International Conference on Computer Convergence Technology
ICCCT 2011

20~22 October, 2011
Seoul, Korea
GFS: Improving Distributed Probabilistic Skyline Queries with Grid Filtration
Li Xiao-Yong, Wang Yi-Jie, Yu Jie...158

Design and Implementation of a Middleware Framework to Enhance Reliability of Safety-Critical Systems
Dong Kwan Kim, Won-Tae Kim, Seung-Min Park..168

DEVS-based Modeling and Simulation of Cloud Data Center for Availability Evaluation
Ji-Yeon Kim, Hyung-Jong Kim...178

Secure Virtualization Cloud Computing Infrastructures Based on Threshold Secret Sharing and Group Signature Schemes
Hua Yi Lin, Meng-Yen Hsieh, Kuan-Ching Li..185

Emerging and Innovative Convergence Technologies and Applications

Smart Eye: Automated Intelligent Advertisement Selection for Digital Signage
Naveed Ejaz, Jong Weon Lee, Wonil Kim, Cheolsu Lim, Sanghyun Joo, Sung Wook Baik......................195

An adaptive music recommendation system using content-based analysis and collaborative filtering
Kunsu Kim, Jaekwang Kim, Kwan-Ho You, Jee-Hyong Lee..206

Feature Vector Enhancement and Selection for Speech Emotion Recognition
Jeong-sik Park, Ji-Hwan Kim, Yong-Jhwan Oh..215

A Reinforcement Learning Based Multi-agent Decision Support System for Water Resource Price Forecasting
Jianjun Ni, Minghua Liu, Junxio Fei, Huawei Ma..224

Design of MOF based Hardware Component Modeling Language for Heterogeneous Embedded Systems
Woo Yeol Kim, Hyun Seung Son, Junbeom Yoo, Robert Young Chul Kim.........................234

The Posture Correction Calibration System Using Bio-Sensors on u-WBAN
Seung-Jin Moon, Hong-Kyu Kim, Dong-Ik Oh..240
Design of MOF based Hardware Component Modeling Language for Heterogeneous Embedded Systems

Woo Yeol Kim1 Hyun Seung Son1, Junbeom Yoo2, and Robert Young Chul Kim1

1 Dep. Of CIC(Computer and Information Communication), Hongik University
Jochiwon, Korea
E-mail: jjohn,son,bohj@hongik.ac.kr
2 Department of Computer Science and Engineering, Konkuk University
Seoul, Korea
E-mail: jhyoo@konkuk.ac.kr
*Corresponding author: Robert Young Chul Kim

Abstract

As software development methodology based on MDD (Model Driven Development) facilitates the development of software that is independent from hardware modification, studies attempting to apply this method in Embedded SW development are being actively progressed. Since hardware information used in SW development must be maintained in profile form to achieve proper Embedded SW development based on MDD. This paper proposes HCML (Hardware Component Modeling Language) as a possible solution. In so doing, this language can effectively achieve relative definition. HCML uses both UML Class and Component diagram to effectively define hardware profile.

Keywords: UML, MDD, Hardware Modeling, Heterogeneous Embedded Systems

1. Introduction

As embedded software is dependent on hardware, users are confronted with the inconvenience of having to redesign it whenever the hardware is changed [1]. MDD (Model Driven Development) has applied in existing studies [2,3,4] that attempt to increase the reusability of Embedded SW. This technique allows common hardware-independent models to be developed that can be reused. It also allows defined hardware profile information to automatically form a hardware-dependent model.

UML (Unified Modeling Language)[5], is an integrated modeling language. It has been applied extensively in embedded software details and designs [6,7,8]. If the definition of hardware profile information can be achieved using UML techniques, a hardware-independent model may be transformed into UML based hardware-dependent models.

This paper proposes using HCML (Hardware Component Modeling Language) as a modeling language for detailing hardware profiles used in MDD-based model transformations. There are several reasons for this application. First, HCML uses UML based component diagram and class diagram to achieve graphic-based expressions of hardware information. The hardware component is an abstract
item of the actual hardware, and the component function expresses improved class diagram. Secondly, organic connections with ATL (ATLAS Transformation Language) and inter-operations with a UML meta-model can be achieved if the MOF (Meta Object Facility) incorporates HCML.

In this paper, Chapter 2 reviews related work, including MOF; Chapter 3 describes the proposed HCML notation; Chapter 4 explains one case where HCML was used to achieve hardware component modeling in a heterogeneous embedded system; and, Chapter 5 presents concluding comments and suggestions for future research.

2. Related Work

MOF is the meta object management technique proposed by OMG [9]. MOF is expressed through UML while the meta-model of UML is defined through MOF. MOF is composed of a four layered meta-data structure. These include an information layer, a model layer, a meta-model layer, and a meta-metamodel layer. The information layer is composed of pure data that we wish to describe. The model layer is composed of metadata that explains the data in the information layer. The meta-model layer describes both the definition of the structure and the meaning of the metadata (meta-meta-data). The metamodel is thus an "abstract language" for describing a different type of data. As such this language does not possess concrete grammar or characters. The meta-meta-model layer describes the structure and meaning of the meta-model. This is an "abstract language" for defining a different type of metadata [10].

