
42	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

focus 1

To overcome such obstacles, we developed a
formal-methods-based process that supports de-
velopment, verification, and safety analysis. We
also developed CASE tools to let nuclear engineers
apply formal methods without having to know the
underlying formalism in depth. In this article, we
describe more than seven years’ experience work-
ing with nuclear engineers in developing RPS soft-
ware and applying formal methods. Nuclear engi-
neers and regulatory personnel found the process
effective and easy to apply with our integrated tool
support.

Developing a
Digital Control System
When developing and verifying safety-critical soft-
ware, formal methods are important for increasing
safety assurance and demonstrating compliance
with strict regulations. In 2001, the Korean Nu-
clear Instrumentation and Control System consor-
tium (KNICS; www.knics.re.kr) began developing

a digital control system for the APR-1400 reactor.
At the project’s start, project managers made two
decisions that strongly influenced our process:

When developing safety-critical components ■■

such as an RPS, we would use formal meth-
ods whenever it was practical to do so.
Software development would be based on the ■■

programmable logic controller (PLC), using
function block diagram (FBD) as the imple-
mentation language.

As a software engineering research group in
computer science, we began working with nu-
clear engineers to produce a formal requirements
specification, develop necessary CASE tools, and
conduct formal verification during software de-
velopment. Figure 1 describes the overall pro-
cess we developed, which covers three essential
aspects of safety-critical software: development,
formal verification, and safety demonstration.

R igorous quality demonstration is important when developing safety-critical
software such as a nuclear power plant’s reactor protection system (RPS).
Although stakeholders strongly recommend using formal modeling and ver-
ification, domain experts often reject such methods because the candidate

techniques are overabundant, the notations appear complex, the tools often work only
in isolation, and the output is frequently too difficult for domain experts to understand
and to extract meaningful information.

A formal-methods-
based process
for developing
safety-critical
software supports
development,
verification and
validation, and safety
analysis and has
proven to be effective
and easy to apply.

Junbeom Yoo, Konkuk University

Eunkyoung Jee, Korea Advanced Institute of Science and Technology

Sungdeok Cha, Korea University

Formal Modeling
and Verification
of Safety-Critical Software

emb e dde d s o f t war e

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

	 May/June 2009 I E E E S o f t w a r e � 43

Our group developed the CASE tools marked
with an asterisk in the figure.

Although the process is similar to that of a typi-
cal software project, little development activity oc-
curs beyond the design phase. Once the final FBD
design has successfully completed safety analysis
and verification and has been officially approved,
a compiler provided by the PLC vendor automati-
cally generates executable code. So, it’s fair to treat
an FBD as an implementation language, too. Also,
a different group tested the software extensively at
various levels, according to the standard practices.

In developing the formal-methods-based pro-
cess in Figure 1, we insisted on three core prin-
ciples. First, we tried to honor the end users’ and
stakeholders’ opinions whenever practical. In our
project, nuclear engineers developing a plant in-
strumentation and control system were the most
important user group. The government’s regula-
tory personnel were also important stakeholders.
They needed to review and approve all software
requirements, designs, and associated documents
for the system to be certified for operation. Be-
cause the regulatory agency had experience re-
viewing a similar system (currently used in a

Wolsung plant in Korea), many of the project per-
sonnel were familiar with software cost reduction
(SCR) and SCR-like tabular notations.1 However,
they felt uneasy about exclusively using the tab-
ular notations. So, we chose the syntax of Nu-
SCR,2 an SCR-like formal specification language
that we customized for nuclear applications, to
address the domain experts’ concerns. We chose
to retain tabular notations with relaxed rules on
expressions while introducing automata-like no-
tations for specifying timing behavior. Once the
notations became fixed, we defined formal se-
mantics so that we could perform automated
analysis and develop the CASE tool. Choosing
notations that the domain experts will accept is
the first step toward successfully applying formal
methods in industrial environments.

