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To overcome such obstacles, we developed a 
formal-methods-based process that supports de-
velopment, verification, and safety analysis. We 
also developed CASE tools to let nuclear engineers 
apply formal methods without having to know the 
underlying formalism in depth. In this article, we 
describe more than seven years’ experience work-
ing with nuclear engineers in developing RPS soft-
ware and applying formal methods. Nuclear engi-
neers and regulatory personnel found the process 
effective and easy to apply with our integrated tool 
support.

Developing a  
Digital Control System
When developing and verifying safety-critical soft-
ware, formal methods are important for increasing 
safety assurance and demonstrating compliance 
with strict regulations. In 2001, the Korean Nu-
clear Instrumentation and Control System consor-
tium (KNICS; www.knics.re.kr) began developing 

a digital control system for the APR-1400 reactor. 
At the project’s start, project managers made two 
decisions that strongly influenced our process:

When developing safety-critical components ■■

such as an RPS, we would use formal meth-
ods whenever it was practical to do so.
Software development would be based on the ■■

programmable logic controller (PLC), using 
function block diagram (FBD) as the imple-
mentation language.

As a software engineering research group in 
computer science, we began working with nu-
clear engineers to produce a formal requirements 
specification, develop necessary CASE tools, and 
conduct formal verification during software de-
velopment. Figure 1 describes the overall pro-
cess we developed, which covers three essential 
aspects of safety-critical software: development, 
formal verification, and safety demonstration. 

R igorous quality demonstration is important when developing safety-critical 
software such as a nuclear power plant’s reactor protection system (RPS). 
Although stakeholders strongly recommend using formal modeling and ver-
ification, domain experts often reject such methods because the candidate 

techniques are overabundant, the notations appear complex, the tools often work only 
in isolation, and the output is frequently too difficult for domain experts to understand 
and to extract meaningful information.
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Our group developed the CASE tools marked 
with an asterisk in the figure.

Although the process is similar to that of a typi-
cal software project, little development activity oc-
curs beyond the design phase. Once the final FBD 
design has successfully completed safety analysis 
and verification and has been officially approved, 
a compiler provided by the PLC vendor automati-
cally generates executable code. So, it’s fair to treat 
an FBD as an implementation language, too. Also, 
a different group tested the software extensively at 
various levels, according to the standard practices.

In developing the formal-methods-based pro-
cess in Figure 1, we insisted on three core prin-
ciples. First, we tried to honor the end users’ and 
stakeholders’ opinions whenever practical. In our 
project, nuclear engineers developing a plant in-
strumentation and control system were the most 
important user group. The government’s regula-
tory personnel were also important stakeholders. 
They needed to review and approve all software 
requirements, designs, and associated documents 
for the system to be certified for operation. Be-
cause the regulatory agency had experience re-
viewing a similar system (currently used in a 

Wolsung plant in Korea), many of the project per-
sonnel were familiar with software cost reduction 
(SCR) and SCR-like tabular notations.1 However, 
they felt uneasy about exclusively using the tab-
ular notations. So, we chose the syntax of Nu-
SCR,2 an SCR-like formal specification language 
that we customized for nuclear applications, to 
address the domain experts’ concerns. We chose 
to retain tabular notations with relaxed rules on 
expressions while introducing automata-like no-
tations for specifying timing behavior. Once the 
notations became fixed, we defined formal se-
mantics so that we could perform automated 
analysis and develop the CASE tool. Choosing 
notations that the domain experts will accept is 
the first step toward successfully applying formal 
methods in industrial environments.

Second, we were determined not to reinvent 
the wheel, by using techniques and tools already 
proven effective. For example, model-checking 
theory and tools are mature enough, and we 
wanted seamless integration with our process. Be-
cause FBD was our implementation language, we 
chose model checkers that would work well with 
it. For example, because we expected the initial 
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Figure 1. Software 
development, 
verification, and safety 
analysis for the Korean 
Nuclear Instrumentation 
and Control System 
(KNICS) consortium’s 
reactor protection 
system software. CASE 
tools marked with an 
asterisk were developed 
by the authors.
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FBD design to go through multiple revisions and 
releases, we were interested in an equivalence ver-
ification feature of the VIS (Verification Interact-
ing with Synthesis; http://embedded.eecs.berkeley.
edu/research/vis) model checker. Another impor-
tant factor was a relatively small semantic gap 
between FBD and Verilog. Because the VIS and 
Cadence SMV (Symbolic Model Verifier; www.
kenmcmil.com/smv.html) model checkers can 
process Verilog as their inputs, we developed 
FBD-to-Verilog translation rules and proved se-
mantic equivalence to utilize Cadence SMV and 
VIS. It’s essential to choose “industrial strength” 
formal methods proven effective in similar appli-
cations rather than preaching the pet formalism 
of formal-method experts.3

