
Information and Software Technology 92 (2017) 121–144

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Formal verification of ECML hybrid models with spaceex

Sanghyun Yoon, Junbeom Yoo

∗

Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea

a r t i c l e i n f o

Article history:

Received 2 August 2016

Revised 29 July 2017

Accepted 31 July 2017

Available online 1 August 2017

Keywords:

Formal verification

ECML

Linear hybrid automata

Automatic translation

Spaceex

a b s t r a c t

Context: ECML is a modeling language for hybrid systems, proposed by ETRI in Korea. ECML extended the

basic formalism, DEV&DESS, with uses in modeling and simulation, whereas algorithmic verification on

the ECML models continues to be an on-going research task.

Objective: This paper proposes a verification technique to verify ECML models with SpaceEx, a verification

platform for hybrid systems. It includes translation rules from ECML into the SpaceEx model.

Method: As SpaceEx reads linear hybrid automata, we developed translation rules from ECML models to

linear hybrid automata and implemented an automatic translator ECMLtoSpaceEx . We also developed a

rule checker ECML Checker to check whether an ECML model complies with assumptions and restrictions

to overcome the semantic gap between the two formal languages. We performed a case study with an

extension of the widely used example ‘barrel-filler system’ to demonstrate the effectiveness of our veri-

fication technique.

Results: The verification result shows that our verification technique can translate ECML models into

SpaceEx models, and we also perform formal verification on ECML models with SpaceEx.

Conclusions: The proposed technique can verify ECML with support fromSpaceEx. We expect that the

proposed translation rules can be used with minor modifications to translate ECML models into different

notations, and thus allow for the use of verification tools other than SpaceEx.

© 2017 Elsevier B.V. All rights reserved.

1

i

c

t

m

t

T

C

P

a

h

f

a

i

e

f

m

t

b

t

u

w

v

v

(

S

p

i

a

t

a

t

t

m

u

t

e

i

h

0

. Introduction

A hybrid system [1] is a dynamical system whose behavior

s a combination of continuous and discrete dynamics. The dis-

rete part usually models modes of system operations, whereas

he continuous part models physical interactions with environ-

ents. Many approaches for modeling and analyzing hybrid sys-

ems, based on finite state machines (FSMs), have been proposed.

imed automata [2] , (linear) hybrid automata [3,4] , DEV&DESS [5] ,

HARON [6] , and ECML [7] are examples of modeling methods. UP-

AAL [8] , KRONOS [9] , HyTech [10] , PHAVer [11] , and SpaceEx [12] are

lgorithmic verification tools (i.e., for model checking [13,14]) for

ybrid systems. Rigorous quality demonstration [15–19] is required

or hybrid system models, since they are used for the modeling

nd analysis of safety-critical systems such as automotive, avion-

cs, and military defense systems.

ECML (ETRI Cyber-Physical System Modeling Language) is an

xtension of the basic formalism DEV&DESS (Discrete Event & Dif-

erential Equation System Specification) [5] with various uses in

odeling and simulation, and was recently proposed by ETRI (Elec-

ronics and Telecommunications Research Institute) in Korea. It has
∗ Corresponding author.

E-mail addresses: pctkdgus@konkuk.ac.kr (S. Yoon), jbyoo@konkuk.ac.kr (J. Yoo).

v

t

t

ttp://dx.doi.org/10.1016/j.infsof.2017.07.014

950-5849/© 2017 Elsevier B.V. All rights reserved.
een used for hybrid system modeling and the simulation of sys-

ems such as those of robot control [20] , military weapons, and

nmanned aerial vehicles [21] . ETRI also proposed ‘ EcoSuite [22] ’

hich is a dependable CPS (Cyber-Physical System) software de-

elopment environment. EcoSuite includes the ECML modeling en-

ironment ‘ EcoPOD ’ (ETRI CPS Open Platform Developer), ‘ EcoSIM ’

ETRI CPS Simulator) and it supports HILS (Hardware-in-the-Loop

imulation) [23] . These modeling and simulation environments are

resented in [24] , and the formal definition of the ECML formalism

s proposed in [7] .

It, however, still needs algorithmic methods for verifying safety

nd reachability. Our previous studies [25–29] attempted to verify

he DEV&DESS and ECML models with HyTech . The tool generates

n error trajectory , and it helps the user to analyze the verifica-

ion result, but HyTech may not be able to analyze complex sys-

ems [11,30] . All of our previous studies focused only on the for-

al verification of small and simple dynamics, and they used the

rgent transition of HyTech to overcome the semantic gap between

he ECML and HyTech models. We, therefore, required a more pow-

rful approach capable of accommodating the ECML models used

n practice. Here, we present a solution for verifying ECML models

ia PHAVer and SpaceEx . In [31] , we present a pilot study performed

o confirm that our proposal can perform more powerful verifica-

ions on more complicated models.

http://dx.doi.org/10.1016/j.infsof.2017.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.07.014&domain=pdf
mailto:pctkdgus@konkuk.ac.kr
mailto:jbyoo@konkuk.ac.kr
http://dx.doi.org/10.1016/j.infsof.2017.07.014

122 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 1. Error modeling function of ECML.

t

t

E

m

p

i

2

a

f

f

2

w

m

a

f

v

d

a

F

m

d

p

o

t

v

t

i

o

v

o

w

a

t

c

t

h

c

T

n

a

t

E

u
This paper proposes a verification technique that can verify hy-

brid system models written in ECML using the SpaceEx verification

platform. SpaceEx supports three verification scenarios (i.e., algo-

rithms), which are PHAVer (Polyhedral Hybrid Automaton Verifier)

[11] , LGG (Le Guernic-Girard) [12] , and STC (Space-Time with Clus-

tering) [32] . PHAVer was a stand-alone tool and it is integrated into

SpaceEx. STC is an enhancement of LGG that produces fewer con-

vex sets for a given accuracy and computes more precise images

of discrete transitions [33] . LGG and STC use nonlinear hybrid au-

tomata as an input model, whereas PHAVer uses linear hybrid au-

tomata (hereafter LHA) [4] . We choose PHAVer scenario to verify

ECML models, since ECML models use deterministic transitions and

we use linear dynamics to describe the behaviors of the determin-

istic transitions in hybrid automata model (see Section 3.5). When

we choose the PHAVer scenario [34,35] , SpaceEx uses LHA as an in-

put front-end, and we first have to translate the ECML models into

LHA models in order to make the SpaceEx verification possible.

We first developed a set of rules for translating an ECML model

into LHA models. It covers the translation of coupled models as

well as single models, and also considered the semantic gap be-

tween these two formalisms carefully. For example, ECML uses de-

terministic transitions, but LHA use nondeterministic transitions

[36] . ECML variables are updated in three ways (i.e., continuously,

discretely, and based on events), whereas LHA have only contin-

uous variables. The communication approaches between models

are also different. LHA are synchronized with a synchronization la-

bel, whereas ECML, which has no such mechanism, only uses I/O-

based sequential coupling. The proposed translation rules consid-

ered most of the semantic gaps and implemented an automatic

translator ‘ ECMLtoSpaceEx. ’ This translator reads an ECML model

and translates it into LHA models for SpaceEx mechanically.

This paper also proposes a small set of assumptions and re-

strictions for modeling with ECML in order to overcome the gap

that our translation rules could not address. ECML supports var-

ious conveniences in modeling (i.e., syntactic sugars), which can-

not be transformed into equivalent LHA. For example, ECML sup-

ports user-defined data types and external functions, defined with

functions of the C++ programming language. We developed ‘ ECML

Checker ’ to check an ECML model against the assumptions and re-

strictions, and it then advises experts to avoid building the model

in these ways.

In order to demonstrate the effectiveness of tools, ‘ ECML-

toSpaceEx ’ 1 and ‘ ECML Checker ’ can conduct a formal verification

with SpaceEx on ECML models, we performed a case study with an

example of a ‘ barrel production system ’ [29] . It extends the widely

used example ‘ barrel-filler system ’ of [5] into a larger system (i.e.,

the ‘ barrel-filler system ’ is part of the ‘ barrel production system ’).

We modeled the system with ECML and used “ECMLtoSpaceEx ”

to translate it into a LHA for SpaceEx . We then successfully per-

formed the SpaceEx reachability analysis to verify the reacha-

bility and safety properties against the mechanically translated

model. SpaceEx supports graphical representations of variables as

a counter-example, however they are neither easy to understand

nor analyze. The verification results of SpaceEx shows all reachable

sets when the model satisfies the specific condition (i.e., forbid-

den states) (Section 4.3). Therefore, our translation from ECML into

linear hybrid automata uses intentionally extra elements such as

clock variables to allow for a more in-depth analysis of the verifi-

cation results.

This paper is organized as follows. Section 2 reviews and com-

pares the two formalisms—ECML and linear hybrid automata—to

aid the understanding of the translation proposed in the next Sec-
1 Available at “http://dslab.konkuk.ac.kr/Hybrid-System/ECMLtoSpaceEx/

ECMLtoSpaceEx.zip ”.

a

w

t

B
ion. Section 3 proposes the translation rules from ECML to LHA for

he SpaceEx verification. Section 4 reports on a case study with an

CML example of a barrel production system , and Section 5 surveys

odeling and verification techniques for hybrid systems and com-

ares them with the proposed technique. We conclude the paper

n Section 6 .

. Background

In the following sections we model a simple thermostat ex-

mple [10] with ECML and LHA and propose formal definitions

or the formalisms. Besides that, we review and compare the two

ormalisms—ECML and LHA.

