A Formal Embedded Software Verification using Software Fault Tree Analysis

Junbeom Yoo

Division of Computer Science and Engineering Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea E-mail: jbyoo@konkuk.ac.kr

Extended Abstract

In developing embedded software such as nuclear reactor protection systems (RPS), safety analysis [1] is the process performed in order to guarantee software safety, as well as development and verification processes. Fault tree analysis (FTA) [2] is one of the most widely used safety analysis techniques, often generated and applied manually. Increasing use of formal specification has made it possible to generate software fault trees mechanically, but they all have an intrinsic limitation to the information they can contain. They do not have any information beyond that captured in their specifications or source code. In this extended abstract, we used the generated software fault tree from a different standpoint, verification purpose.

Figure 1 An overview of embedded software verification using software fault trees

Figure 1 depicts an overview of the proposed software verification technique using software fault tree as a starting point of formal verification. We regard the fault tree as an abstract model of the software, containing information only about its root-node (top failure). We therefore can check it against requirements properties quickly and analyze the verification results easily, in comparison with other verification techniques such as model checking [3]. The proposed technique translates the abstract model and properties both into Verilog programs, and performs a formal verification; VIS's combinational equivalence checking [4]. We used a prototype version of the KNICS RPS [5] in Korean nuclear power plants to demonstrate its effectiveness, and it showed that the mechanically generated fault tree is a good starting point for verifying a software model quickly against requirements properties regarding safety. We are currently focusing on developing a CASE tool, which mechanically generates software fault tree from NuSCR [6] formal requirements specification.

Acknowledgement

This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program supervised by the NIPA(National IT Industry Promotion Agency (NIPA-2010-(C1090-0903-0004)

References

- [1] N. G. Leveson, SAFEWARE, System safety and Computers, Addison Wesley, 1995.
- [2] N. G. Leveson and P. R. Harvey, "Software fault tree analysis", Journal of Systems and Software, Vol. 3, pp. 173–181, 1983.
- [3] E.M. Clarke, E.A. Emerson and A.P. Sistla, "Automatic verification of finite-state concurrent systems using temporal logic specifications", CM Trans. Programming Languages and Systems, Vol.8, No.2, pp.244–263, 1986.
- [4] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy and T. Villa, "VIS : A system for verification and synthesis", In the Eighth International Conference on Computer Aided Verification, CAV '96, pp.428–432, 1996.
- [5] KAERI(Korea Atomic Energy Rearch Institute), SRS for Reactor Protection System, KNICS-RPS-SRS101 Rev.00, 2003.
- [6] J. Yoo, E. Jee and S. S. Cha, "Formal Modeling and Verification of Safety-Critical Software", IEEE Software, Vol.26, No.3, pp.42-49, 2009.

A Formal Embedded Software Verification using Software Fault Tree Analysis

JUNBEOM YOO

ReVoT

2

Dependable Software Laboratory http://dslab.konkuk.ac.kr KONKUK University

Contents

Software Fault Tree Analysis

***** Formal Verification using Software Fault Tree

- SFT-to-Verilog Translation
- Property-to-Verilog Translation
- VIS Equivalence Checking
 - Case Study: KNICS RPS BP (Ver.00)

Conclusion

References

The 5th International Symposium on Embedded Technology, Daegu, Korea

Formal Verification using Software Fault Tree

ReVeT

5

 We use mechanically constructed SFTs for verification purpose.

Software Fault Tree Analysis on NuSCR ReVoT NuSCR [10] Formal requirements specification language for RPS (Reactor Protection System) Targeting PLC (Programmable Logic Controller) Software • Automatic SFT Construction from NuSCR [3] с H 4 $th_{\lambda}X_{\lambda}Trip=0$. t : current execution cycle t-1 : previous execution cycle 'Trip' at t Enter the state via ing' → "Trip" Cendition 1 nt for Delay] NuSCR formal specification Software fault tree 6