Third, we provided proper tool support to 
make formal methods as easy and intuitive as pos-
sible. Although VIS equivalence checking was ap-
parently highly useful, nuclear engineers couldn’t 
accept a text-based tool interface. It’s nearly im-
possible for them to understand the output or un-
derstand why two designs behave differently. The 
nuclear engineers didn’t have the time for or inter-
est in learning VIS technical details to investigate 
why two designs revealed different behavior af-
ter seven states. Formal-method experts shouldn’t 
blame nuclear engineers for this attitude. Likewise, 
understanding a Cadence SMV counterexample is 

really daunting to most people who aren’t formal-
methods experts. To bridge such semantic gaps, we 
developed visualization tools so that domain ex-
perts could focus on semantic analysis in familiar 
notations without being overwhelmed by low-level, 
often partial, and sometimes redundant raw data. 
For formal methods to be successfully applied in 
industry, there must be a reasonable interpretation 
of the results using the terms domain experts un-
derstand. Visualization is often the most effective 
approach.

Development
To begin requirements analysis, the domain ex-
perts prepared a natural-language specification, 
and we worked with nuclear engineers to prepare 
formal specification in NuSCR. NuSCR refers to a 
specification language and the approach we devel-
oped, not a document. Hands-on tutorial sessions 
helped them better understand NuSCR’s syntax 
and semantics. As the language was defined—in 
close consultation with an expert who understood 
both domains—most developers accepted NuSCR 
without much difficulty or resistance. However, 
at their request, we relaxed rules on expressions 
on structured decision tables (SDTs), compared 
to the SCR method, in that NuSCR allowed re-
lational and range expressions. Domain experts 
insisted that those equations they would be forced 

Figure 2. NuSRS 
2.0: A CASE tool for 
NuSCR specification 
and verification. The 
formal modeling 
and verification tool 
significantly improves 
software development 
productivity as well 
as safety assurance 
because it can detect 
many errors early and 
automatically.
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to break into multiple subexpressions actually rep-
resent accurate “atomic” domain knowledge, and 
that automated analysis of completeness and con-
sistency is unnecessary. However, they had trou-
ble understanding specification of timing-related 
behavior in tabular notation, and they clearly pre-
ferred automata-like diagrams.

Our group worked with domain experts in 
developing a formal specification for two of the 
four major subsystems, whose natural-language 
specification was nearly 200 pages long. We de-
veloped the formal specification in NuSCR no-
tation, following a process similar to the one 
Nancy Leveson and her graduate students used 
to develop a formal specification for the TCAS 
(Traffic Alert and Collision Avoidance System) 
for aviation.4 Nearly 200 NuSCR nodes (for ex-
ample, SDTs and automata) were scattered in 
nearly 20 group nodes organized hierarchically. 
We used the NuSRS CASE tool we developed (see 
Figure 2). 

NuSCR uses a finite-state machine (FSM) to 
specify state-dependent operations and a timed 
transition system (TTS), a variant of automata, to 
specify timing-related requirements. We made var-
ious nodes different shapes and colors so that we 
could easily see their roles. Naming conventions 
(such as f_ for functions, h_ for history variables, 
and th_ for timed history variables) also indicate 
the role. In addition, the function overview dia-
gram (see the middle of Figure 2) illustrates which 
NuSCR nodes are included in a group node whose 
prefix is g_. Furthermore, all the externally vis-
ible inputs and outputs are organized in groups 
and shown on the left along with their attributes. 
NuSRS 2.0 supports XML-based interfaces and 
includes menus to perform automated translation 
to inputs accepted by Cadence SMV.

Once the domain experts understood NuSCR 
notation and a reasonably stable CASE tool be-
came available, nuclear engineers could specify 
most of the formal specification (although they 
needed our help occasionally). During require-
ments analysis, domain experts inspected the 
NuSCR models. Our research group also used 
Cadence SMV to see whether the NuSCR specifi-
cation preserved required properties.

