ISOFIC 2017

November 26 (Sun) - 30 (Thu), 2017

Hwabaek International Convention Center (HICO), Gyeongju, Korea

FBDScenaGen+: GA-based High-Quality Scenario Generator for FBD Simulation

Eui-Sub Kim, **Sejin Jung**, Junbeom Yoo

Dependable Software Laboratory Konkuk University, Republic of Korea

Young Jun Lee, Jang Soo Lee Man-Machine Interface System Laboratory Korea Atomic Energy Research Institute, Republic of Korea

Contents

- 1. Introduction
- 2. Backgrounds
 - 1. FBD Structural Coverage
 - 2. Genetic Algorithm
- 3. FBD Simulation Framework
- 4. FBDScenaGen+ (GA-based High-Quality Simulation Scenario Generator)
- 5. Case Study
- 6. Conclusions

Introduction

- **FBDScenaGen+**: GA-based High-Quality Scenario Generator for FBD Simulation
 - Objective
 - High-Quality Scenario generation for FBD program simulation
 - Target system:
 - PLC-based software system in nuclear plants
 - Typical development process : SRS FBD C executable SW

Introduction

- Q. How Adequately the Testing has been Performed?
 - Test Done = Test Plan Executed and All Codes Executed
- Q. How much efforts is needed to accomplish some coverages?
 - Our Issue: <u>FBD Coverage + GA Techniques</u> → High-quality scenarios

- 1. FBD Structural Coverage
- 2. Genetic Algorithm

BACKGROUNDS

FBD Structural Coverage

- A metric for measuring simulation effectiveness
 - To help determine when a system is adequately tested
- Two coverage
 - Toggle coverage
 - MC/DC coverage

Ex) 1-to-0 and 0-to-1 \rightarrow 100% toggle coverage

FBD Structural Coverage

- A metric for measuring simulation effectiveness
 - To help determine when a system is adequately tested

Genetic Algorithm

- Genetic algorithm (GA)
 - A metaheuristic inspired by the process of natural selection.
 - Belongs to the larger class of evolutionary algorithms (EA).
 - High-quality solutions to optimization and search problems

Genetic Algorithm

- Genetic algorithm (GA)
 - A metaheuristic inspired by the process of natural selection.
 - Basic process: 1) selection, 2) crossover, 3) mutation

Best scenarios

FBD Simulation Framework

- FBD Editor
- FBDScenaGen

4

FBD Editor

101 A

- FBDSim
- FBDCover

FBDScenaGen

FBDSim

FBDCover

Initial

Generation

END

FBDScenaGen+ (GA-based High-Quality Simulation Scenario Generator)

- 1. Initialization
 - loop 2. Selection
 - 3. Crossover
 - 4. Mutation
 - 5. Simulation
 - 6. Evaluation (Fitness function)
 - 7. Progress?

A genetic representation of scenario

• A chromosome = Sequence of Input value change

Selection operator

LABORATORY

- Select good chromosome for new generation (t+1) •
- Roulette wheel selection for gene diversity ٠

Roulette wheel selection

Crossover operator

- Crossover with good chromosomes for new generation (t+1)
- Single point crossover

Single point crossover

Fitness Score			Ge	eneration	(T)			_						_			Ge	eneration	(T+1)	
1		↑5	↓7	•••	-	-	↑1							[-	↑5	↓7		-	-	↑1
4	-	↑1	↓8		↓1	↓2	↓1								-	↑1	↓8		↓1	↓2	$\downarrow 1$
5	-	↓2	↑1		-	-									=	↓2	↑1		-	1	-
6	-	-	- ↑3 - ↓8 		↑9 ↑1	- ↓9	↓4								-		↑3		19		↓4
2	-	-					↓2								-	- 2	↓8		↑1	↓9	↓2
3	-	-			-1	-	-			- †3		1-			-		-		-		-
5									1-1	- 18		$\uparrow 1 \downarrow 9$	9 ↓2								
8				•														•			
2									_	- 13		$\uparrow 1 \downarrow 9$	9 12					•			
0	-	↓9	-		↑5	H	-								-	-	↑3		1	↓9	↓2
1	12	-	-		↑6	↑5	↑5		-	- 18		19 -	↓4		-		↓8		19	-	↓4
7	-	↓2	↓7		↓2	↓3	-														
2	-	↑2	1		†9	†3	↑6									-	x				
9	-	↓8	↓3		↓1	-	-														
2	-	11	-			↑2	19														
1	-	↑1	↓2		↑2	↓1	↓5														
			1	Population	n									Ĺ			Ι	Populatio	n		

Mutation operator

• Mutate a chromosome for gene diversity

DEPENDABLE SOFTWARE LABORATORY

Swap mutation

Generation (T+1) Generation (T+1) 15 ↓7 1↑ 15 17 **↑**1 -----. . . -. . . ↑5 17 1↑ ---. . . 1↑ ↓8 $\downarrow 1$ ↓2 ↓1 **↑**1 ↓8 $\downarrow 1$ $\downarrow 2$ ↓1 --. ↓2 $\uparrow 1$ 12 $\uparrow 1$ --------... ... †3 19 ↓4 †3 19 ↓4 -----. . . ↑5 ↓7 ____1 ... ---. . . ↓2 ↓8 $\uparrow 1$ ↓9 $\downarrow 2$ ↓8 $\uparrow 1$ 19 ----... ... -----------... -... . • 1 ↓9 12 13 --13 1↑ 19 ↓2 1↑ 19 ↓2 13 -- \checkmark 18 19 ↓4 18 19 ↓4 ----↓9 12 11 13 --... • • • ... • • • • • • • • • ... Population Population

Fitness function

• fitness for toggle coverage:

 $- f_{T} = \frac{\binom{nuber \ of \ toggled \ blocks}{and \ output \ variables}}{\binom{number \ of \ boolean \ blocks}{and \ output \ variable} \times 2}$

• fitness for MC/DC coverage:

 $- f_{M} = \frac{\begin{pmatrix} number \ of \ simulated \\ important \ combinations \ of \ conditions \end{pmatrix}}{\begin{pmatrix} all \ important \ combinations \ of \ conditions \\ for \ all \ boolean \ function \ blocks \end{pmatrix}}$

• fitness function:

$$- f = f_T \times f_M$$

Case Study

- Target: an example replicating a KNICS APR-1400 RPS BP
- We used our tool-set of
 - FBD Editor
 - FBDScenaGen+
 - FBDSim
 - FBDCover

Evolution

Uncovered points

Conclusions

- We applied basic **GA techniques** to the scenario generation
 - for a high-quality scenarios for FBD simulation
- The prime objective
 - check a **feasibility** and efficiency of applying **GA techniques**
- We developed FBDScenaGen+
 - it can automatically generates high-quality scenarios
 - The result (quality of scenarios) is increased during repetition.
- Future work
 - Using High-level AI techniques
 - Adapting various fields in NPP

İSOFIC 2017

November 26 (Sun) - 30 (Thu), 2017

Hwabaek International Convention Center (HICO), Gyeongju, Korea

- Thank you -

Contact : atang34@konkuk.ac.kr (Eui-Sub Kim) jsjj0728@konkuk.ac.kr (Sejin Jung)