.1. ECML

ECML [7] is a modeling language for hybrid systems [37] that

as recently proposed by ETRI in Korea. It extends the basic for-

alism DEV&DESS with various conveniences, such as hierarchies

nd error modeling. For example, error modeling is an optional

unction for ECML simulation. An expert set a normal state for a

ariable as described in Fig. 1 . When the normal state is violated

uring simulation, the simulation environment informs the expert

bout the violation.

The basic component of ECML models is BM (Behavioral Model).

ig. 2 describes an ECML BM for a thermostat system which is a

odified model of [10] . The system models states of a heater in or-

er to control the temperature. It has three phases, switch_off (the

ower switch of the heater is turned off), on (the heater is turned

n) and off (the heater is turned off). The initial phase is switch_off,

hus the behavior of the model starts in switch_off phase. The input

ariable x D 1 represents a power switch. When the power switch is

urned on (i.e., x D 1 = 1), the model transits to on phase and a lamp

s turned on (i.e., y D
1

= 1) to indicate state of the switch. The value

f the continuous state variable s C
1

represents temperature, and the

alue rises at the rate two degrees per time units (d(s C
1
) = 2) in

n phase. The heater is turned off (i.e., the model transits to off)

hen the temperature reaches four degrees. The temperature falls

ccording to d(s C
1
) = −4 , therefore, it returns to on phase in order

o turn on the heater after one time unit.

ECML models have three different rate types of variables: dis-

rete events (E), discrete values (D), continuous values (C). The

hree types of variables have different behavior with respect to

ow their values evolve over time. When an event occurs, a dis-

rete event type variable is assigned a value and is reset to zero.

he value of discrete value type variable is held constant until the

ext assignment occurs. The value of a continuous value type vari-

ble changes continuously, and rate defines the rate of change of

he value at a phase .

Variables in ECML also have port types and various data types .

CML has three port types: input (X), output (Y), and state (contin-

ous state S C , discrete state S D). An ECML BM obtains data from

 connected model via input variables , changes the internal states

ith state variables , and sends data with output variables. Data

ypes determine the possible values for the variable. Integer, Double,

oolean and String are the types supported by ECML. The modeling

http://dslab.konkuk.ac.kr/Hybrid-System/ECMLtoSpaceEx/ECMLtoSpaceEx.zip

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 123

Fig. 2. ECML BM TH for the thermostat system.

Fig. 3. Modeling and simulation tools for ECML (‘ EcoPOD and ‘ EcoSIM ’.

e

[

i

s

c

a

B

T

p

c

O

E

nvironment “EcoPOD ” [38,39] and the visual simulator “EcoSIM ”

40,41] support visual modeling and simulation [24] , as illustrated

n Fig. 3 .

An ECML model is hierarchically structured into a set of ba-

ic components. A basic component is modeled as a BM and their

omposition is modeled as an SM (Structural Model). Fig. 3 shows

n example model in EcoPOD. ‘ CBMs ’ (CPS Behavioral Models) are

M s and rectangles tagged ‘ CSM ’ (CPS Structural Model) are SM s.

hey are connected via port variables. We use [A] (Analog) to de-

ict continuous values in EcoPOD , because [C] is used to depict

onstant variables. A BM is defined as follows:

BM = 〈 X, Y, S, Init, Cond E , Trans E , Out E , Cond S , Trans S , Out S , Out C ,

ut D , Rate 〉

• X = X C × X D × X E is the set of inputs,

where,

• X C = { (x C
1
, x C

2
, . . .) | x C

1
∈ X C

1
, x C

2
∈ X C

2
, . . . } is the structured set

of continuous value inputs with input variables x C
i

• X D = { (x D
1
, x D

2
, . . .) | x D

1
∈ X D

1
, x D

2
∈ X D

2
, . . . } is the structured

set of discrete value inputs with input variables x D
i

• X

E is the set of discrete event inputs

• Y = Y C × Y D × Y E is the set of outputs,

where,

• Y C = { (y C
1
, y C

2
, . . .) | y C

1
∈ Y C

1
, y C

2
∈ Y C

2
, . . . } is the structured set

of continuous value outputs with output variables y C
i

• Y D = { (y D 1 , y
D
2 , . . .) | y D 1 ∈ Y D 1 , y

D
2 ∈ Y D 2 , . . . } is the structured

set of discrete value outputs with output variables y D
i
• Y E is the set of discrete event outputs

• S = P × S D × S C is the set of states: the Cartesian product of

phases P , discrete states S D and continuous states S C

• Init = S 0 × X 0 × Y 0 is the initial condition set to define the initial

states and initial values of inputs and outputs

• Cond E : S × X � → Bool is the external event transition condition

function for conditioning the execution of the external events

• Trans E : S × X � → S is the external event transition function

• Out E : S × X � → Y is the output function for external event transi-

tions

• Cond S : S × X

C × X

D � → Bool is the state transition condition func-

tion for conditioning the execution of the internal state events

• Trans S : S × X

C × X

D � → S is the internal state transition function

• Out S : S × X

C × X

D � → Y is the output function for internal state

transitions

• Out C : S × X

C × X

D � → Y C is the continuous value output function

• Out D : P × S D × X

D � → Y D is the discrete output function

• Rate : S × X

C × X

D � → S C is the rate of change function

A BM corresponds to a DEV&DESS model. The semantics of an

CML BM is described as follows:

1. Intervals 〈 t 1 , t 2 〉 with no events: Only the continuous states S C

change. The continuous states at the end of the interval are

computed from the state at the beginning plus the integral of

the rate of change function Rate (s (t), x C (t), x D (t)) (t = 〈 t 1 , t 2 〉)
along the interval. The continuous behavior of the model is

specified by Rate (s (t), x C (t), x D (t)) and the continuous value

124 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 4. The formal definition of BM TH for the ‘ Thermostat System ’.

Fig. 5. Linear hybrid automaton LHA TH for the thermostat system.

2

L

o

t

s

m

W

a

t

s

I

t

f
1 1
output function Out C (s (t), x C (t), x D (t)), whereas the discrete

value output is generated by the discrete value output function

Out D (p (t), s D (t), x D (t)).

2. An internal state event occurs first at time t in interval 〈 t 1 , t 2 〉 :
The continuous states at the time of the transition are com-

puted from the state at the beginning plus the integral of

the rate of change function Rate (s (t ′), x C (t ′), x D (t ′)) (t ′ = 〈 t 1 , t])

along the interval until time t . Likewise, the hybrid outputs are

generated until time t . At time t , the state transition condi-

tion function Cond S (s (t), x C (t), x D (t)) evaluates to true. That is,

an internal state event occurs. Here, the internal state tran-

sition function Trans S (s (t), x C (t), x D (t)) is executed to define

a new state. The output function for internal state transitions

Out S (s (t), x C , x D (t)) is called to generate an output at time t .

3. An external discrete event occurs first at time t in interval 〈 t 1 ,
t 2 〉 : The continuous states at the time of the transition are

computed from the state at the beginning plus the integral of

Rate (s (t ′) , x C (t ′) , x D (t ′))(t ′ = 〈 t 1 , t]) along the interval until t.

Likewise, the hybrid outputs are generated until time t . At time

t , the external event transition condition function Cond E (s (t),

x (t)) evaluates to true. That is, the external event transition

occurs. Here, the external event transition function Trans E (s (t),

x (t)) is executed to define a new state. The output function for

external event transitions Out E (s (t), x (t)) is called to generate an

output at time t .

The formal definition for the BM TH for the thermostat system is

described in Fig. 4 .

An SM corresponds to a coupled DEV&DESS model. A structural

model contains basic behavioral models (BMs), coupled to each

other with connecting ports describing the flow of rate typed as

discrete, continuous, or event. ‘ CSM CPSVehicle ’ in Fig. 3 is an ex-

ample of an ECML SM . The formal definition of an SM is based on

the formal definition of the coupled DEV&DESS model [5] . It uses

influencer to represent I/O connection (i.e., coupling) of models. The

influencer is a model (i.e., BM or SM) of which the output vari-

able influences the input variable of the other model. For example,

‘ CBM Control ’ is an influencer of ‘ CBM Dynamics ,’ and the output

translation function z i, r defines I/O connection of the models. The

SM formal definition includes formal definitions of BMs which are

included corresponding SM. An SM is defined as follows:

SM = 〈 X S , Y S , R, BM, I, Z, Select 〉
• X S = X C

S
× X D

S
× X E

S
is the set of inputs of the structural model
• Y S = Y C
S

× Y D S × Y E S is the set of outputs of the structural model

• R = R B × R S is the set with a single references to the current

structural model, where,

• R B is the set of behavioral model references

• R S = { r S } is the set of the structural model reference

• For each r B ∈ R B ,

• bm r B ∈ BM is a behavioral model,

bm r B = 〈 X, Y, S, Init , Con d E , Tran s E , Ou t E , Con d S , Tran s S , Ou t S ,

Ou t C , Ou t D , Rate 〉
• For each r ∈ R ,

• I r is the set of influencers. I r ⊆R , r
∈ I r
• For each i ∈ I r , z i, r ∈ Z is the function mapping i to r as follows

• z i, r : X S � → X r and Select = bm r , if i = r S

• z i, r : Y i � → Y S if r = r S

• z i, r : Y i � → X r and Select = bm r , if i
 = r S and r
 = r S

• Select is the function selecting a behavioral model to be exe-

cuted

.2. Linear hybrid automata

LHA [4] is a kind of hybrid automata [42] . At each location of

HA, the behavior of all variables is governed by linear constraints

n the first derivatives. Fig. 5 describes a linear hybrid automa-

on for the thermostat system. The states of the heater are the

witch_off, on and off locations. Initial location is switch_off and the

odel transits to on when the power switch is turned on (x D
1

= 1).

hen the model remains in the on location, the value of temper-

ture (s C
1
) rises at the rate two degrees per time unit (˙ s C

1
= 2). The

ransitions of LHA are nondeterministic transitions; thus, the tran-

ition might not occur although the jump condition s C
1

≥ 4 is true.

n order to remain in the on location, the variable should satisfy

he invariant condition of on (s C
1

≤ 5). Therefore, the model transits

rom on to off when the value of s C is 4 ≤ s C ≤ 5 .

