system in industry. This
paper proposes the VIS Analyzer, a visual assistant for VIS
verification and analysis, which can help nuclear engineers take
full benefits of VIS without being overwhelmed by incomplete
and low-level details. The VIS Analyzer automates the VIS
verification processes such as equivalence checking and model
checking, and displays the verification results in visual formats.
We used a recent case study introduced in [5] to demonstrate its
effectiveness and usefulness.

I. INTRODUCTION

Benefits of formal methods [6] cannot be emphasized

enough. Regulatory bodies, such as KINS (Korea Institute

of Nuclear Safety), often mandate that developers or SQA

(Software Quality Assurance) teams apply formal methods

as a means of safety demonstration. Among many tools and

techniques for formal methods, model checking techniques

[7] have received the most attention of research communities

as well as practitioners. Model checker performs exhaustive

search of systems behavior without any users intervention in

the checking process, and also generates useful output called a

counterexample for the failed case. Engineers can get insights

into the system behavior which is difficult to get through other

methods (e.g. inspection and testing). We can also get a high

level of safety assurance if a model checker reports success,

indicating the system behavior satisfies the required properties.

Outputs from formal verification tools such as the VIS

and the SMV [10] are often quite difficult for practitioners

to understand. The reasons are as follows. First, semantic

gap between domain knowledge of practitioners and model

checkers’ output is too significant for practitioners to

understand them sufficiently. Most model checkers have their

own programming languages as input, and practitioners have to

understand the input program translated from its requirements

specifications or models. Second, counterexamples may

contain too excessive or redundant information to reason

about the source of failures. Efficient visualization of the

counterexamples is a key to take full advantage of model

checking. Third, counterexamples from such model checkers

as the VIS often contain partial information on states

and values. The information partiality includes omission

of unchanged values between two successive steps in

counterexamples. Automatic reorganization of the partial

information into complete one is also crucial for its wide

use. Fourth, verification processes of formal verification

tools are overly long and detail for domain engineers. For

example, the single VIS model checking task requires six

to seven commands inputting in a row. Carefully abstracted

verification process provides benefits of formal verification

without too much efforts for retraining.

The VIS (Verification Interacting with Synthesis) is a widely

used tool that integrates formal verifications, simulation, and

synthesis of finite states hardware systems. It uses Verilog as

a front-end and supports fair CTL (Computational Tree Logic)

model checking, language emptiness checking, combinational

and sequential equivalence checking, cycle-base simulation,

and hierarchical synthesis. We have used the VIS to formally

verify the Verilog programs translated from FBD (Function

Block Diagram) programs in our verification framework

proposed in [5].

This paper proposes an assistant tool, VIS Analyzer (ver.

3.0), to automate the VIS verification processes (equivalence

checking and model checking) and support visual analysis

of the verification results. In case of equivalence checking,

the VIS Analyzer reads two Verilog programs and executes

sequential or combinational equivalence checking seamlessly.

It also reorganizes omitted information in the verification

results through the VIS simulation on background, and

displays them in intuitive tabular and flowchart forms. When

performing model checking, it reads one Verilog program and

CTL properties, executes model checking, and seamlessly

shows the verification result visually to aid understanding. We



Fig. 1. A Comparison of Two Equivalence Checking Processes

performed a case study, a subset of KNICS consortium’s RPS

(Reactor Protection System) for APR-1400 nuclear power

plant in Korea [8], to demonstrate its usefulness.

The remainder of the article is organized as follows. In

section 2, we compare features of the VIS Analyzer with the

typical VIS using examples from the KNICS project. Related

work with the VIS Analyzer is explained in section 3. Section

4 concludes the paper and suggests future work.

II. A COMPARISON OF VERIFICATION PROCESSES

A. Equivalence Checking

Fig. 1 compares the VIS sequential equivalence checking

process with that of the VIS Analyzer. It used a preliminary

shutdown logic of the KNICS RPS in Korea. As we

mentioned, the VIS Analyzer focused on three cases as

follows to assist practitioners and SQA engineers. At first,

the VIS Analyzer visually shows the result of the VIS

equivalence checking feature. As we can see in Fig. 1(a),

original counterexample is shown in plane text format which

is not adequate for representing long and complex data. The



VIS Analyzer uses tabular and flowchart form as visualization

method while preserving the original results in independent

window for reference. Tabular and flowchart form are

well-known and industry-widely used. Moreover, the VIS

Analyzer automatically translates arrays of binary numbers

(e.g. f X) into decimal numbers to increase readability. Fig.

1(c) shows visualization results for the counterexample part

of Fig. 1(a).

Second, we abstracted the process of the VIS verification

itself. As we can see in top box in Fig. 1(a), the VIS

requires users to input a series of commands manually

for file opening, generating essential intermediate files and

performing verification. However, these are unfamiliar tasks

for domain engineers who are not verification experts. The

VIS Analyzer abstracts these tasks into simpler one. What

remains for users are file opening as usual GUI applications

(see Fig. 1(b)) and selecting verification menu. In addition,

the VIS Analyzer provides a comparison window for two

source codes with highlighting in accordance with the Verilog

grammar.