![Fig. 1. Four Layered Architecture of MOF](image)

Figure 1 shows the representative four layered metamodeling framework. As presented in the figure, the StockQuote type describes many StockQuote instances in the information layer while the RecordTypes metamodel can depict many record types in the model layer. In the same manner, the meta-meta-model level can describe many other metamodels within the metamodel itself.

The typical four layered metadata structure offers many advantages when compared with the simple modeling method. If the framework is well-defined in design, the following is provided: support for the model and modeling paradigm that are expected to be realized, permission for different types of related metadata to be accessed, permission for an added metamodel and new types of metadata to be provided, and support for exchange between groups using voluntary metadata (model) and meta-meta-data (metamodel). Thus, the transformation of metamodels into various models can eventually be achieved and standardized through the use of MOF.
3. Notation of HCML (Hardware Component Modeling Language)

Table 1 shows the notation of HCML. The characteristics of each notation are as follows: the Port is a device used for interfacing with an external HCP, while HCP refers to the hardware module used. As the abstract model of HCI, HCR therefore represents the hardware resources. HCI includes register information for hardware control and API for driving. The Control method used is described in code form.

<table>
<thead>
<tr>
<th>Node Type</th>
<th>Notation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN/OUT</td>
<td></td>
<td>Component port for input and output</td>
</tr>
<tr>
<td>IN</td>
<td></td>
<td>Port for receiving input signal from other components</td>
</tr>
<tr>
<td>OUT</td>
<td></td>
<td>Port for sending output signal to other components</td>
</tr>
<tr>
<td>HW Component Package</td>
<td></td>
<td>Component module with abstract hardware</td>
</tr>
<tr>
<td>HW Component Resource</td>
<td></td>
<td>Abstract resource for controlling hardware</td>
</tr>
<tr>
<td>HW Component Information</td>
<td></td>
<td>Class describing information on hardware</td>
</tr>
</tbody>
</table>

When observing each component, it can be seen that the output direction of the Port can be arranged in 3 levels: in, out, in/out. This output direction setup is applied to in/out port register control to automatically establish setting information. Furthermore, the Port connects a given HCP with another HCP as well as the given HCP with the HCR. Since HCP is the component module formed from abstract hardware, it consists of the HCR and the Port. The Port manages input/output with the outside, while the HCR defines the role and function of the hardware module. In this manner, HCR has one function to perform and represent the module composed of abstract inherent hardware functions, namely the control of hardware, HCR is composed of HCI. HCI is basically identical to class in the class diagram. Hardware control register information is saved as properties, while API control information are saved as methods. Furthermore, a layer structure is used to divide the abstract level.

4. Case Study

Figure 2(a) shows the Hexapod robot used as an application, while Figure 2(b) presents the Javelin model. As a multi-joint robot, the Hexapod is designed to handle rugged topography like mountains, rather than even topographical terrain. By contrary, the Javeline can only move where even topography is present, through its wheels can achieve quick and easier movements than its counterpart, the Hexapod.
Figure 3 shows the modeling of the Hexapod through the use of HCML notation. The Hexapod multi-joint robot uses 18 ports from PA0–PC7 by the way of the Atmega128. It also uses Timer0, Timer1, and Timer2 to send control signals to each motor. In addition, UART1 in the Interrupt0 connects the ultrasound sensor in Bluetooth to the control hardware. In this regard, the hardware composition and device information can be easily comprehended through HCML modeling.
Figure 4 shows the results of Javelin modeling by incorporating HCML. Javeline uses wheels as its means of transportation, and is operated by 2 motors. For this reason, simple modeling is presented. The Ubicom SX48AC is composed of 16 pins of which P6–9, and P15 are primarily used. That is, P6 and P7 are used to control the ultrasound sensor; P8 and P9 are used to control the servomotor; P15 is used to control the LCD. Furthermore, Javeline uses the UART Timer to control the hardware as an MCU function.

Fig. 4. Javelin modeling using HCML

5. Conclusions

In this paper, we propose HCML (Hardware Component Modeling Language) as a modeling language for detailing hardware profiles used in MDD-based model transformations. HCML with UML notation based on standardizing Software Design uses UML-based component diagram and class diagram to achieve graphic-based expressions of hardware information.

It will be possible to work the interoperability and UML meta-model through defining the MOF (Meta Object Facility) based HCML. The hardware component is an abstract item of the actual hardware, and the component function expresses improved class diagram. Through developing heterogeneous HW component profiles with Hexapod robot and Javeline, we have experienced to develop easier than the existing hardware design.

References