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 125

m

c

m

a

l

c

b

p

t

L

d

L

o

h

F

m

S

a

r

t

a

s

v

fl

I

i

i

t

d

2

m

e

a

t

t

G

C

G

3

i

r

t

t

t

w

e

p

m

i
Some elements have different characteristics between ECML

odels and linear hybrid automata. In LHA, variables can have

ontinuous, real-valued types only. Transitions in ECML are deter-

inistic, whereas the control switches of linear hybrid automaton

re nondeterministic. LHA also have invariant conditions (inv). A

inear hybrid automaton basically uses shared variables and syn-

hronization labels (syn) to communicate with another linear hy-

rid automaton, whereas ECML uses a port connection (to out-

ut variables). There is no hierarchy in LHA (i.e., it is a flat sys-

em). However, SpaceEx supports port connections whereas basic

HA [10] do not support this feature. Therefore, we use the formal

efinition of [11] in order to specify port connections of SpaceEx

HA model. The translation rules consider not only characteristics

f basic LHA but also characteristics of SpaceEx LHA model. A linear

ybrid automaton is defined as follows:

LHA = 〈 X, V, flow, inv, init, E, jump , �, syn 〉
• X is a set of continuous, real-valued variables. X is divided into

controlled variables C and input variables I = X \ C, and a subset

O of C is designated as the output variables [11] .

• V is a set of control modes (locations)

• flow is a labeling function that assigns a flow condition to each

control mode v ∈ V . The flow condition flow (v) is a predicate

over the variables in X ∪

˙ X , and it refers to the first derivative of

x i ∈

˙ X . While the control of the hybrid automaton A is in mode

v , the values of the variables and their first derivatives satisfy

the flow condition flow (v).

• inv is a labeling function that assigns an invariant condition to

each control mode v ∈ V . While the control of the hybrid au-

tomaton A is in mode v , the variables in X must satisfy the in-

variant condition inv (v).

• init is a labeling function that assigns an initial condition to

each control mode v ∈ V .

• E is a finite multiset of control switches. Each control switch (v,

v ′) is a directed edge between a source mode v ∈ V and a target

mode v ′ ∈ V .

• jump is a labeling function that assigns a jump condition to

each control switch e ∈ E . The jump condition jump (e) is a predi-

cate over variables in X ∪ X

′ , where X ′ = { x ′
1
, x ′

2
, . . . , x ′ n } . The un-

primed symbol x i , for 1 ≤ i ≤ n , refers to the value of the vari-

able x i before the control switch, and the primed symbol x ′
i

refers to the value of x i after the control switch.

• � is a finite set of events

• A labeling function syn that assigns an event in � to each con-

trol switch e ∈ E .

LHA satisfy the following two requirements [10] , Linearity and

low independence .

1. Linearity: For every control mode v ∈ V , the flow condition

flow (v), the invariant condition inv (v), and the initial condition

init (v) are convex linear predicates. For every control switch

e ∈ E , the jump condition jump (e) is a convex linear predicate.

2. Flow independence: For every control mode v ∈ V , the flow con-

dition flow (v) is a predicate over the variables in

˙ X only (and

does not contain any variables from X).

A SpaceEx model is structured into subsystems and they com-

unicate with each other using input and output variables.

paceEx classifies variables according to two criteria. One is local

nd the other is controlled . A local variable is only used in the cor-

esponding subsystem. A controlled variable is assigned a value in

he subsystem, thus a local variable is a subset of controlled vari-

bles. A flow for a controlled variable should be defined in the sub-

ystem, if not, the variable can have a random value ([−∞ , ∞]). If a

ariable is not classified as a controlled variable (i.e., input variable),

ow for the variable does not need to be defined in the subsystem.

n Fig. 5 , we assume that s C
1

and y D
1

are controlled variables and x D
1
t
s an input variable. Thus, LHA TH has flow conditions for s C
1

and y D
1

n each location, while the model does not have flow conditions for

he input variable x D
1

. The formal definition for LHA TH is defined as

escribed in Fig. 6 .

.3. The semantic gap between these two formalisms

This paper proposes to use SpaceEx as a means to verify ECML

odels formally. Therefore, we first need to translate ECML mod-

ls into LHA models. This section compares the two formalisms

s shown in Table 1 , and briefly overviews the semantic gaps be-

ween them and how we could resolve some of them. All impor-

ant semantic gaps to be resolve are labeled as G.1 ∼ G.7 . We left

.1 and G.7 to the modeler with support of our CASE tool (‘ ECML

hecker ’), and resolve the other gaps except for a specific case of

.6 . Section 3 explains how the gaps are addressed in details.

• (G.1 Dynamics) ECML supports nonlinear dynamics, but LHA

does not. We advise the ECML modeler to use linear dynamics

if formal verification via SpaceEx is required.

• (G.2 Variables) Variables in ECML consist of port types, rate types ,

and data types , whereas LHA has only one type – the continuous

real-value type . All types of ECML variables should be translated

appropriately.

• (G.3 Transitions) Transitions of ECML are enabled deter-

ministically, whereas control switches of LHA transit non-

deterministically. We need to make the translated LHA work

deterministically as ECML.

• (G.4 Invariants) ECML does not support invariant as LHA. The

semantic gap is not a problem we need to resolve because we

translate ECML models into LHA models. We use invariants to

resolve the G.3 .

• (G.5 Communication) An ECML BM shares data with another BM

through I/O port connections, whereas LHA uses shared vari-

ables and broadcasting events with synchronization labels. I/O

ports are translated into shared variables, and we also use the

synchronization labels to reset discrete event ports.

• (G.6 Variable Assignments) ECML assigns a value at phase and

transition, whereas LHA does this at transitions only. Further-

more, when a transition has more than one variable assign-

ment, ECML processes it sequentially, whereas LHA does it in

parallel. We translate an ECML model into an equivalent LHA,

which has a particular structure to guarantee the assignment

order (see Sections 3.1.6 and 3.1.7).

• (G.7 User-Defined Functions) User-defined functions of ECML

cannot be translated naïvely, since they are defined using the

C++ programming language.

. The ECMLtoLHA translation

This section proposes translation rules from an ECML model

nto LHA models. The rules map each element of ECML into a cor-

esponding element of LHA. Whereas most of the rules are 1:1

ranslations, some rules are not straightforward due to the seman-

ic gap between these two formalisms. Fig. 7 overviews the struc-

ure of translation from ECML models to LHA models.

Section 3.1 describes the translation of behavioral models,

hereas Section 3.2 presents the translation of structural mod-

ls. Section 3.3 explains the restrictions and assumptions of the

roposed translation rules. The translation process from ECML

odels to LHA models and the supporting tools are introduced

n Section 3.4 . We discuss further considerations of the proposed

ranslation rules in Section 3.5 .

126 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 6. The formal definition of LHA TH for the ‘ Thermostat System ’.

Table 1

Comparison of ECML and LHA.

Category ECML LHA

G.1 Dynamics Nonlinear dynamics Linear dynamics

G.2 Variables

G.2.1. Port Type State/Input/Output Variable
∗State/Input/Output

G.2.2 Rate Type Continuous/Discrete value/Discrete event Continuous

G.2.3 Data Type Integer, Double, String, User-defined Real

G.3 Transitions Deterministic Non-deterministic

G.4 Invariants Unsupported Supported

G.5 Communication I/O port connection Shared variables & Synchronized labels
∗I/O port connection & Synchronized labels

G.6 Variable Assignments Phase & Transition/Sequential Jump Condition/Parallel

G.7 User-Defined Functions Supported Unsupported

∗in SpaceEx

Fig. 7. Overview of translation structure from ECML models to LHA models.

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 127

Fig. 8. Example of a basic translation from ECML BM into LHA.

3

t

l

f

c

t

a

3

S

A

s

E

i

o

e

‘

v

t

T

(

v

a

v

w

I

v

a

c

c

i

t

s

s

a

i

s

Fig. 9. Examples of translating deterministic/non-deterministic transitions.

3

a

c

s

o

3

c

(

c

A

t

n

a

i

n

e

3

m

∈

a

s

s

s

L

t

h

t

(

d

t

t

t

s 1 2 1
.1. The translation of behavioral models

A Behavioral Model (BM) comprises variables with initial condi-

ions, rate, phases , and transitions. Each element of a BM is trans-

ated into a corresponding element of an LHA as explained in the

ollowing sections. On the other hand, some elements of ECML

annot be translated into LHA directly and involve auxiliary defini-

ions. The translation of sequential assignments of ECML models is

n example, and we proposed appropriate solutions for each case.

.1.1. Variables

Every input/output variable (i.e., X and Y) and state variable (i.e.,

D and S C) of BM is translated into a corresponding variable of LHA.

 variable of ECML has a rate type and data type , whereas LHA

upport continuous real-valued variables only (G.2). Therefore, the

CML variables of various rate types and data types are translated

nto continuous real-valued variables. Fig. 8 (a) describes example

f an ECML BM . The model has two phases p 1 and p 2 . When the

xternal input x C
1

≥ 0 is true and the value of discrete state s D
2

is

 switch _ of f, ’ the model transits to p 2 besides the discrete output

ariable y D
1

is assigned 0 value.

