Formal Verification of DEV&DESS Formalism using Symbolic Model Checker HyTech

Han Choi, Sungdeok Cha, Jae Yeon Jo, Junbeom Yoo, Hae Young Lee, and Won-Tae Kim

Dependable Software Lab. KOREA University

Abstraction

- Hybrid system
 - a combination of discrete and continuous dynamics
- Various algorithmic verification tools for model checking
 - e.g. HyTech: model checking tool for linear hybrid automata
- Widely used formalism for modeling hybrid systems DEV&DESS
 - no verification tools for DEV&DESS formalism

 \rightarrow We translated an example of hybrid system modeled in DEV&DESS formalism into linear hybrid automata and verified it using HyTech.

Background - DEV&DESS formalism

<An Overview of Discrete EVent & Differential Equation System Specification>

Dependable Software Lab. KOREA University

Background – Linear Hybrid Automata

- Hybrid automata
 - finite state automata with conditions on real-valued variables

<An example of hybrid automata>

- Linear hybrid automata
 - restricted class of hybrid automata

Dependable Software Lab. KOREA University <Requirements for linear hybrid automata>

HyTech – Model Checker for Linear Hybrid Automata

- HyTech
 - symbolic model checker for linear hybrid automata
 - model checking of safety requirements and parametric analysis

Safety requirement

HyTech – Model Checker for Linear Hybrid Automata

- HyTech
 - symbolic model checker for linear hybrid automata
 - model checking of safety requirements and parametric analysis

Parametric analysis

Example model – Barrel Filler System

- Characteristics of the barrel filler system ٠
 - continuous input 'inflow' : 0.5 (valve open), 0.25 (valve closing) —
 - 1 time unit for closing the valve
 - 10-liter barrel

DEV&DESS model for the barrel filler system(1)

- Correctness of the model's behavior
 - simulation using scenarios
 - draw trajectories for the barrel filler model

<Graphical representation of barrel filler model>

<Trajectories of the specific scenario>

Dependable Software Lab. KOREA University

Translation DEV&DESS model into Linear hybrid automata

• Translation the barrel filler model into linear hybrid automata

Verification of Barrel Filler System using HyTech (1)

• Statement for the safety requirement

<HyTech commands for safety requirement>

'Content of a barrel should be under 10 liters'

<The result of HyTech execution>

Verification of Barrel Filler System using HyTech (2)

• Statement for parametric analysis

'When should the valve start closing to avoid overflowing?"'

<HyTech commands for parametric analysis>

<The result of parametric analysis>

Further considerations on the translation

- Expressing the confliction between events in linear hybrid automata
 - lack of ability to assign the order of priority between transitions in hybrid automata
- Preprocessing of the continuous input trajectories
 - limitation of using variable in the expression of flow condition in HyTech
- Problem of the state space explosion
 - parallel composition of input automata

Conclusion and Future Work

- Formal verification of atomic DEV&DESS model
 - translation atomic DEV&DESS model into linear hybrid automata
 - performing model checking by using existing tool, HyTech

- Future work
 - translation for coupled DEV&DESS model
 - translation rules for the broad applications
 - development of automatic translation tool

Thank you for listening