Once the experts approved and baselined the 
formal specification in NuSCR, we could synthe-
size semantically equivalent FBD designs using 
rules from our previous research.5 We emphasized 
semantic-preserving and correct synthesis rather 
than an optimal generated FBD design. For ex-
ample, when some expressions appeared several 
times in the specification, the synthesized FBD 

contained redundancy although it was semanti-
cally correct. Our experiment revealed that syn-
thesized FBD programs often contain more than 
twice the number of FBD blocks than manually 
coded and optimized designs. In the nuclear ap-
plication, correctness and safety are the most im-
portant quality criteria because regulator person-
nel must rigorously review the design. In addition, 
there are only a few installations at most, and cost 
saving through optimal design is rarely a practi-
cal concern. However, in different application 
domains (automotive control systems in particu-
lar), an optimal design would become a critical re-
quirement owing to the sheer number of systems 
to be produced in a highly competitive market.

Synthesized design is a useful starting point for 
engineers to revise and develop official FBD de-
sign. Many FBD engineers felt that manual FBD 
programming, regardless of the specification no-
tations used, was the most error-prone activity. 
Unfortunately, we couldn’t use our FBD synthe-
sis tool, NuSCRtoFBD (see Figure 3), because our 
team couldn’t develop all the necessary CASE tools 
in time. However, when we consulted the nuclear 
engineers after the tool development, they felt that 
such a tool would have significantly improved their 
productivity.

Verification
For safety-critical software such as RPS, engi-
neers must perform verification after each phase.6 
Although inspecting the requirements document 
and FBD design is useful, it’s insufficient for meet-
ing rigorous regulatory requirements. During re-
quirements analysis, we developed rules to trans-
late the NuSCR specification into language the 
Cadence SMV model checker could accept. We 
implemented automatic translation and seamless 

Figure 3. NuSCRtoFBD: 
A CASE tool for 
automatic FBD 
synthesis from NuSCR. 
Integrated support 
for formal methods is 
critical. If one is forced 
to manually develop  
an FBD design from  
a formal specification, 
such an approach 
is unlikely to win 
acceptance in industry.
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execution of Cadence SMV as one of NuSRS 2.0’s 
pop-up verification menus. In Figure 2, the win-
dows on the right illustrate that domain experts 
can perform all the verification activities without 
having to know separate commands for invoking 
Cadence SMV. The properties to be proved, how-
ever, couldn’t have been automatically generated, 
so we encoded temporal-logic formulas in close 
consultation with nuclear engineers. Such proper-
ties, however, rarely change, although details on 
requirements or FBD design might change.

We also performed Cadence SMV model 
checking on two subsystems: BP (Bi-stable Proces-
sor) and CP (Coincidence Processor). We detected 
25 errors, including an incorrect specification in 
BP. Most errors were omissions in the specifica-
tion. Although a few mistakes were introduced 
during formal specification, we discovered and 
fixed them relatively quickly. We report on the of-
ficial verification results for a preliminary version 
of BP in previous work.7

During design, we applied Cadence SMV 

(a)

(b)
(c)

Figure 4. FBD Verifier: A CASE tool for automatically translating FBD into Verilog programs: (a) automatic translation of 
a Verilog program, (b) SMV verification results—a counterexample, and (c) the counterexample’s timing graph. Without 
proper visual support, counterexample analysis is boring and potentially error-prone, even for people with technical 
knowledge of model checking.
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model checking and VIS equivalence checking 
on FBD programs. Whereas the former examines 
whether the FBD programs meet required proper-
ties, the latter determines behavioral equivalence 
between two FBD revisions. For Cadence SMV 
model checking, we first defined FBD’s semantics 
as a state transition system and developed rules to 
generate semantically equivalent Verilog programs. 
Using model-checking techniques, we identified 13 
distinct types of errors in the FBD programs and 
detected several incidents of incorrect FBD logic.8

To assist FBD design verification, we devel-
oped the FBD Verifier (see Figure 4a). This tool 
reads FBD programs in standard XML format 
from the PLC vendor’s engineering tools (Figure 
4a, left) and translates them into equivalent Ver-
ilog programs (Figure 4a, right). We didn’t want 
to overwhelm domain experts with unnecessary 
details; nevertheless, the tool allows line-by-line 
comparison to give regulatory personnel and do-
main experts confidence that the translation is 
correct. Most domain experts would simply click 
buttons at the bottom to perform model checking 
without bothering with FBD and Verilog syntax 
details. Unfortunately, Cadence SMV often gen-
erates counterexamples with excessively primitive 
details (see Figure 4b). However, the Verilog code 
in the main window was highly useful for analyz-
ing such counterexamples.

