
ICIUS 2010, Bali Indonesia
2010 11 03 ~ 11 052010.11.03 11.05

Formal Verification of Process CommunicationsFormal Verification of Process Communications
in Operational Flight Program

for a Small-Scale Unmanned Helicopterp

JUNBEOM YOOJUNBEOM YOO
Dependable Software Laboratory

KONKUK University, Korea

2010.11.04

ContentsContents

I d i• Introduction

• BackgroundBackground
– OFP (Operational Flight Program)
– Model Checking using SPIN

• Formalization of the OFP in PROMELA

• Verification Results

• Conclusion and Future Work

1

INTRODUCTION

2

IntroductionIntroduction

HELISCOPE j• HELISCOPE project
– On-flight computing system
– Embedded S/W
– includes services for unmanned helicopter
– for disaster response and recovery

• OFP (Operational Flight Program)
– Subpart of HELISCOPE project
– Software controller

3

Test flight of a small-scale unmanned helicopter

IntroductionIntroduction

Th OFP h ld b f d bl• The OFP should be safe, correct and stable.

• Formal Verification can help the OFP eliminate defects efficiently
– Model checking using SPIN model checker
– Target: process communications of the OFP

F l F lOFP
Process

Communications

Formal
Modeling
in Promela

Formal
Verification
using SPIN

4

BACKGROUND

5

Operational Flight ProgramOperational Flight Program

• 3 ODS
– 5 Shared Data Variables

• 6 Processes6 Processes
– Controller, Monitor and Readers

6

Operational Flight ProgramOperational Flight Program

P• Processes

– 1 Monitor
• Monitor four serial ports that connect with sensors
• Manage semaphore to awake reader processes

– 4 Readers
• Reads packets from serial port and write data in object data store
• Waits until semaphore is posted by monitor

– 1 Controller
• Reads data from object data store
• Computes the data and operates servomotor

7

Operational Flight ProgramOperational Flight Program

Obj D S (ODS)• Object Data Store (ODS)

– ODS0
• Current flight information
• reader0 and controller processes access

– ODS1
• GPS and Navigation information
• reader1, reader2, reader3 and controller processes access

– ODS2
• Flight Mode and destination information
• reader3 and controller processes access

8

Model CheckingModel Checking

M d l Ch ki• Model Checking
– An automatic technique for verifying finite state systems against properties

• Formal model of a system
• Temporal logic for specifying properties of the system

Model Checking
True

Properties are satisfied in
the formal model

Formal
Model

Properties

True

False

the formal model.

Properties are not satisfied
in the formal model.in the formal model.
+ Resulting scenario

9

Model Checker SPINModel Checker SPIN

M d l Ch k SPIN• Model Checker SPIN
– Formal verification system
– Supports design and verification

f di t ib t d/ t ft

XSPIN
Front-End

of distributed/current software
systems

– XSPIN: graphical front-end
Verification & sim lation

Promela Paser
LTL Paser and

Translator

– Verification & simulation

• Model definition
Sysntax Error

Reports
Interactive
Simulator

Verifier
Generator

– PROMELA (PROcess MEta
LAnguage)

i d fi i i

Optimized
Model Checker

• Properties definition
– LTL (Linear Temporal Logic)
– Assertion statement

Executable
On-The-Fly

Verifier

10

Verifier

FORMALIZATION OF THE OFP IN
PROMELAPROMELA

11

1st Formalization of the OFP1st Formalization of the OFP

• 5 shared data variables

6 processes

12

Formalization of the OFP in PROMELAFormalization of the OFP in PROMELA

5 h d d i bl• 5 shared data variables

• Accessed by 5 processesy p
– Reader0~3
– Controller

• Monitored by 1 process
– Monitor

• Processes can access variables using
mutex

13

Formalization of the OFP in PROMELAFormalization of the OFP in PROMELA

6 P• 6 Processes

• Monitor
– 4 channel to connect with readers

• Reader 0~3Reader 0 3
– 1 channel for each to connect with

monitor
– access shared variables

• Controller
– access all shared variables– access all shared variables

14

Properties for VerificationProperties for Verification

The process monitor’s Semaphores on four reading processes shouldThe process monitor s Semaphores on four reading processes should
function correctly.

 Reader process can read data from sensor eventually. Reader process can read data from sensor eventually.
 In all stats, if sensor_send holds, then eventually either read_recv

will hold.

LTL Property: [] (sensor_send -> <> read_recv)

15

VERIFICATION RESULTS

16

Verification Results LTL PropertyVerification Results – LTL Property

LTL P• LTL Property

[] (d d)[] (sensor_send -> <> read_recv)

#define sensor_send sensor[0] == true
#deinfe reader_recv reader0.sema == true

• Verification result
– No error
– All data from sensors is always

eventually read by reader
process.

– monitor process manages
semaphores correctly.

17

18

Verification Results Assertion StatementVerification Results – Assertion Statement

A i• Assertion statement
– 5 shared data variables should

be accessed mutually exclusively
by reader 0 3 processes andby reader 0~3 processes and
controller process.

– Assert whether two or more
processes access a variable atprocesses access a variable at
once.

– Each variable adds 1 to mutex
each time it’s accessed by the
processes.

– Therefore, they all should be 0
1or 1.

19

Verification Results Assertion StatementVerification Results – Assertion Statement

i 5• assert_monitor process monitors 5
mutexes.

active proctype assert_monitor()
{

assert((mutex_0 != 2) &&
(mutex_1 != 2)&&
(mutex 2 != 2)&&(mutex_2 != 2)&&
(mutex_3 != 2)&&
(mutex_4 != 2))

}

• Verification result
– No error
– controller and 4 reader processes

access shared variables mutually
exclusively.

20

21

Conclusion and Future WorkConclusion and Future Work

F l V ifi i f OFP• Formal Verification for OFP
– Formal model of process communications

• 5 shared data area
6• 6 processes

– Result of verification
• monitor process manages semaphores correctly.
• controller and reader processes access shared variables mutually exclusively• controller and reader processes access shared variables mutually exclusively.

• No possible error on semaphore operations and shared data

• Future work
– Formal verification focused on timing constraint
– UPPAALUPPAAL

• Timed automata

22

