FBDScenaGen+: GA-based High-Quality Scenario Generator for FBD Simulation

Eui-Sub Kim, Sejin Jung, Junbeom Yoo
Dependable Software Laboratory
Konkuk University, Republic of Korea

Young Jun Lee, Jang Soo Lee
Man-Machine Interface System Laboratory
Korea Atomic Energy Research Institute, Republic of Korea
Contents

1. Introduction

2. Backgrounds
 1. FBD Structural Coverage
 2. Genetic Algorithm

3. FBD Simulation Framework

4. FBDS cenaGen+
 (GA-based High-Quality Simulation Scenario Generator)

5. Case Study

6. Conclusions
Introduction

- **FBDScenaGen+**: GA-based High-Quality Scenario Generator for FBD Simulation
 - **Objective**
 - High-Quality Scenario generation for FBD program simulation
 - **Target system:**
 - PLC-based software system in nuclear plants
 - Typical development process: SRS – FBD – C – executable SW

Software Development Process for PLC

<table>
<thead>
<tr>
<th>Requirements Analysis</th>
<th>Design</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS</td>
<td>FBD / LD Programs</td>
<td>C Programs</td>
</tr>
<tr>
<td>Manual Programming</td>
<td>Automatic Translation</td>
<td>C Compiler</td>
</tr>
<tr>
<td>FBD Unit Testing</td>
<td></td>
<td>Executable Code for PLC</td>
</tr>
</tbody>
</table>

![Diagram of Software Development Process for PLC](image)
Introduction

• Q. How Adequately the Testing has been Performed?
 – Test Done = Test Plan Executed and All Codes Executed

• Q. How much efforts is needed to accomplish some coverages?
 – Our Issue: **FBD Coverage + GA Techniques** → High-quality scenarios
1. FBD Structural Coverage
2. Genetic Algorithm

BACKGROUND
FBD Structural Coverage

• A metric for measuring simulation effectiveness
 – To help determine when a system is adequately tested

• Two coverage
 – Toggle coverage
 – MC/DC coverage

Ex) 1-to-0 and 0-to-1 → 100% toggle coverage
FBD Structural Coverage

• A metric for measuring simulation effectiveness
 – To help determine when a system is adequately tested

• Two coverage
 – Toggle coverage
 – MC/DC coverage
Genetic Algorithm

- Genetic algorithm (GA)
 - A metaheuristic inspired by the process of natural selection.
 - Belongs to the larger class of evolutionary algorithms (EA).
 - High-quality solutions to optimization and search problems

Best scenarios

Many scenario set
Genetic Algorithm

- Genetic algorithm (GA)
 - A metaheuristic inspired by the process of natural selection.
 - Basic process: 1) selection, 2) crossover, 3) mutation

Many scenario set ➔ Many scenario set ➔ Best scenarios
FBD Simulation Framework

- FBD Editor
- FBDSceanaGen
- FBDSim
- FBDCover
FBDSenaGen+
(GA-based High-Quality Simulation Scenario Generator)

1. Initialization
2. Selection
3. Crossover
4. Mutation
5. Simulation
6. Evaluation (Fitness function)
7. Progress?

Evolution!
A genetic representation of scenario

- A chromosome = Sequence of Input value change
Selection operator

- Select good chromosome for new generation (t+1)
- Roulette wheel selection for gene diversity
Roulette wheel selection