The 5th International Symposium on Embedded Technology, Daegu, Korea

VIS Analyzer 3.0 [13]		ReVet
 VIS assisting tool 		
-		
 Automating verification processes 		
 Visualizing analysis results 		
· · ·		
IVIS Analyzer 3.0	a" 🖾	
Verification Model Checking Result Result Table Result Charts Model Checking Result		
c:\fc2ODY\TextHOMEY(visivis-2.0)877A_Example()uality_formula.v c:\fc2ODY\TextHOMEY(visivis-2).0877A_Example()87F_formula.v vis> vis release 7.0 (compiled Sat Jun 14 12:02:36 2008) vis> th_T_Trip from network1 and th_T_Trip from network2 differ on input values Current_State40>:1	VK Snoyce 3.0	14
Previous State <d>:0</d>	Efe Ban Holp Verification Model Checking Presult Trate Presult Charts Model Checkin	ng Result
Previous_State<1>:1	Verling 1	Verlig 2
f_Channel_Error:1	C:KIC2007/TeXH-OMExister-2.0/8FTA_Example/Quality_Formula.v	C:KC2007TeXHOMEwsVis-2.06FTA_ExampleI6FT_Formula v
f_Module_Error:0 f_X<0>:0	<pre>//typedef enum (Normal, Waiting, Trip) 327_state; //SUT State is corresponding to (0,1,2) of</pre>	//typedef enum (Normal, Waiting, Trip) SFT_state; //dFT State is corresponding to (0,1,2) of
f X<1>:1	Current_State and Previous_State, for convenience	Current_State and Previous_State, for convenience
f_X<2>:1	'define k Wys 10	'define k_Wys 10
f_X<3>:0	// define k_Trip_Delay 20	// 'define k_Trip_Delay 20
f X<5>:1	//ser_resula	//SET_Formula
f_X<6>:1	module Property_Formula(f_X, f_X_Valid, f_Module_Error, f_Channel_Error, h_X_Setpoint,	module SFT_Formula(f_X, f_X_Valid, f_Nodule_Error, f_Channel_Error, h_X_Setpoint, Current_State,
f x_valid:0 h X Setpoint<0>:1	Current_State, Previous_State, th_X_Trip);	<pre>Previous_State, th_X_Trip);</pre>
h X Setpoint<1>:1	input[0:6] f X; input f_X_Valid; input f_Medule_Error;	imput()() (_X) imput f_X_Valid; imput f_Module_Brown
h_X_Setpoint<2>:1	input f_Channel_Error; input f(0:6) h x Setpoint;	input (
h_X_Setpoint<3>:1	input[0:0] m_A_getpiant) input[0:1] Current_State; input[0:1] Freeious_State;	input[0:1] Current_State; input[0:1] Previous_State;
h X Setpoint<4>:1	output th_T_Trip;	output th_X_Trip;
h X Setpoint<5>:0 h X Setpoint<6>:1		assign th_X_Teip =
h \overline{X} Betpoint<5+0 h \overline{X} Betpoint<6+1 Networks are NOT combinationally equivalent.	<pre>emign th_T_rig = //Correctionss /Correctionss /Correct_Tats == 0 42 Previous_Parts == 071; /Correct_Tats == 0 42 Previous_Parts == 071; /Correct_Tats == 0 42 Previous_Parts == 1070; /(C_Vid== 1) 14 (Parts Parts == 1) (C_band_Prev == 1) 44 Oursen_Parts == 0 44</pre>	<pre>(urrent fitse = 2 if Devious fitse = 0 if (f_X*aid = 1) (jobaid, fitse = 1)) (urrent = 1) (jobaid, fitse = 1)) (urrent fitse = 2 if Devious fitse = 1 if (f_X > h_X explain)))) (urrent fitse = 2 if Devious fitse = 2 if (if (x_v)) = 0 if (jobaid, fitse = 0 if (urrent fitse = 2 if provide, fitse = 0 if (urrent fitse = 0 if (x < h_X = hoint -</pre>
h X_Setpoint<5>:0 h_X_Setpoint<6>:1	<pre>///Correctness (Current_State == 0 42 Free/coug_State != 0)?1; (Current_State == 2 42 Free/coug_State != 2)?0; (Current_State == 0 42 Free/coug_State != 1)1; //Fsirmers ((1 X Valid == 1 1 Hodule Error == 1)</pre>	<pre>(t_X_valid = 1): {</pre>
$h \xrightarrow{T}$ Sepoint/S+0 $h \xrightarrow{T}$ Sepoint/S+1 Networks are NOT combinationally equivalent.	<pre>///Correctinis# (//Correctinis#) (//Correctinis#) (Correctinit#) (Correctini</pre>	<pre>(C_X_valid = 1.11 {_biskl_ptrow = 1.11 {_chosed_Error = 1.12}; (Current_Ptate = 2.62 Previous_Btate = 1.66 (f_X (Current_Ptate = 2.62 Previous_Btate = 2.66; (Current_Ptate = 2.62 Previous_Btate = 2.66; (C_X_valid = 0.64 C_Mode_Error = 0.66; (chosed_Error = 0.64 (f_X < h_X_Pteppint - 1));</pre>