Second, we were determined not to reinvent
the wheel, by using techniques and tools already
proven effective. For example, model-checking
theory and tools are mature enough, and we
wanted seamless integration with our process. Be-
cause FBD was our implementation language, we
chose model checkers that would work well with
it. For example, because we expected the initial

Development
process

Veri�cation
and validation

process

Safety analysis
process

FTA, FMEA, HazOp FTA, HazOp

Requirements analysis Design Implementation and testing
Software
life cycle

FBD

programs

NuSCRtoFBD*

Automatic
synthesis

LTL
model checking

Cadence SMV
FBD Veri�er 1.0*

Equivalence
checking

VIS 2.0
VIS Analyzer 1.0*

Compiled
into

FBD Veri�er 1.0*NuSRS 2.0*

FTA templates* FTA templates*

NuSCR
formal

speci�cation

NuSRS 2.0*

Automatic
translation

Automatic
translation

CTL
model checking

Cadence SMV

Executable
machine code

for PLCs

CTL Computation tree logic
FBD Function block diagram
FMEA Failure modes and effects analysis
FTA Fault tree analysis
HazOp Hazard and operability study
LTL Linear temporal logic

NuSCR Software cost reduction for nuclear applications
NuSRS CASE tool for NuSCR speci�cation and veri�cation
PLC Programmable logic controller
SMV Symbolic model veri�er
VIS Veri�cation Interacting with Synthesis

Figure 1. Software
development,
verification, and safety
analysis for the Korean
Nuclear Instrumentation
and Control System
(KNICS) consortium’s
reactor protection
system software. CASE
tools marked with an
asterisk were developed
by the authors.

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

44	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

FBD design to go through multiple revisions and
releases, we were interested in an equivalence ver-
ification feature of the VIS (Verification Interact-
ing with Synthesis; http://embedded.eecs.berkeley.
edu/research/vis) model checker. Another impor-
tant factor was a relatively small semantic gap
between FBD and Verilog. Because the VIS and
Cadence SMV (Symbolic Model Verifier; www.
kenmcmil.com/smv.html) model checkers can
process Verilog as their inputs, we developed
FBD-to-Verilog translation rules and proved se-
mantic equivalence to utilize Cadence SMV and
VIS. It’s essential to choose “industrial strength”
formal methods proven effective in similar appli-
cations rather than preaching the pet formalism
of formal-method experts.3

Third, we provided proper tool support to
make formal methods as easy and intuitive as pos-
sible. Although VIS equivalence checking was ap-
parently highly useful, nuclear engineers couldn’t
accept a text-based tool interface. It’s nearly im-
possible for them to understand the output or un-
derstand why two designs behave differently. The
nuclear engineers didn’t have the time for or inter-
est in learning VIS technical details to investigate
why two designs revealed different behavior af-
ter seven states. Formal-method experts shouldn’t
blame nuclear engineers for this attitude. Likewise,
understanding a Cadence SMV counterexample is

really daunting to most people who aren’t formal-
methods experts. To bridge such semantic gaps, we
developed visualization tools so that domain ex-
perts could focus on semantic analysis in familiar
notations without being overwhelmed by low-level,
often partial, and sometimes redundant raw data.
For formal methods to be successfully applied in
industry, there must be a reasonable interpretation
of the results using the terms domain experts un-
derstand. Visualization is often the most effective
approach.

Development
To begin requirements analysis, the domain ex-
perts prepared a natural-language specification,
and we worked with nuclear engineers to prepare
formal specification in NuSCR. NuSCR refers to a
specification language and the approach we devel-
oped, not a document. Hands-on tutorial sessions
helped them better understand NuSCR’s syntax
and semantics. As the language was defined—in
close consultation with an expert who understood
both domains—most developers accepted NuSCR
without much difficulty or resistance. However,
at their request, we relaxed rules on expressions
on structured decision tables (SDTs), compared
to the SCR method, in that NuSCR allowed re-
lational and range expressions. Domain experts
insisted that those equations they would be forced

Figure 2. NuSRS
2.0: A CASE tool for
NuSCR specification
and verification. The
formal modeling
and verification tool
significantly improves
software development
productivity as well
as safety assurance
because it can detect
many errors early and
automatically.