<table>
<thead>
<tr>
<th>Fitness Score</th>
<th>Generation (T)</th>
<th>Generation (T+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- ↑5 ↓7 ... -</td>
<td>- ↑1 ↓8 ... -</td>
</tr>
<tr>
<td>4</td>
<td>- ↑1 ↓8 ... ↓1</td>
<td>- ↓12 ↑1 ... -</td>
</tr>
<tr>
<td>5</td>
<td>- ↓2 ↑1 ... -</td>
<td>- - ↑3 ... -</td>
</tr>
<tr>
<td>6</td>
<td>- - ↑3 ... ↑9</td>
<td>- - ↓8 ... -</td>
</tr>
<tr>
<td>2</td>
<td>- - ↓8 ... ↑1</td>
<td>- - ↓4 ... -</td>
</tr>
<tr>
<td>3</td>
<td>- - - ... -</td>
<td>- - - ... -</td>
</tr>
<tr>
<td>5</td>
<td>- - - ... -</td>
<td>- - - ... -</td>
</tr>
<tr>
<td>8</td>
<td>- - - ... -</td>
<td>- - - ... -</td>
</tr>
<tr>
<td>2</td>
<td>- - - ... -</td>
<td>- - - ... -</td>
</tr>
<tr>
<td>0</td>
<td>- ↓9 - ... ↑5</td>
<td>- ↓9 - ... ↑5</td>
</tr>
<tr>
<td>1</td>
<td>- - - ... ↑6</td>
<td>- - - ... ↑6</td>
</tr>
<tr>
<td>7</td>
<td>- ↓9 ↓7 ... ↓2</td>
<td>- ↓8 ↓3 ... ↓1</td>
</tr>
<tr>
<td>2</td>
<td>- ↑2 ↑ ... ↑9</td>
<td>- ↑2 ↑ ... ↑9</td>
</tr>
<tr>
<td>9</td>
<td>- ↓8 ↓3 ... ↓1</td>
<td>- ↓8 ↓3 ... ↓1</td>
</tr>
<tr>
<td>2</td>
<td>- ↑9 - ... -</td>
<td>- ↑9 - ... -</td>
</tr>
<tr>
<td>1</td>
<td>- ↑1 ↓2 ... ↑2</td>
<td>- ↑1 ↓2 ... ↑2</td>
</tr>
</tbody>
</table>

Population

chromosome 1 ≠ chromosome 2
chromosome 3 ≠ chromosome 4
Crossover operator

- Crossover with good chromosomes for new generation (t+1)
- Single point crossover

One Point Crossover

```
0 1 2 3 4 5 6 7 8 9
5 8 9 4 2 3 5 7 5 8
```

```
0 1 2 3 4 3 5 7 5 8
5 8 9 4 2 5 6 7 8 9
```

Multi Point Crossover

```
0 1 2 3 4 5 6 7 8 9
5 8 9 4 2 3 5 7 5 8
```

```
0 1 2 4 2 3 6 7 8 9
5 8 9 3 4 5 5 7 5 8
```

Uniform Crossover

```
0 1 2 3 4 5 6 7 8 9
5 8 9 4 2 3 5 7 5 8
```

```
5 1 9 4 4 5 5 7 5 9
0 8 2 3 2 3 6 7 8 8
```

Single point crossover

<table>
<thead>
<tr>
<th>Fitness Score</th>
<th>Generation (T)</th>
<th>Generation (T+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Population

<table>
<thead>
<tr>
<th>Fitness Score</th>
<th>Generation (T)</th>
<th>Generation (T+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Population
Mutation operator

- Mutate a chromosome for gene diversity

Bit Flip Mutation

\[
\begin{array}{cccccccc}
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

Swap Mutation

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
1 & 6 & 3 & 4 & 5 & 2 & 7 & 8 & 9 & 0 \\
\end{array}
\]

Scramble Mutation

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 1 & 3 & 6 & 4 & 2 & 5 & 7 & 8 & 9 \\
\end{array}
\]
Swap mutation
Fitness function

- fitness for toggle coverage:
 \[f_T = \frac{(\text{number of toggled blocks and output variables})}{(\text{number of boolean blocks and output variable})} \times 2 \]

- fitness for MC/DC coverage:
 \[f_M = \frac{(\text{number of simulated important combinations of conditions})}{(\text{all important combinations of conditions for all boolean function blocks})} \]

- fitness function:
 \[f = f_T \times f_M \]
Case Study

• Target: an example replicating a KNICS APR-1400 RPS BP

• We used our tool-set of
 – FBD Editor
 – FBDScenaGen+
 – FBDSim
 – FBDCover

1. Initialization
 1. Initialization
 loop
 2. Selection
 3. Crossover
 4. Mutation
 5. Simulation
 6. Evaluation (Fitness function)
 7. Progress?

Evolution!
Uncovered points
Conclusions

• We applied basic **GA techniques** to the scenario generation
 – for a **high-quality scenarios for FBD simulation**

• The prime objective
 – check a **feasibility** and efficiency of applying **GA techniques**

• We developed **FBDScenaGen+**
 – it can automatically generates high-quality scenarios
 – The result (**quality of scenarios**) is increased during repetition.

• Future work
 – Using High-level AI techniques
 – Adapting various fields in NPP
- Thank you –

Contact: atang34@konkuk.ac.kr (Eui-Sub Kim)
jsjj0728@konkuk.ac.kr (Sejin Jung)