References

- [1] Y. Papadopoulos, J. McDermid, R. Sasse, G. Heiner, Analysis and synthesis of the behaviour of complex programmable electronic systems in conditions of failure, Reliability Engineering and System Safety 71 (3) (2001) 229–247.
- [2] K. Vemuri, J. Dugan, K. Sullivan, Automatic synthesis of fault trees for computer-based systems, IEEE Transactions on Reliability 48 (4) (1999) 394–402.
- [3] T. Kim, J. Yoo, S. Cha, A Synthesis Method of Software Fault Tree from NuSCR Formal Specification using Templates, Journal of the Korean Institute of Information Scientists and Engineers -Software and Application (in Korean) 32 (12) (2005) 1178–1191.
 [4] J. Yoo, S. Cha, H. S. Son, Automatic Generation of Goal-Tree from Statecharts Requirements Specification, America Nuclear
- Society Transactions 88 (2003) 37–38. [5] R. Mojdehbakhsh, S. Subramanian, R. Vishnuvajjala, W. Tsai, L. Elliott, A process for software requirements safety analysis, in: International Symposium on Software Reliability Engineering, 1994, pp. 45–54.
- [6] V. Ratan, K. Partridge, J. Reese, N. Leveson, Safety analysis tools for requirements specifications, in: the 7th COMPASS Workshop, 1996, pp. 149–160.
- [7] N. G. Leveson, S. Cha, T. Shimeall, Safety verification of ada programs using software fault trees, IEEE Software 8 (4) (1991) 48–59.
 [8] S.-Y. Min, Y. kyu Jang, S. Cha, Y.-R. Kwon, D. Bae, Safety verification of ada95 programs using software fault trees, in: Computer Safety, Reliability and Security(SAFECOMP) LNCS 1698/1999, 1999, pp. 226–238.
- [9] Y. Oh, J. Yoo, S. Cha, H. S. Son, Software Safety Analysis of Function Block Diagrams using Fault Trees, Reliability Engineering and System Safety 88 (3) (2005) 215–228.
- [10] J. Yoo, T. Kim, S. Cha, J.-S. Lee, H. S. Son, A Formal Software Requirements Specification Method for Digital Nuclear Plants Protection Systems, Journal of Systems and Software 74 (1) (2005) 73–83.
- [11] S. Yun, D.-A. Lee, J. Yoo, NuFTA: A CASE Tool for Automatic Software Fault Tree Analysis, Transactions of the Korean Nuclear Society Spring Meeting, 2010, submitted.
- [12] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, T. Villa, VIS : A system for verification and synthesis, in: the Eighth International Conference on Computer Aided Verification, CAV '96, 1996, pp. 428–432.
- [13] S. Jung, J. Yoo, S. Cha, VIS Analyzer : A visual assistant for vis verification and analysis, in: The 13th IEEE Computer Society symposium dealing with the rapidly expanding field of object/component/service-oriented real-time distributed computing (ORC) technology, ISORC 2010 Symposium, 2010, to be presented.
- [14] J. Yoo, E. Jee, S. S. Cha, Formal Modeling and Verification of Safety-Critical Software, IEEE Software 26 (3) (2009) 42-4

15