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

	 May/June 2009 I E E E S o f t w a r e � 45

to break into multiple subexpressions actually rep-
resent accurate “atomic” domain knowledge, and
that automated analysis of completeness and con-
sistency is unnecessary. However, they had trou-
ble understanding specification of timing-related
behavior in tabular notation, and they clearly pre-
ferred automata-like diagrams.

Our group worked with domain experts in
developing a formal specification for two of the
four major subsystems, whose natural-language
specification was nearly 200 pages long. We de-
veloped the formal specification in NuSCR no-
tation, following a process similar to the one
Nancy Leveson and her graduate students used
to develop a formal specification for the TCAS
(Traffic Alert and Collision Avoidance System)
for aviation.4 Nearly 200 NuSCR nodes (for ex-
ample, SDTs and automata) were scattered in
nearly 20 group nodes organized hierarchically.
We used the NuSRS CASE tool we developed (see
Figure 2).

NuSCR uses a finite-state machine (FSM) to
specify state-dependent operations and a timed
transition system (TTS), a variant of automata, to
specify timing-related requirements. We made var-
ious nodes different shapes and colors so that we
could easily see their roles. Naming conventions
(such as f_ for functions, h_ for history variables,
and th_ for timed history variables) also indicate
the role. In addition, the function overview dia-
gram (see the middle of Figure 2) illustrates which
NuSCR nodes are included in a group node whose
prefix is g_. Furthermore, all the externally vis-
ible inputs and outputs are organized in groups
and shown on the left along with their attributes.
NuSRS 2.0 supports XML-based interfaces and
includes menus to perform automated translation
to inputs accepted by Cadence SMV.

Once the domain experts understood NuSCR
notation and a reasonably stable CASE tool be-
came available, nuclear engineers could specify
most of the formal specification (although they
needed our help occasionally). During require-
ments analysis, domain experts inspected the
NuSCR models. Our research group also used
Cadence SMV to see whether the NuSCR specifi-
cation preserved required properties.

Once the experts approved and baselined the
formal specification in NuSCR, we could synthe-
size semantically equivalent FBD designs using
rules from our previous research.5 We emphasized
semantic-preserving and correct synthesis rather
than an optimal generated FBD design. For ex-
ample, when some expressions appeared several
times in the specification, the synthesized FBD

contained redundancy although it was semanti-
cally correct. Our experiment revealed that syn-
thesized FBD programs often contain more than
twice the number of FBD blocks than manually
coded and optimized designs. In the nuclear ap-
plication, correctness and safety are the most im-
portant quality criteria because regulator person-
nel must rigorously review the design. In addition,
there are only a few installations at most, and cost
saving through optimal design is rarely a practi-
cal concern. However, in different application
domains (automotive control systems in particu-
lar), an optimal design would become a critical re-
quirement owing to the sheer number of systems
to be produced in a highly competitive market.

Synthesized design is a useful starting point for
engineers to revise and develop official FBD de-
sign. Many FBD engineers felt that manual FBD
programming, regardless of the specification no-
tations used, was the most error-prone activity.
Unfortunately, we couldn’t use our FBD synthe-
sis tool, NuSCRtoFBD (see Figure 3), because our
team couldn’t develop all the necessary CASE tools
in time. However, when we consulted the nuclear
engineers after the tool development, they felt that
such a tool would have significantly improved their
productivity.