The rate types of ECML (continuous, discrete , and event) are

ranslated into the continuous type using the flow element of LHA.

he continuous type is translated straightforwardly, but a zero flow

 e.g., ˙ y D
1

= 0 as depicted in Fig. 8) is added to every location for the

ariables of discrete / event types. The discrete / event type variables

re only defined in output functions (Out) and the values of the

ariables are not changed continuously in ECML models. It is note-

orthy that input variables of ECML can be translated in two ways.

n case of those connected to a top-level SM (i.e., it obtains input

alues from the external environment), it is translated into a vari-

ble with random values. This is achieved by not defining a flow

ondition to this variable. If the input obtains values from other

onnected BM , we consider this connection in the translation.

Integer, Double , and Boolean data types of ECML are translated

nto the Real type of LHA without losing information. String data

ype variables are used to describe simulation user commands

uch as ‘ switch_on ’ and ‘ switch_off’ and these are translated into

pecific R values in LHA. In Fig. 8 (a), s D
2

is a String data type vari-

ble, used in the transition condition between p 1 and p 2 . Consider-

ng that ‘ switch_off’ is mapped to the number 0, the condition s D 2 =
witch_off is translated into s D = 0 .
2
.1.2. Initial condition

A BM has an initial condition Init consisting of an initial phase

nd a set of initial values of all variables. An LHA also has an initial

ontrol mode and a set of initial values of all variables. All corre-

ponding elements of initial conditions should coincide with each

ther.

.1.3. Rate

The rate of each phase in a BM corresponds to the flow of each

ontrol mode in LHA. We write “ ˙ contents = a ” or “contents ′ == a ”,

 a is a real value constant) to describe the flow condition of each

ontrol mode in LHA, while BM uses the form of “d(contents) = a .”

s described in Section 3.1.1 , discrete and event type variables are

ranslated into continuous variables in LHA. If a flow condition is

ot used to define the variables, an LHA recognizes that the vari-

ble can have [−∞ , ∞] ranged values (i.e., random values). This

s the case for input variables that receive values from the exter-

al environment, as previously explained. The rate of discrete and

vent type variables is defined using zero-valued flow conditions.

.1.4. Phase & transition

Phase and transition in ECML basically correspond to control

ode (i.e., location) and (source control mode, target control mode)

 E in LHA, respectively. Each condition and action statement on

 transition in a BM are equivalent to the jump of an LHA . The

traightforward translation of phases and transitions , however, re-

ults in different behaviors of LHA, since the deterministic tran-

itions of ECML will be translated into non-deterministic ones of

HA (G.3) . When a transition condition is true , then a determinis-

ic transition of ECML will be executed without delay. On the other

and, even if a transition condition is satisfied, a non-deterministic

ransition of LHA may not be enabled [43] .

For example, Fig. 9 (a) is an ECML BM consisting of two phases

 p 1 and p 2) and one transition (p 1 , p 2). When the transition con-

ition “s C
1

> = 2 ” with a continuous state variable s C
1

is true in p 1 ,

he transition is executed and the phase changes into p 2 without

ime advance (i.e., immediately). The BM can be translated into

he LHA model in Fig. 9 (b) straightforwardly. However, the control

witch between l and l might not happen even if the jump (l ,

128 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 10. An ECML BM with three phases .

Fig. 11. Translated LHA from the ECML BM presented in Fig. 10 .

s

c

a

l

l

W

i

t

p

F

v

t

fl

a

t

t

i

w

i

o

w

T

t

f

d

3

F

e

y

s

a

i

L
l 2) condition is satisfied, and the translated LHA model in Fig. 9 (b)

now shows a different behavior with respect to the original ECML

model in Fig. 9 (a). On the other hand, the translated LHA in Fig. 9 (c)

works deterministically. If the invariant condition “s C
1

< = 2 ” is not

satisfied, it cannot remain at l 1 . So it has to transit to l 2 immedi-

ately, and the value of s C
1

is 2 at that time. Finally, the translated

Fig. 9 (c) now works equivalently with its origin Fig. 9 (a).

It appears that the translation with an invariant as presented in

Fig. 9 (c) could simply solve the problem (G.3). It, however, cannot

solve many common cases such as “a phase has ingoing transitions

and outgoing transitions simultaneously,” as shown in Fig. 10 . As

the transition condition of (p 2 , p 3) is “x D 1 > = 1 , ” the solution of

Fig. 9 (c) suggests to use “x D
1

< = 1 ” as an invariant at p 2 . However,

if x D
1

has a larger value than 1 at p 1 (i.e., if it does not satisfy the

inv of p 2), transition from p 1 to p 2 never happens, and the trans-

lation will result in an obviously different behavior. We, therefore,

propose a more elaborate solution, ‘ passing location ’ and ‘ progress

location ’ as explained in Section 3.1.5 .

3.1.5. Passing and progress locations

We propose ‘ passing location ’ and ‘ progress location ’ in order

to accommodate the deterministic behavior of ECML. A phase of

an EMCL BM is translated into one passing location and several

progress locations . For translation of the whole LHA from an ECML

BM , we also use an additional variable ‘ e ’ to indicate elapsed time

at passing locations . A passing location is a window for transiting to

other locations immediately. Time does not advance due to the inv

and flow at the passing location , and the outgoing transitions can

transit to specific locations immediately when jump conditions are

satisfied. At a progress location , time advances and values of vari-

ables change according to their flow .

Fig. 11 shows the translated LHA from the ECML BM in Fig. 10 .

l 1 _ pass, l 2 _ pass, and l 3 _ pass are passing locations and l 1 _ prog 0
and l 2 _ prog 0 are progress locations . Henceforth, we use ‘ _ pass ’ and

‘ _ prog’ to indicate passing location and progress location , respec-

tively. Every passing location has a flow “ ˙ e = 1 ” and an inv “e < = 0 .”

The initial value of e is zero (0) and all ingoing/outgoing control
witches of passing locations reset it as “e := 0.” We consider the

omplement of the jump condition from a passing location to cre-

te an inv condition of a progress location .

The translated LHA in Fig. 11 starts at l 1 _ pass, but it transits to

 1 _ prog 0 immediately due to the inv and flow “e < = 0 ∧ ˙ e = 1 ”. At

 1 _ prog 0 , the time advances and s C
1

increases continuously up to 2.

hen the inv “s C
1

< = 2” does not hold, it transits back to l 1 _ pass

mmediately, besides resetting e . Then, it also immediately transits

o l 2 _ pass because of the jump condition “s C
1

> = 2”.

Details of translation using passing and progress locations de-

end on the rate types of variables in transition conditions. In

ig. 10 , the transition condition of (p 2 , p 3) has a discrete value

ariable “x D
1

.” It is translated into a continuous variable, but the

ranslated variable could retain a value for a while, since every

ow for the variable is ˙ x D
1

= 0 (Section 3.1.1). In this case, inv of

 progress location should be the negation of the guard . When

he LHA in Fig. 11 remains at l 2 _ prog 0 , and the value of x D
1

is

hen changed to 1, it transits to l 3 _ pass through l 2 _ pass ({ x D 1 | x D 1 ∈
n v (l 2 _ prog 0) ∧ x D

1
∈ jump(l 2 _ prog 0 , l 2 _ pass) }
 = ∅). If in v (l 2 _ prog 0)

ere “x D
1

< = 1 , ” it could remain in l 2 _ prog 0 because in v (l 2 _ prog 0)

s satisfied when x D 1 == 1 . On the other hand, concerning continu-

us variables, if in v (l 1 _ porg 0) were “s C
1

< 2 , ” jump(l 1 _ pass, l 2 _ pass)

ould not be satisfied (the value of s C
1

increases up to 1 . 999 . . .).

he proposed translation using passing location and progress loca-

ion can accommodate the deterministic behavior of ECML success-

ully. The translation of transitions that have event type variable is

escribed in Section 3.2.2 .

.1.6. Sequential variable assignment

The transition (p 1 , p 2) has an assignment s C
1

:= 0 ∧ y C
1

:= s C
1

in

ig. 12 (a), and it could be translated into Fig. 12 (b) without consid-

ration for sequential assignments of ECML. The assigned values of

C
1

are different after (p 1, p 2) and (l 1 _ pass, l 2 _ pass) are performed,

ince ECML assigns values sequentially, whereas LHA does it in par-

llel (G.6). When s C
1

> = 10 , ECML assigns “s C
1

:= 0 ” first, after which

t assigns “y C
1

:= s C
1
”; thus, the values of s C

1
and y C

1
are both ‘0.’

HA assigns “s C := 0 ” and “y C := s C ” in parallel, hence the value

1 1 1

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 129

Fig. 12. Example of sequential variable assignment.

Fig. 13. ECML BM with an output function in a phase .

o

p

a

t

i

t

3

t

a

l

t

t

t

a

t

w

B

t

F

h

o

l

o

t

i

c

n

t

F

c

f

3

F

w

e

t

c

[

a

a

a
f s C
1

is “0” and that of y C
1

is “10” in this case. We use one more

assing location to resolve the semantic gap as shown in Fig. 12 (c),

nd it is a modified LHA from Fig. 12 (b). It has the passing loca-

ion y C
1
_ pass and the jump(l 1 _ pass, l 2 _ pass) in Fig. 12 (b) is divided

nto jump(l 1 _ pass, y C
1
_ pass) and jump(y C

1
_ pass, l 2 _ pass) , therefore

he values of s C
1

and y C
1

are both “0” at l 2 _ pass .