More important, domain experts will likely 
refuse to use formal methods if they have to man-
ually perform such analysis. So, we developed a 
feature where users could enter arbitrary expres-
sions and visually display how values change in 
a manner similar to the timing graph in Figure 
4c. Users can choose to display only their items 
of interest. They can combine existing entries in 
the timing graph and display how those entries 
change values in the counterexample. Using the 
visualization tool, verification personnel can eas-
ily understand why model checking failed.

We also used the VIS verification system to de-
termine behavioral equivalence between the two 
successive FBD revisions. Although VIS accepts 
Verilog as input, it offers no graphical interface, 
and the results only partially display relevant in-
formation. Existing VIS output is similar to that in 
Figure 5b (see the next page). To many who are not 
experts on formal methods, it simply says two Ver-
ilog programs exhibited different behavior after 
seven states but offers no useful insights as to why. 
It displays only partial information necessary to 
accurately understand the full scenario. Even a sys-
tem output display, shown in the sixth state, isn’t 
intuitive. Most nuclear engineers found the infor-

mation in Figure 5b totally inadequate. However, 
with the VIS Analyzer tool we developed, engineers 
not only can compare two Verilog designs side-by-
side (see Figure 5a) but also can click the Result 
Table tab to display the equivalence-checking re-
sults in an easily understandable format (see Fig-
ure 5c). A recent case study demonstrated that the 
behavioral-equivalence checking was effective.9

Safety Analysis
Fault tree analysis (FTA) is the most common 
safety analysis technique; the theory is mature, 
and the practice is well established for sequential 
source codes such as C. Developers usually per-
form FTA manually, using fault tree templates that 
illustrate potential failure modes. Unfortunately, 
no FTA template existed for NuSCR specification 
and FBD nodes, so we developed a set of templates 
to capture potential failure modes of the NuSCR 
language constructs10 and FBD blocks.11 Figure 
6 (see page 49) shows a fault tree template for the 
AND function block. This template consists of 
fault events and cause/effect events. The cause/ 
effect events denote fault propagation and help 
analysts understand the logical operation. Our 
project partner, an instrumentation and control re-
search group in a nuclear-engineering department, 
performed fault tree analysis, improved template 
definitions, and published the final FTA results.12 
Although safety analysis is mandatory in nuclear 
applications, this application could become op-
tional for other domains.

W e developed many of the tool proto-
types as the need arose, while the proj-
ect was in full swing. So, we plan to 

integrate all the tools, from requirements analysis 
to design. Most domain experts strongly prefer an 
integrated development and verification environ-
ment where analysis happens behind the scenes 
and results are displayed, visually if possible, in a 
language familiar to them. Such languages might 
vary from one domain to another.

Finally, regardless of technical advances in for-
mal methods, testing will likely always remain an 
essential component. FBD testing technique is rela-
tively undeveloped. We’re developing theories on 
FBD testing measures so that developers and reg-
ulatory bodies can assess the adequacy of testing 
FBD quantitatively with proper tool support.
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Failure of internal
operation for an AND

function block

FAIL_INTO_AND#

If BOOL, check a fault of
inverter insertion/omission

at output port of AND#

CF_INVO_AND#

If BOOL, check a fault of
inverter insertion/omission

at IN1 of AND#

CF_INVIN1_AND#

Check a fault of output
variable assignment at

output port of AND#, if ANY

CF_OVN_AND#

Check a fault of proper
FB selection for AND#

(incorrect, omission, addition)

CF_PFB_AND#

A value on the output
port of AND# is

0: OUT(AND#)=0
Undesirable

S0_OG_AND#

A value on the output
port of AND# is

1: OUT(AND#)=1
Undesirable

S1_OG_AND#

Failure of output
coming from

AND#: Output value
is undesirable

FAIL_AND#

Fail to 0 at IN1 port
of AND#

F0_IN1_AND#

Fail to 0 at IN2 port
of AND#

F0_IN2_AND#

Fail to 1 at IN1 port
of AND#

F1_IN1_AND#

Fail to 1 at IN2 port
of AND#

F1_IN2_AND#

Check further from IN1
when IN1(AND#)=0

and this is undesirable.

SO_IN1_AND#

If BOOL, check a fault of
inverter insertion/omission

at IN1 of AND#

CF_INVIN1_AND#

Check further from IN1
when IN1(AND#)=1

and this is undesirable.

S1_IN1_AND#

Figure 6. A fault tree template for the AND function block. It illustrates how failure can occur and what dependencies 
exist among potential causes.
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