Verification
For safety-critical software such as RPS, engi-
neers must perform verification after each phase.6
Although inspecting the requirements document
and FBD design is useful, it’s insufficient for meet-
ing rigorous regulatory requirements. During re-
quirements analysis, we developed rules to trans-
late the NuSCR specification into language the
Cadence SMV model checker could accept. We
implemented automatic translation and seamless

Figure 3. NuSCRtoFBD:
A CASE tool for
automatic FBD
synthesis from NuSCR.
Integrated support
for formal methods is
critical. If one is forced
to manually develop
an FBD design from
a formal specification,
such an approach
is unlikely to win
acceptance in industry.

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

46	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

execution of Cadence SMV as one of NuSRS 2.0’s
pop-up verification menus. In Figure 2, the win-
dows on the right illustrate that domain experts
can perform all the verification activities without
having to know separate commands for invoking
Cadence SMV. The properties to be proved, how-
ever, couldn’t have been automatically generated,
so we encoded temporal-logic formulas in close
consultation with nuclear engineers. Such proper-
ties, however, rarely change, although details on
requirements or FBD design might change.

We also performed Cadence SMV model
checking on two subsystems: BP (Bi-stable Proces-
sor) and CP (Coincidence Processor). We detected
25 errors, including an incorrect specification in
BP. Most errors were omissions in the specifica-
tion. Although a few mistakes were introduced
during formal specification, we discovered and
fixed them relatively quickly. We report on the of-
ficial verification results for a preliminary version
of BP in previous work.7

During design, we applied Cadence SMV

(a)

(b)
(c)

Figure 4. FBD Verifier: A CASE tool for automatically translating FBD into Verilog programs: (a) automatic translation of
a Verilog program, (b) SMV verification results—a counterexample, and (c) the counterexample’s timing graph. Without
proper visual support, counterexample analysis is boring and potentially error-prone, even for people with technical
knowledge of model checking.

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

	 May/June 2009 I E E E S o f t w a r e � 47

model checking and VIS equivalence checking
on FBD programs. Whereas the former examines
whether the FBD programs meet required proper-
ties, the latter determines behavioral equivalence
between two FBD revisions. For Cadence SMV
model checking, we first defined FBD’s semantics
as a state transition system and developed rules to
generate semantically equivalent Verilog programs.
Using model-checking techniques, we identified 13
distinct types of errors in the FBD programs and
detected several incidents of incorrect FBD logic.8

To assist FBD design verification, we devel-
oped the FBD Verifier (see Figure 4a). This tool
reads FBD programs in standard XML format
from the PLC vendor’s engineering tools (Figure
4a, left) and translates them into equivalent Ver-
ilog programs (Figure 4a, right). We didn’t want
to overwhelm domain experts with unnecessary
details; nevertheless, the tool allows line-by-line
comparison to give regulatory personnel and do-
main experts confidence that the translation is
correct. Most domain experts would simply click
buttons at the bottom to perform model checking
without bothering with FBD and Verilog syntax
details. Unfortunately, Cadence SMV often gen-
erates counterexamples with excessively primitive
details (see Figure 4b). However, the Verilog code
in the main window was highly useful for analyz-
ing such counterexamples.

More important, domain experts will likely
refuse to use formal methods if they have to man-
ually perform such analysis. So, we developed a
feature where users could enter arbitrary expres-
sions and visually display how values change in
a manner similar to the timing graph in Figure
4c. Users can choose to display only their items
of interest. They can combine existing entries in
the timing graph and display how those entries
change values in the counterexample. Using the
visualization tool, verification personnel can eas-
ily understand why model checking failed.