Fig. 2. An Example of The Input Vector File

Third, the VIS Analyzer complements the VIS sequential

equivalence checking result. When two target software re-

visions are not sequentially equivalent, the VIS equivalence

checking feature shows one counter example path to the user

in a textual format. Fig. 1(a) is the VIS sequential equivalence

checking result about two example pre-trip logics. We found

three information insufficiencies from the counterexample.

• The counterexample contains inputs and latches informa-

tions for seven steps counterexample path, but it skips

unchanged inputs and latches values between two suc-

cessive steps. In case of numeric values used are defined

as arrays of numbers, only changed parts are shown. For

example, seventh state in Fig. 1(a) contains f X<3> and

f X<6> only. And the state shows only timer variable

except the Prev X Pretrip and state.

• The counterexample omits final state information which

circulates inequality between two target systems. Users

have to run the VIS simulation feature to know the final

latches and output values.

• The counterexample doesn’t show output values such as

output th X Pretrip in Fig. 1(b) for all states. Although

the VIS simulation feature provides output information

according to particular input sequences, it requires

additional effort to make input vector file (see Fig. 2)

which specifies initial latch values and a list of input

values to simulate.

The VIS Analyzer attempts to complement insufficiencies

as we mentioned using three methods as follows. In case

of partial input and latch informations, the VIS Analyzer

automatically reconstructs partial values into complete one

with reference to values of previous counterexample states.

As shown in Fig 1(c), table and flowchart show complete f X

value and other latch values through all state steps. For output

values, the VIS Analyzer automatically generates input vector

file based on the counterexample, and seamlessly executes

the simulation feature on background process using the input

vector file. When the input vector file is generated, the VIS

Analyzer adds one more input values to the input vector file

as last sequence to show final output values which cause

inequality. The output values are added on to the counterex-

ample visualization, such as output columns in Fig. 1(c) table

and output arrows in Fig. 1(c) flowchart, and both table and

flowchart contain eighth state which shows output inequality,

while the original counterexample in Fig. 1(a) contains seven

states only.

B. Model Checking

Fig. 3 shows comparison between the VIS model checking

process and that of the VIS Analyzer. In case of the VIS

Analyzer model checking feature, we applied three approaches

used in the VIS Analyzer equivalence checking feature such

as automation of verification process, result complementation

and result visualization. First, the VIS Analyzer visually

shows model checking result in tabular and flowchart forms.

The VIS model checking feature shows counterexample

when some of verified properties are resulted as fail. We

found that the counterexample of the VIS model checking

is hard to understand because it has plane text format which

is not adequate for representing of long and complex data.

For example, Fig. 3(a) counterexample part consists of three

distinct sections, but these sections are hard to distinguish

at one glance because they have similar configuration. th

sections in Fig. 3(a)) into one stream of states, and visualizes

the stream as flowchart. The flowchart form is adequate for

represent series of states stream. The loop notation in the

flowchart format effectively and intuitively represents fair

path cycle information in the counterexample. Fig. 3(c) shows

counterexample parts of Fig. 3(a) in the flowchart form.

Since Fig. 3(a) contains fair path cycle, Fig. 3(c) has loop

notation accordingly. In addition, the tabular form is provided

as alternative visualization form.

Second, the VIS Analyzer model checking feature provides

abstracted verification process likewise the VIS Analyzer



Fig. 3. A Comparison of Two Model Checking Processes

equivalence checking feature. Top section in Fig. 3(a) shows

the VIS model checking process which includes intermediate

file generation and a number of commands inputting. The

VIS Analyzer provides abstract way to perform verification

tasks with graphical user interface. The VIS Analyzer model

checking window (see Fig.2(b)) consists of three sub-windows

which are stand for source code, verification properties and

fairness properties. Users can easily check what they are

currently working on with the help of the syntax highlighting

feature and the composite code windows.

Third, the VIS Analyzer model checking feature restores

partial inputs and latches information of the original VIS

model checking result using the same method used in the

VIS Analyzer equivalence checking feature. For example,

being partially displayed values in the Fig. 3(a), such as

BB.BB.AAA.timer<0>, are fully complemented in each node

of Fig. 3(c). As we mentioned before, reducing the hardness

is key feature of verification supporting tools because the

information partiality of the counterexample makes hard to

interpret the result.

III. RELATED WORK

Developing supporting tools which can connect gap

between domain industry needs and formal methods tools is

very important. Supporting tools should include abstracted



verification processes and result visualization features.

The process abstraction helps users performing complex

verification processes without user intervention and low-level

detail about formal verification. And the verification result

visualization features amplify human recognition [9].