.1.7. Variable assignment at phase

Although an LHA assigns a value to a variable at labeling func-

ions (jumps) on transitions, ECML can do it at both transitions

nd phases (G.6) . We, therefore, should provide a rule to trans-

ate variable assignments on phases of ECML into ones on transi-

ions of LHA, without distorting behaviors. For example, in ECML ,

he value of an output variable can change without transiting be-

ween phases , as shown in Fig. 13 . s C
1

is a continuous state vari-

ble and y C
1

is a continuous output variable. p 2 has an output func-

ion “y C
1

= s C
1
, ” assigning the current value of s C

1
to y C

1
continuously

hen the BM remains at p 2 . The value of y C
1

becomes 1 when the

M enters p 2 , and decreases until 0 along with s C
1

before transiting

o p 3 .

Fig. 14 is the LHA translated from the ECML BM presented in

ig. 13 . The control switches (l 1 _ pass, l 2 _ pass) and (l 2 _ pass, l 3 _ pass)

ave the same assignment (y C
1

:= s C
1
), thus y C

1
has the same value

f s C whenever it enters and exits l 2 _ pass . When it remains at

1
 2 _ prog 0 , the flow “ ˙ s 1 = −0 . 1 & ˙ y 1 = ˙ s 1 ” maintains the equivalence

f the values of y 1 and s 1 .

Our translation rules cover all cases except one case such as

hat depicted in Fig. 15 . ECML supports assignments containing

nput variables at phases (e.g., y C
1

= x C
1

at p 1 in Fig. 15). In this

ase, the ECML model cannot be translated into LHA. The con-

ected model could transit its own phases many times and change

he value of the input variable, whereas the BM model shown in

ig. 15 remains at p 1 . However, there is no element to reflect the

hanges without a jump in LHA. Our rule checker “ECML Checker ”

orbids creating models in such a situation.

.2. The translation of structural models

An ECML model is defined with the aid of an SM as described in

ig. 16 . An SM contains behavioral models BMs that are connected

ith external input and output ports. BMs are also coupled with

ach other through connecting input and output ports to describe

he data-flow between them. ECML does not support the hierar-

hical composition between BMs , unlike Charon [6] and Statecharts

44] , because this complicates mechanical verification. All BMs are

t the same level and composed in an SM . In order to translate

n SM , the translation rules translate BMs of the SM to LHA models

nd their port connections. A SpaceEx model is structured as a top-

130 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 14. LHA translated from the BM in Fig. 13 .

Fig. 15. Example of assignment containing input variable.

Fig. 16. Example of a structural model.

y

v

a

p

i

t

t

r

l

s

e

a

c

l

v

v

a

e

3

a

t

c

T

r

t

p

c

p

a

a

t

a

d

t

c

m

a

m

w

r

E

e

level network component , which can have base components and net-

work components as children components. The relation of network

component and base components is similar to the relation between

an SM and its BMs . The SM is translated into network component

and its BMs are translated into base component (Section 4.2.3).

3.2.1. Port

ECML uses an I/O port connection, whereas LHA uses shared

variables and synchronization labels for communication (G.5). The

translation rule translates I/O variables into variables in LHA, then

changes the connected names into equivalent names. For exam-

ple, y D
2

and x D
6

are connected in Fig. 16 , and their names are both

changed to “y D
2

__ x D
6

.” Every port name used in jump, flow, invariant ,

and init is also changed accordingly. In our case study, we trans-

lated the ECML models into SpaceEx models, and it supports a port

connection; thus, the names of port variables are not converted.

3.2.2. Discrete event type port

A discrete event type variable is used for sending an event,

and implicitly resets to 0 after it is sent to the connected BM .

Fig. 17 (a) shows an example of a discrete event port connection.

E
1 is a discrete event output variable of BM 1 , and BM 2 obtains the

alue through the port connection (y E
1

→ x E
1
) . BM 1 assigns 2 to y E

1
t the (p 1 , p 2) transition, and BM 2 checks the value of x E

1
at (p 3 ,

 4). The value of y E 1 is reset to 0 after it is sent to BM 2 as shown

n Fig. 17 (b). An LHA does not have discrete event variables (G.2.2) ,

herefore translation of the connection needs additional processing

o reset the value.

Figs. 17 (c) and (d) are the translated LHA from BM 1 and BM 2 ,

espectively. Fig. 17 (d) has two progress locations (l 3 _ prog 0 and

 3 _ prog 1) derived from the BM 2 transition. As SpaceEx does not

upport the not equal symbol (e.g., x E
1

!= 2 , !(x E
1

== 2)) in mod-

ling, we need two progress locations to translate a transition with

n equal symbol (e.g., x E 1 == 2 in BM 2). The translated LHA have a

ommon syn y E 1 _ _ x
E
1 _ _ reset, and Fig. 17 (c) has an additional passing

ocation y E
1

_ _ x E
1

_ pass with an outgoing transition which resets the

alue of y E
1

_ _ x E
1

. When Fig. 17 (c) remains at y E
1

_ _ x E
1

_ pass and the

alue of y E
1

_ _ x E
1

is 2, (y E
1

_ _ x E
1

_ pass, l 2 _ pass) and (l 3 _ pass, l 4 _ pass)

re executed at the same time by syn y E 1 _ _ x
E
1 _ _ reset . Therefore, the

vent is sent to the corresponding LHA, and is reset after use.

.3. Restrictions and assumptions

The translation rules discussed above have some assumptions

nd restrictions. Table 2 shows a checklist for these rules. The syn-

ax of ECML is basically checked by EcoPOD , and the checklist fo-

uses on checking assumptions and restrictions for LHA translation.

he checklist is explained in previous sections; here, we summa-

ize them. (I.1) notifies the String data type variable translation to

he modeler. The process is depicted in Section 3.1.1 . ECML sup-

orts user-defined data type variables and functions. However, they

annot be translated, since they are defined with the aid of the C++

rogramming language (I.2 and I.3). The translation covers variable

ssignments at phases except when an input variable is used in the

ssignment (I.4). The ECML model should be linear for the transla-

ion of LHA (I.5). Our translation strategy supports recursive vari-

ble assignments such as “x = x + 1 ” In this case, we define an ad-

itional variable to retain the previous value of x , and then perform

he assignment.

We implemented this checklist in “ECML Chekcer ” to support

hecking the assumptions and restrictions. ‘ ECML Checker ’ auto-

atically checks the checklist for an ECML model, and generates

 checking report as described in Fig. 18 . This report has error

essages and guides for unsatisfied assumptions, and also shows

hich variables or phases are causing problems along with the cor-

esponding ECML model. In this way, a modeler can modify the

CML model with support from the generated report in order to

nable translation to LHA.

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 131

Fig. 17. An example of event port translation.

Table 2

Simplified checklist for ECML translation.

No. Error message Guide message Level

I.1 String type variables are changed into real type. – Warning

I.2 Linear hybrid automata do not support user-defined data types. Use other data types. Error

I.3 Linear hybrid automata do not support user-defined functions. Remove user-defined functions, and modify model. Error

I.4 Assignment should not include an input variable at phase . Use transition assignment. Error

I.5 Rate function, transition function, and output function should be linear. Use linear dynamics. Error

3

p

a

l

a

f

a

v

m

a

a

S

L

L

B

s

s

l

a

v

t

t

S

a

s

a

s
.4. Implementing a CASE tool: ECMLtospaceex

We developed ‘ ECMLtoSpaceEx ’ and ‘ ECML Checker ’ using JAVA

rogramming language, and they contain approximately 15,0 0 0

nd 11,0 0 0 lines of code, respectively. We mechanized the trans-

ation rules with the support of ANTLR [45] and integrated it into

n automatic translator, ‘ ECMLtoSpaceEx .’ Fig. 19 shows the process

or ECML model verification. The ECML model should satisfy the

ssumptions and restrictions checked using ‘ ECML Checker .’ As pre-

iously mentioned, based on the checking report (see Fig. 18), the

odeler can modify the original model to satisfy the underlying

ssumptions and restrictions.

‘ ECMLtoSpaceEx ’ reads an ECML model of a specific format

nd produces a LHA model that SpaceEx can read. The translated

paceEx model is structured into two parts: the part containing the

HA models and that containing the SpaceEx configuration file. The
HA part includes a set of automata translated from ECML SM and

M . An expert can add invariants or an input automaton [27,29] to

pecify an input scenario, since ECML models obtain their input

cenario from an external environment, which is part of the simu-

ation program.

The SpaceEx configuration file part, on the other hand, provides

 template for verification such as reachability. It consists of a

erification scenario (e.g., PHAVer, STC, LGG), initial locations, ini-

ial states, and forbidden states. SpaceEx provides forbidden states

o specify verification properties. If forbidden states are specified,

paceEx shows a result that describes the intersection (∩) of reach-

ble states of the model and the forbidden states . This information

hould be manually specified by an expert.

We used a SpaceEx virtual server for verification. It produces

 verification result with graphical and textual formats in order to

upport analyses by domain experts. Currently, ‘ ECMLtoSpaceEx ’ has

132 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 18. Screen dump of the checking report generated by ECML Checker .

Fig. 19. ECML verification process with SpaceEx.

Fig. 20. Sketch of the Barrel Production System .

t

p

o

a

n

t

r

no graphical interface, since it was embedded in the ECML model-

ing tool, EcoPOD .