We also used the VIS verification system to de-
termine behavioral equivalence between the two
successive FBD revisions. Although VIS accepts
Verilog as input, it offers no graphical interface,
and the results only partially display relevant in-
formation. Existing VIS output is similar to that in
Figure 5b (see the next page). To many who are not
experts on formal methods, it simply says two Ver-
ilog programs exhibited different behavior after
seven states but offers no useful insights as to why.
It displays only partial information necessary to
accurately understand the full scenario. Even a sys-
tem output display, shown in the sixth state, isn’t
intuitive. Most nuclear engineers found the infor-

mation in Figure 5b totally inadequate. However,
with the VIS Analyzer tool we developed, engineers
not only can compare two Verilog designs side-by-
side (see Figure 5a) but also can click the Result
Table tab to display the equivalence-checking re-
sults in an easily understandable format (see Fig-
ure 5c). A recent case study demonstrated that the
behavioral-equivalence checking was effective.9

Safety Analysis
Fault tree analysis (FTA) is the most common
safety analysis technique; the theory is mature,
and the practice is well established for sequential
source codes such as C. Developers usually per-
form FTA manually, using fault tree templates that
illustrate potential failure modes. Unfortunately,
no FTA template existed for NuSCR specification
and FBD nodes, so we developed a set of templates
to capture potential failure modes of the NuSCR
language constructs10 and FBD blocks.11 Figure
6 (see page 49) shows a fault tree template for the
AND function block. This template consists of
fault events and cause/effect events. The cause/
effect events denote fault propagation and help
analysts understand the logical operation. Our
project partner, an instrumentation and control re-
search group in a nuclear-engineering department,
performed fault tree analysis, improved template
definitions, and published the final FTA results.12
Although safety analysis is mandatory in nuclear
applications, this application could become op-
tional for other domains.

W e developed many of the tool proto-
types as the need arose, while the proj-
ect was in full swing. So, we plan to

integrate all the tools, from requirements analysis
to design. Most domain experts strongly prefer an
integrated development and verification environ-
ment where analysis happens behind the scenes
and results are displayed, visually if possible, in a
language familiar to them. Such languages might
vary from one domain to another.

Finally, regardless of technical advances in for-
mal methods, testing will likely always remain an
essential component. FBD testing technique is rela-
tively undeveloped. We’re developing theories on
FBD testing measures so that developers and reg-
ulatory bodies can assess the adequacy of testing
FBD quantitatively with proper tool support.

Acknowledgments
Konkuk University’s faculty research fund supported
this work in 2008.

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

48	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

References
	 1.	 K.L. Heninger, “Specifying Software Requirements for

Complex Systems: New Techniques and Their Applica-
tion,” IEEE Trans. Software Eng., vol. 6, no. 1, 1980,
pp. 2–13.

	 2.	 J. Yoo et al., “A Formal Software Requirements Speci-
fication Method for Digital Nuclear Plants Protection
Systems,” J. Systems and Software, vol. 74, no. 1, 2005,
pp. 73–83.

	 3.	 S. Cha, “Pet Formalisms versus Industry-Proven Sur
vivors: Issues on Formal Methods Education,” J. Re­
search and Practice in Information Technology, vol. 32,
no. 1, 2000, pp. 39–46.

	 4.	 M.P.E. Heimdahl and N.G. Leveson, “Completeness
and Consistency in Hierarchical State-Based Require-
ments,” IEEE Trans. Software Eng., vol. 22, no. 6,
1996, pp. 363–377.

	 5.	 J. Yoo et al., “Synthesis of FBD-Based PLC Design from
NuSCR Formal Specification,” Reliability Eng. and
System Safety, vol. 87, no. 2, 2005, pp. 287–294.

	 6.	 US Nat’l Research Council, Digital Instrumentation
and Control Systems in Nuclear Power Plants: Safety
and Reliability Issues, Nat’l Academy Press, 1997.

	 7.	 J. Cho, J. Yoo, and S. Cha, “NuEditor—a Tool Suite for
Specification and Verification of NuSCR,” Proc. 2nd
ACIS Int’l Conf. Software Eng. Research, Manage­
ment, and Applications (SERA 04), IEEE Press, 2004,
pp. 298–304.

	 8.	 J. Yoo, S. Cha, and E. Jee, “A Verification Framework
for FBD Based Software in Nuclear Power Plants,”
Proc. 15th Asia Pacific Software Eng. Conf., IEEE
Press, 2008, pp. 385–392.