There have been many studies about formal verification

tool automation and its result visualization. They all tried to

simplify tedious process and visualize complex information

with intuitive and friendly forms for domain experts. RuleBase

[11], SMV automation tool resemble our work. The RuleBase

automates the SMV verification process and visualizes results

for the hardware designer. The user can easily analyze

visualized hardware verification results with the help of

graphic user interface of this tool.

In the area of visualization of programing languages,

PLFire [12] visualizes Phased Logic (PL) [13] in a form of

block and wire diagram to help PL optimization process.

And Code browser [14] adapts a tree-like graphical method

to represent C program languages in web browser. These

tools support analyzing and understanding complex code with

informative and intuitive diagrams.

Data visualizations are also a common topic. Vis-Complete

[15] suggests visualization method for constructing pipelines

using database. And Shipboard Power Systems (SPS) [16]

provides a visualization method for complex power status

data in shipboard. When abnormal status occurred, SPS

indicates error status and locations with 3D wire graphics

of shipboard. Domain engineers can easily analyze current

status and respond to errors.

IV. CONCLUSION

When developing safety-critical software such as RPS in

nuclear plants, formal methods are required as a means of

safety demonstration. The VIS is a useful formal verification

tool as it provides equivalence checking, model checking

and simulation on Verilog programs. However inconvenient

user interface such as text-based console environment of VIS

makes hard to domain experts, such as nuclear power plant

engineers.

This paper proposes an assistant tool, the VIS Analyzer

(ver. 3.0), to automate the verification processes (equivalence

checking and model checking) and support visual analysis

of the verification results. In case of equivalence checking,

it reorganizes omitted information in the verification results

through VISs simulation on background. When performing

model checking, it reads one Verilog program and CTL

properties, executes model checking, and seamlessly shows

the verification result visually to aid understanding. We

performed a case study, a subset of KNICS consortiums RPS

(Reactor Protection System) for APR-1400 nuclear power

plant in Korea [8], to demonstrate its usefulness. We are

currently focusing on visualizing the verification result more

intuitively using multi-dimensions.

ACKNOWLEDGMENT

This research was supported by the MKE(The Ministry of

Knowledge Economy), Korea, under the ITRC(Information

Technology Research Center) support program supervised by

the NIPA(National IT Industry Promotion Agency)” (NIPA-

2009-(C1090-0902-0032))

REFERENCES

[1] N. G. Leveson, SAFEWARE, System Safety and Computers, Addison-
Wesley, 1995.

[2] VIS (Verification Interacting with Synthesis),
http://embedded.eecs.berkeley.edu/research/vis

[3] J. Yoo, E. Jee, S. Cha, ”Formal Modeling and Verification of Safety-

Critical Software”, IEEE Software, Vol.26, No.3, pp.42-49, May/June
2009.

[4] D. E. Tomas, P. R. Moorby, The Verilog Hardware Description Language,
Kluwer Academic Publishers, 1991.

[5] J. Yoo, S. Cha, E. Jee, ”A Verification Framework for FBD based Software

in Nuclear Power Plants”, The 15th Asia Pacific Software Engineering
Conference (APSEC), pp.385-392, Beijing, China, Dec. 3-5, 2008.

[6] M. Pezz, M. Young, Software Testing and Analysis: Process, Principles,

and Techniques, Chapter 8, WILEY, 2007.
[7] E. M. Clarke, Orna Grumberg, Doron A. Peled, Model Checking, MIT

Press, 1999.
[8] KNICS, http://www.knics.re.kr

[9] R. D. Meyer, D. Cook, Visualization of data, Current Opinion in Biotech-
nology, pp89-96, 2000

[10] SMV, www.kenmcmil.com/smv.html

[11] I. Beer, S. Ben-David, C. Eisner, A. Landver, RuleBase: an Industry-

Oriented Formal Verification Tool, 33rd Design Automation Conference,
pp 655-660, 1996.

[12] K. Fazel, M. A. Thornton, R. B. Reese, PLFire: A Visualization Tool

for Asynchronous Phased Logic Designs, Design, Automation and Test
in Europe Conference and Exhibition, 2003

[13] D. H. Linder, Phased Logic: Supporting the Synchronous Design

Paradigm with Delay Insensitive Circuitry, IEEE Transactions on Com-
puter, Vol.45, No.9, September 1996.

[14] J. Cherry, M. Arrieta, E. Brown, S. Ramaswamy, An Interactive visu-

alization tools for complex programs, 2004 International Conference on
Software Engineering, June 21-24, 2004

[15] D. Koop, C. E. Scheidegger, S. P. Callahan; J. Freire, C. T. Silva,
VisComplete: Automating Suggestions for Visualization Pipelines, IEEE
Transactions on Visualization and Computer graphics, Vol. 14, No. 6, pp
1691-1698, 2008.

[16] K. L. Butler-Purry, N. D. R. Sarma, Visualization for Shipboard Power

Systems, Proceedings of the 35th Annual Hawaii International Confer-
ence, 2003.