3.5. Further considerations on the translation

ECML translation into nonlinear hybrid automata . Our translation

rules use passing locations and progress locations to describe de-
erministic transition in hybrid automata. The translation has two

reconditions for deterministic transition translation. The behavior

f all variables should be linear, and rate should not be defined as

 range formula including zero such as “ ˙ s C ∈ [−1 , 1] ” in the origi-

al ECML model. If these preconditions are not satisfied, the ob-

ained LHA could remain in a progress location , even when the cor-

esponding guard is satisfied only once. A zero rate such as “ ˙ s C = 0 ”

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 133

Fig. 21. The ECML SM for Barrel Production System .

i

h

t

a

d

d

a

l

p

o

w

p

l

n

m

t

[

v

t

4

t

t

‘

c

i

l

a

P

S

a

t

r

l

4

s

P

c

T

Fig. 22. Example behavior for the Barrel Production System .

s

a

p

l

s

b

s

a

v

a

f

P

c

a

w
s not an issue with respect to this precondition. If an ECML model

as this rate , the translated model will behave as the modeler in-

ended. Since the linearity of the original ECML model is verified

nd ensured by the ‘ ECML Checker ’, and ECML does not support the

efinition of rate based on ranges, the two aforementioned precon-

itions are satisfied. We still need to refine the translation rules

nd find a suitable analysis algorithm & supporting tool for non-

inear hybrid automata translation and verification.

Formal definition of the translation . Formal definition of the pro-

osed translation rules is strongly required to demonstrate, verify

r prove its functional correctness thoroughly. We are currently

orking on this topic, but it’s challenging, as other literature re-

orts [46–51] , to provide formal, semi-formal, and graphical trans-

ation rules in different formats.

Functional correctness of the translation . Verifying the correct-

ess of compilers, code generators and translators is one of the

ost difficult topics in computing research [52] . Research to verify

he correctness through various techniques has been reported (see

53,54] for a survey). We are planning to apply compiler/translator

erification techniques to assess the correctness of the proposed

ranslation rules.

. Case study: A Barrel production system

This section models a ‘ Barrel Production System ’ with ECML, and

ranslates it into LHA. Section 4.1 briefly explains the target sys-

em - ‘ Barrel Production System ,’ structured with the subsystems

 Barrel-Filler System ,’ and ‘ Barrel-Mover System .’ In Section 4.2 , the

onsidered subsystems are modeled as ECML BMs and translated

nto LHA. The whole system is modeled as an ECML SM and trans-

ated into a network component of SpaceEx . All LHA based models

re generated mechanically from the ECML models of the ‘ Barrel

roduction System ’ by the CASE tool ‘ ECMLtoSpaceEx ,’ and read by

paceEx to perform formal verifications such as safety verification

nd reachability analysis (Section 4.3). The translation with ‘ ECML-

oSpaceEx ’ takes 0.495 s and 18.985 MB RAM (mean value of 100

uns), with the ‘ Barrel Production System .’ We performed the trans-

ation and analysis on a 2.5 GHz processor with 8 GB memory.

.1. Overview of the model

Fig. 20 describes the ‘ Barrel Production System .’ It has three

ubsystems: ‘ Barrel-Filler System ,’ ‘ Barrel-Mover System ’ and ‘ Barrel-

acking System .’ The ‘ Barrel-Filler System ’ fills a barrel with a spe-

ific inflow and places the fully filled barrel on the conveyor belt.

he ‘ Barrel-Mover System ’ then moves the fully filled barrel to a
pecific point to pack it out. A conveyor belt transmits the barrel

t a certain velocity from the barrel-filler system to the packing

oint. The distance from the barrel to the packing point is calcu-

ated continuously. The fully filled barrel is finally packed. The case

tudy originated in [5] , but we modified and extended it with the

arrel-mover system and the barrel-packing system.

The ‘ Barrel Production System ’ is modeled as an ECML SM as

hown in Fig. 21 . It has two input variables and one output vari-

ble. As mentioned in Section 2.1 , [A] (Analog) depicts continuous

alues in EcoPOD . It also has two BMs and they are connected via

 discrete event variable barrel , which indicates production of a

ully filled barrel. Fig. 22 shows an example behavior for the Barrel

roduction System . When switch is on , continuous input inflow in-

reases the level of liquid in a barrel (i.e., contents). When time is 9,

 fully filled barrel is produced and replace by a new empty barrel

hile switch is off, then the conveyor belt starts moving the barrel.

134 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 23. An ECML BM for the Barrel-Filler System (BM BF).

A

v

c

s

l

f

t

t

t

c

L

s

i

d

t

a

i

t

a

t

F

m

a

b

m

F

4

i

c

F

b

f

f

l

t

o

F

a

I
A continuous state, barrel _ dist starts to increase time 9, and the

conveyor belt stops when “barrel _ dist == 10 ”. If a new fully filled

barrel is produced while another barrel is being moved, barrel _ dist

is reset to 0 to move the fully filled barrel that arrived last. A new

fully filled barrel is produced at time 16, hence barrel _ dist is reset

at this time, then increases again.

4.2. Translation of ECML models

This section translates BMs for Barrel-Production System accord-

ing to the translation rules presented in Section 3 .

4.2.1. Barrel-Filler system

Fig. 23 is an ECML BM for the Barrel-Filler System (BM BF). It has

two input ports, one output port and one state variable. contents is

a continuous state variable, describing the level of liquid in a bar-

rel. switch is a discrete input, which can open and close the valve.

When switch is set to open, a continuous input (inflow) increases

contents. barrel is a discrete event output indicating that a barrel is

completely filled.

The Barrel-Filler System fills a barrel and puts it out whenever

the barrel is filled up to a specific water level. The ECML BM has

three phases: closed, open , and barrelOut . The initial phase is closed ,

and the value of contents is not changed in this phase. The sys-

tem fills a barrel in the open phase. If contents is greater than

or equal to 10, the continuous state variable contents is reset to

0 and a barrel is produced (i.e., bar rel = tr ue) by the state transi-

tion labeled contents_high . The transition condition ‘ true == true ’ is

trivially true, hence the phase barrelOut changes automatically to

closed . This model assumes that a new empty barrel starts filling

as soon as a fully filled barrel is produced as in the original exam-

ple in [5] . The formal definition of the basic ECML model BM for

the ‘ Barrel-Filler System ’ (BM BF) is as follows in Fig. 24 .

The state variables (S C , S D) in ECML are translated into the lo-

cal variables of subsystem in a SpaceEx model. Output variables (Y)

and state variables (S D , S C) are translated into controlled variables.

A flow for a controlled variable should be defined in the subsystem.

The translation by ‘ ECMLtoSpaceEx ’ considers this property, thus

flows are defined for local variables and output variables, except

input variables (I = X \ C). In Fig. 25 , every location in LHA BF has a

flow for contents and barrel , which are a local and output variables,

respectively, but does not have a flow for switch , an input variable.
 special variable e is used in passing locations (Section 3.1.5). This

ariable is a local variable, but flow is omitted for e at progress lo-

ations. e is assigned a value of ‘0’ at ingoing and outgoing tran-

itions of passing locations, thus it retains the ‘0’ value at passing

ocations .

‘ ECMLtoSpaceEx ’ mechanically generated a LHA model in xml

ormat from the single ECML model BM BF in Fig. 23 . Fig. 25 shows

he LHA model, as it can be seen in the SpaceEx model edi-

or. The translated init information is described in a configura-

ion file (cfg format), since SpaceEx uses it to specify initial lo-

ations and initial values for all variables of each subsystem. The

HA BF functions as follows: the initial location is closed_pass . If the

witch is turned on (i.e., switch > = 1) at the closed_pass location,

t transits to open_pass , if not, it transits to closed_prog0 imme-

iately. At closed_prog0 , it waits until the switch is turned on. If

he model transits to open_pass , it checks the values of the switch

nd contents . When the switch is turned off (i.e., switch < 1),

t returns to closed_pass . Otherwise, if the switch is on and con-

ents < 10, it transits to open _ prog0 , and then contents increases

ccording to contents ′ == in f low . When contents increases to 10,

he model transits to barrel__barrelinput_pass0 . The source BM in

ig. 23 has a transition (open, barrelOut), however the LHA has one

ore location barrel__barrelinput_pass0 for the discrete event vari-

ble translation (Section 3.2.2). It transits to closed_pass through

arrelOut_pass after resetting the discrete event variable. The for-

al definition of the linear hybrid automaton LHA BF for the Barrel-

iller System is as follows in Fig. 26 .

.2.2. Barrel-Mover system

Fig. 27 is an ECML BM for the Barrel-Mover System . It has one

nput port, one output port and one state variable. barrel_dist is a

ontinuous state variable, describing the distance from the Barrel-

iller System to the current position of a barrel on the conveyor

elt. barrelinput is a discrete event input, indicating an incoming

ully filled barrel. barrel_dist_out is a continuous output variable

or the barrel_dist . The BM moves a fully filled barrel to a specific

ocation (i.e., the point of packing, barrel _ dist > = 10). As soon as

he barrel-filler system produces a barrel , the Barrel-Mover System

btains it through the connected port barrel_input as defined in

ig. 21 . The initial phase is stopped , and when a fully filled barrel

rrives, the system transits to working and barrel _ dist is increased.

f a new fully filled barrel arrives while the previous barrel is mov-

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 135

Fig. 24. The formal definition of BM BF for the ‘ Barrel-Filler System ’.