	 9.	 J. Yoo, S. Cha, and E. Jee, “Verification of PLC Pro-
grams Written in FBD with VIS,” Nuclear Eng. and
Technology, Feb. 2009.

	10.	 T. Kim, J. Yoo, and S. Cha, “A Synthesis Method of
Software Fault Tree from NuSCR Formal Specification
Using Templates,” J. Korea Inst. Information Scientists
and Engineers, vol. 32, no. 12, 2005, pp. 1178–1192 (in
Korean).

(a)

(c)

(b)

Figure 5. VIS Analyzer: A CASE tool for seamless execution and visualization of VIS: (a) two Verilog programs, (b) VIS
equivalence checking results, and (c) the result table. It’s important to reduce the semantic gap between “raw data”
and “domain knowledge” whenever possible.

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

 May/June 2009 I E E E S o f t w a r E 49

 11. Y. Oh et al., “Software Safety Analysis of Function
Block Diagrams Using Fault Trees,” Reliability Eng.
and System Safety, vol. 88, no. 3, 2005, pp. 215–228.

 12. G.-Y. Park et al., “Fault Tree Analysis of KNICS RPS
Software,” Nuclear Eng. and Technology, vol. 40, no.
5, 2008, pp. 397–408.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Junbeom Yoo is an assistant professor in Konkuk University’s Department of Com-
puter Science and Engineering. His research interests include requirements engineering and
formal methods. Yoo has a PhD in computer science from the Korea Advanced Institute of
Science and Technology. Contact him at jbyoo@konkuk.ac.kr.

Sungdeok (Steve) Cha is a professor in Korea University’s Computer Science and
Engineering Department. His research interests include software safety and computer secu-
rity. Cha has a PhD in information and computer science from the University of California,
Irvine. Contact him at scha@korea.ac.kr.

Eunkyoung Jee is a PhD candidate at the Korea Advanced Institute of Science and
Technology. Her research interests include software testing and safety-critical software. Jee
has an MS in computer science from the Korea Advanced Institute of Science and Technology.
Contact her at ekjee@dependable.kaist.ac.kr.

Failure of internal
operation for an AND

function block

FAIL_INTO_AND#

If BOOL, check a fault of
inverter insertion/omission

at output port of AND#

CF_INVO_AND#

If BOOL, check a fault of
inverter insertion/omission

at IN1 of AND#

CF_INVIN1_AND#

Check a fault of output
variable assignment at

output port of AND#, if ANY

CF_OVN_AND#

Check a fault of proper
FB selection for AND#

(incorrect, omission, addition)

CF_PFB_AND#

A value on the output
port of AND# is

0: OUT(AND#)=0
Undesirable

S0_OG_AND#

A value on the output
port of AND# is

1: OUT(AND#)=1
Undesirable

S1_OG_AND#

Failure of output
coming from

AND#: Output value
is undesirable

FAIL_AND#

Fail to 0 at IN1 port
of AND#

F0_IN1_AND#

Fail to 0 at IN2 port
of AND#

F0_IN2_AND#

Fail to 1 at IN1 port
of AND#

F1_IN1_AND#

Fail to 1 at IN2 port
of AND#

F1_IN2_AND#

Check further from IN1
when IN1(AND#)=0

and this is undesirable.

SO_IN1_AND#

If BOOL, check a fault of
inverter insertion/omission

at IN1 of AND#

CF_INVIN1_AND#

Check further from IN1
when IN1(AND#)=1

and this is undesirable.

S1_IN1_AND#

Figure 6. A fault tree template for the AND function block. It illustrates how failure can occur and what dependencies
exist among potential causes.

Questions?
Comments?

 software@computer.org

Em
ai

l

Authorized licensed use limited to: Konkuk University. Downloaded on April 19, 2009 at 23:17 from IEEE Xplore. Restrictions apply.