Fig. 25. LHA model translated from Fig. 23 (in the SpaceEx model editor).

i

m

b

T

l

a

t

s

n

p

I

fi

1

s

j

s

w

i

o

r

n

i

r

p

T

s

h

c

(

f

a
ng, it proceeds to the checkbarrel phase and reset barrel _ dist to

ove the last input barrel. It returns to the initial phase when all

arrels have been moved to a specific point (i.e., barrel _ dist > = 10).

he formal definition of BM BM

for the Barrel-Mover System is as fol-

ow in Fig. 28 .

Fig. 29 shows a linear hybrid automaton model LHA BM

gener-

ted from Fig. 27 . The initial state of LHA BM

is stopped_pass , and

he model transits to stopped_prog0 or stopped_prog1 . Cond E (P =
topped, barrelinput = true) in Fig. 27 has equal symbol and its

egation is not supported in SpaceEx , thus the translation uses two

rogress locations, stopped_prog0 and stopped_prog1 (Section 3.2.2).

n each location, it waits for a fully filled barrel event. If a fully

lled barrel is placed on the conveyor belt (i.e., barrelinput ==
), the model transits to working_prog0 or working_prog1 through

topped_pass and working_pass . In order to reset berrelinput,

ump(stopped_pass, working_pass) has a syn label, which is the
ame as (barrel__barrelinput_pass0, barrelOut_pass) in Fig. 25 . At

orking_prog0 and working_prog1, barrel_dist increases accord-

ng to flow barrel _ dist ′ == 1 to describe the current position

f the last produced full-filled barrel. The output variable bar-

el_dist_out outputs the value of barrel_dist simultaneously. If a

ew fully filled barrel arrives while the conveyor belt is mov-

ng, the model transits to checkbarrel_pass , and then to bar-

el_dist_pass1. barrel_dist_out_pass0 and barrel_dist_out_pass1 are

assing locations for sequential variable assignment (Section 3.1.6).

he transitions (working, stopped) and (checkbarrel, working) re-

et barrel _ dist in Fig. 27 ; however, the translated model would

ave barrel _ dist := 0 ∧ barrel _ dist _ out := barrel _ dist in a jump , be-

ause of the assignment to barrel _ dist _ out at phase working

 Section 3.1.7). In order to model the same behavior, the transition

rom checkbarrel _ pass to barrel _ dist _ out _ pass 1 resets barrel _ dist,

nd then jump(barrel_dist_out_pass1, working_pass) outputs the up-

136 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 26. The formal definition of LHA BF for the ‘ Barrel-Filler System ’.

Fig. 27. ECML BM for Barrel-Mover System (BM BM).

4

w

t

w
dated and correct value, besides returning to working _ pass . The

LHA transits to stopped_pass through barrel_dist_out_pass0 when

all barrels have been moved to the packing position (i.e.,

barrel _ dist > = 10). The formal definition of the linear hybrid au-

tomaton LHA for the barrel moving system is as follows in Fig. 30 .
BM
.2.3. Translation of the structural ECML model

Barrel Production System is originally modeled as an ECML SM ,

hich is composed of two BMs as shown in Fig. 21 . The SM is

ranslated into a network component , and it has base components ,

hich are translated from the BMs . Fig. 31 is a network component

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 137

Fig. 28. The formal definition of BM BM for the ‘ Barrel-Mover System ’.

Fig. 29. A LHA model translated from Fig. 27 (in SpaceEx model editor).

f

r

s

n

o

m

F

e

s

i

t

g

t

b

t

4

a

f

m

f

t

n

a

o

t

r

o

M

i
or the Barrel Production System . It has four base components. Bar-

elProduct_BarrelFiller and BarrelProduct_BarrelMover are defined as

hown in Fig. 25 and Fig. 29 , respectively. timer is a base compo-

ent to support the analysis of the verification result and details

f timer are depicted in Section 4.3 .

BarrelProduct_Input_1 is an input automaton for verification. We

anually created the input automaton for verification based on

ig. 22 , since ECML obtains the input scenario from an external

nvironment, which is a part of the simulation program. Fig. 32

hows this input automaton. It generates an input scenario where

n _ switch and f low _ in evolve as described in Fig. 22 . The transi-

ions of the input automaton works deterministically. It starts to

enerate flow_in and the value is sent to Barrel-Filler System . When

ime is 9, a fully filled barrel is produced in Barrel-Filler System ,

esides that the input automaton does not generate input. After 2

ime units it generates input again.
.3. Verification of the translated LHA

SpaceEx obtains a model file and a configuration file as inputs,

nd generates the verification result with textual and graphical

ormats [55] . A configuration file defines the initial states of the

odel, verification scenario, forbidden states, and other options

or verification. This file can be modified in the SpaceEx web in-

erface. We chose PHAVer as verification scenario; therefore, we

eed to manually set the initial states, forbidden states, Max. iter-

tion , and output format. Initial states define the initial locations

f subsystems and initial values of variables. Max. iteration refers

o the maximum number of iterations for the reachability algo-

ithm, which is the total number of discrete post computations

n symbolic states [12] . An appropriate number should be set for

ax. iteration , since it could induce the state explosion problem if

t is too large, or an inaccurate verification result when it is too

138 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 30. The formal definition of LHA BM for the ‘ Barrel-Mover System ’.

1

e

t

S
small. If forbidden states are provided, SpaceEx intersects the for-

bidden states with system states, to verify whether these states are

reachable. However, forbidden states are not adequate to check the

sequence of states such as a reachability analysis using temporal

logics [56,57] . We carefully specified the forbidden states and con-

ducted timed-based analysis with support of the timer component.

We performed a reachability analysis [58] for one safety re-

quirement and two reachability requirements using SpaceEx .
Fig. 31. A network component obtained from the Barrel
Safety Requirement 1 “The content of a barrel should not exceed

0 liters ”.

Reachability Requirement 1 “A fully filled barrel is moved to the

nd of the conveyor belt ”.

Reachability Requirement 2 “The conveyor belt starts to move after

he first fully filled barrel arrives ”.

Table 3 shows the configurations for the reachability analysis.

cenario, Initial States , and Max. Iteration are the common ele-
 Production System (in the SpaceEx model editor).

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 139

Fig. 32. Input automaton for verification (in the SpaceEx model editor).

Table 3

SpaceEx configurations for case study.

Scenario PHAVer

Initial States BarrelProduct _ Bar relMover . e == 0& barrelinput == 0& out _ dist == 0

& barrel _ dist == 0& t == 0& BarrelProduct _ Barrel F il l er. e == 0

& switch == 0& contents == 0& inflow == 0

& loc (BarrelProduct _ BarrelMover) == stopped _ pass

& loc (BarrelProduct _ Barrel F il l er) == closed _ pass

& loc (BarrelProduct _ Input _ 1) == loc1

Max. Iteration −1

Requirement Forbidden states Output

Safety1 contents > 10 Text(.txt)

Reachability1 (loc(Bar relProduct _ Bar relMov er)

== working _ prog0 | loc(BarrelProduct _ BarrelMov er)

== working _ prog1)& barrel _ dist == 10

Text(.txt)

Reachability2 2D graph(.gen)/t, contents, barrelinput, barrel _ dist

Table 4

Runtime and memory usage of SpaceEx reachability analyses.

Requirement Memory Time

Mean (kb) Deviation Mean (s) Deviation

Safety1 3040 0 0.868 0.0024

Reachability1 3040 0 0.850 0.0030

Reachability2 3072 0 1.255 0.0025

m

f

‘

i

m

o

e

t

s

t

m

t

t

r

m

m

t

m

r

t

i

F

b

c

s

s

i

R

t

I

r

b

t

h

f
ents of the three reachability analyses and we set forbidden states

or each requirement. Initial states are mechanically generated by

 ECMLtoSpaceEx ’ from the source ECML model, and Max. iteration

s set as ‘ −1 , ’ which means that ‘ the reachability analysis only ter-

inates if a fixed point is found .’ The runtime and memory usage

f the reachability analyses are described in Table 4 . We performed

ach reachability analysis 100 times on a SpaceEx virtual server.

We set an error state as “content of a barrel is over 10 liters ”

o check the safety requirement, and conduct a reachability analy-

is for the error state. If the reachability analysis result shows that

he error state is unreachable in all cases, we can conclude that the

odel satisfies the safety requirement. Forbidden states set as ‘ con-

ents > 10’ to define the error state. Fig. 33 (a) shows the result of

his reachability analysis in SpaceEx Web interface. The verification
esult shows that “Forbidden states are not reachable ” as a console

essage, and the textual output is an empty set in Fig. 33 (b). It

eans that the error state is not reachable, thus we conclude that

he safety property is satisfied.

We define two forbidden states to verify Reachability Require-

ent 1 . First, “A fully filled barrel is moving ” and second, “The bar-

el is moved to the end of the conveyor belt ”. The Barrel-Mover Sys-

em conveys fully filled barrels at working _ prog0 or working _ prog1

n Fig. 29 . The fully filled barrel event ‘ barrelinput == 1 ’ in

ig. 29 could not be used to specify the first forbidden states , since

arrel _ dist is reset whenever the event occurs. The second state

an be simply specified as barrel _ dist == 10 . The verification re-

ult is “Forbidden states are reachable ” and the textual output de-

cribes that the forbidden states are satisfied at ‘ t == 26 ’ as shown

n Fig. 33 (c). We can conclude that the model satisfies Reachability

equirement 1 .

We analyzed the sequential behaviors of the model in order

o check whether the model satisfies Reachability Requirement 2 .

t is composed of two conditions: “The first fully filled barrel ar-

ives ”, and then “The conveyor belt starts to move ”. A fully filled

arrel event can occur a few times, thus we need to find out when

he event occurs for the first time, and analyze the response be-

avior of the model for the event. SpaceEx generates a graphical

ormat verification result, and it needs a time variable in order to

140 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Fig. 33. Verification results for Safety Requirement1 & Reachability Requirement1.

b

c

t

e

b

t

H

l

q
generate the sequential change of the variable. Therefore, ‘ ECML-

toSpaceEx ’ generates an additional base component (timer) to sup-

port the analysis of the sequential change of variables. The base

component timer has only one variable t and one location. The

value of t increases according to the flow ‘ t ′ == 1 ’, without being

interrupted by any other components. We used the t variable as a

global clock variable, which is useful when analyzing the verifica-

tion results of SpaceEx . As indicated in Table 3 , we also used empty

forbidden states , since SpaceEx shows the states of a model when

the model satisfies the forbidden states. SpaceEx shows all the states

of a model when the forbidden states are empty.
b
Figs. 34 (b)–(d) show 2D graph outputs of SpaceEx for Reacha-

ility Requirement 2 . Fig. 34 (b) is a graph describing the sequential

hange of contents , and it shows that contents needs 9 time units

o attain a value equal to 10. At 9 time units, fully filled barrel

vent barrelinput occurs for the first time as shown in Fig. 34 (c).

arrel _ dist is equal to 0 until this time, and then increases when

he Barrel-Mover System obtains the event as shown in Fig. 34 (d).

ence, we conclude that Reachability Requirement 2 is satisfied.

It is possible to determine whether the behavior of the trans-

ated model is the same as that in Fig. 22 . Fig. 34 (a) shows the se-

uential change of inflow , and contents increases according to the

ehavior of inflow. barrelinput occurs at 9, 16, and 28 time units,

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 141

Fig. 34. Sequential changes of variables.

t

b

b

a

o

F

5

s

l

(
hus barrel _ dist is reset and increases every time the event occurs.

arrel _ dist is also reset at 26 time units, because the last fully filled

arrel is moved to the end of the conveyor belt. The output vari-

ble out _ dist outputs the current position of the fully filled barrel

n the conveyor belt (i.e., barrel _ dist), and its behavior is shown in

ig. 34 (e).
i

t

. Related work

We surveyed modeling and verification techniques for hybrid

ystems to find efficient ways for verifying the ECML model, as

isted in Table 5 . Important criteria pertinent to our discussion are:

1) should be non-commercial, and (2) should perform formal ver-

fication automatically, i.e., model checking, not a theorem-proving

echnique.

142 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

Table 5

Tools for modeling, analyzing and verifying hybrid systems.

Name Objective Input front-end Verification method Commercial

CHARON [6] Modeling, simulation CHARON language None No

CheckMate [59] a Verification Autonomous linear Hybrid automata Rectangular polytopes Automation Yes

d/dt [60] Verification Linear hybrid automata Over-approximation No

Ellipsoidal ToolBox [61] a Verification Controlled linear hybrid system Pararellotope method [62] Yes

GBT [63] a Computation Polytope, ellipsoid Convex hull determination Yes

HSIF [64] Modeling, simulation Network (collection of hybrid automata) None No

HSolver [65] Verification Input hybrid system Constraint propagation b No

HyTech [10] Verification Linear hybrid automata Quantifier elimination, validity checking No

HyVisual [66] Modeling Embedded systems None No

KeYmaera [67] Verification Differential dynamic logic Symbolic decomposition b No

Level Set ToolBox [68] a Verification Partial differential equation Hamilton-Jacobi equation solutions [69] Yes

MATISSE [70] a Verification Transition system Bisimulation Yes

MultiParametric ToolBox [71] a Simulation, verification Piecewise affine systems Linear/quadratic programming solver Yes

PHAVer [11] Verification Linear I/O hybrid automata On-the-fly over-approximation No

Ptolemy II [72] Modeling, Simulating Embedded system (contains hybrid system) Non-hybrid system Verifier No

SHIFT [73] Modeling, translation SHIFT language None No

SpaceEx [12] Verification Hybrid automata Time-step flowpipe computation No

STeP [74] Verification Real-time system Invariant generation b No

a Requiring Matlab, commercial.
b Theorem proving.

n

S

e

i

E

b

m

n

f

p

w

l

m

v

E

v

A

R

We selected five tools appropriate for our criteria: d/dt, PHAVer,

SpaceEx , and Ptolemy II. HyTech [10] focuses on simple continuous

dynamics in each discrete state. We translated and tried to verify a

simple vehicle model [28,75] with an input scenario automaton.

The translated model is structured with 4 sub-systems, 19 vari-

ables and 38 locations, however we could not conduct reachability

analysis because of scalability of HyTech [11,30] . HyTech used up

to 4 GB memories and aborted the translated model verification.

d/dt [60] can verify hybrid systems with linear continuous dynam-

ics under uncertain bounded input using an over-approximation

method. PHAVer [11] supplements the weakness of HyTech [76] and

supports an I/O structure. It can compute non-convex polyhe-

dra [77] , and has an enhanced fixed-point computation. SpaceEx

[12] can verify linear hybrid systems using various forms of a poly-

hedron. It also uses a time-step extension of a scalable time-elapse

algorithm for verification. Ptolemy II [72] can verify a hybrid sys-

tem using one of three model checkers: NuSMV [78] , REDLIB [79] ,

and Real Time Maude [80] . NuSMV is a model checker for finite

state systems, and REDLIB is a model checker for timed automata.

Real Time Maude can analyze a hybrid system, but it is not a ver-

ification tool for hybrid systems. In addition, Ptolemy II includes

HyBisual which can model a hybrid system visually.

We have challenging work in order to conduct model check-

ing for ECML models. SpaceEx supports large scale (i.e., number) of

variables, but it could not be sufficient for large scale models. We

tried to apply our translation rules to conduct reachability anal-

ysis on an industrial vehicle example (see Fig. 3). We conducted

reachability analysis for the model, however, the analysis needed

many modifications of the model because the model system has

many nonlinear dynamics and user-defined functions. In order to

conduct liveness and fairness analyses other than reachability, we

need temporal logic based verification environment [81] , and we

are considering other verification tools to analyze various dynam-

ics [82] .

6. Conclusion and future work

This paper describes translation rules for verifying ECML hy-

brid simulation models that are mechanized by supporting tools.

Based on the rules, an ECML model is translated into linear hybrid

automata and then a formal verification, such as safety verifica-

tion and reachability analysis, is supported by SpaceEx . An ECML

model is described as a structural model, which comprises struc-

tured behavioral models, and these models are translated into a
etwork component and base components of SpaceEx , respectively.

paceEx then performed formal verification on the translated mod-

ls successfully. We implemented the proposed translation rules

nto an automatic translator, ‘ ECMLtoSpaceEx ,’ and required the

CML model to satisfy the assumptions and restrictions checked

y ‘ ECML Checker ’. We tried to verify an industrial vehicle ECML

odel with our verification technique; however, the approach is

ot directly suitable because the model has too many user-defined

unctions and nonlienar dynamics.

We expect it to be possible to use our translation rules to sup-

ort verification of ECML models with tools other than SpaceEx

ith minor modifications, since they translate ECML models into

inear hybrid automata based models, which is a notation com-

only accepted by other verification tools. Currently, we are de-

eloping formal translation rules, and are also trying to translate

CML models into nonlinear hybrid automata, besides proposing

erification strategies for these automata.

cknowledgments

This paper was supported by Konkuk University in 2015.

eferences

[1] P.J. Antsaklis , J.A. Stiver , M.D. Lemmon , Interface and controller design for
hybrid control systems, in: Hybrid Systems II, LNCS 999, Springer, 1995,

pp. 462–492 .
[2] R. Alur , D.L. Dill , A theory of timed automata, Theor. Comput. Sci. 126 (2)

(1994) 183–235 .

[3] R. Alur , C. Courcoubetis , N. Halbwachs , T.A. Henzinger , P.-H. Ho , X. Nicollin ,
A. Olivero , J. Sifakis , S. Yovine , The algorithmic analysis of hybrid systems,

Theor. Comput. Sci. 138 (1) (1995) 3–34 .
[4] R. Alur , T.A. Henzinger , P.-H. Ho , Automatic symbolic verification of embedded

systems, IEEE Trans. Softw. Eng. 22 (3) (1996) 181–201 .
[5] B.P. Zeigler , H. Praehofer , T.G. Kim , Theory of Modeling and Simulation, Aca-

demic Press, 20 0 0 .

[6] R. Alur , T. Dang , J. Esposito , Y. Hur , F. Ivan ̌ci ́c , I.L. Vijay Kumar , P. Mishra ,
G.J. Pappas , O. Sokolsky , Hierarchical modeling and analysis of embedded sys-

tems, Proc. IEEE 91 (1) (2003) 11–28 .
[7] S. Yoon, An ETRI CPS modeling language for hybrid system simulation,

Technical Report TR-DS-2015-01, 2015 . “ http://dslab.konkuk.ac.kr/Publication/
Publication.htm ”.

[8] K.G. Larsen , P. Pettersson , W. Yi , Uppaal in a nutshell, Int. J. Softw. Tools Tech-
nol. Transf. (STTT) 1 (1) (1997) 134–152 .

[9] C. Daws , A. Olivero , S. Trypakis , S. Yovine , The tool KRONOS, in: Hybrid Sys-

tems III, LNCS 1066, Springer, 1996, pp. 208–219 .
[10] T.A. Henzinger , P.-H. Ho , H. Wong-Toi , Hytech: a model checker for hybrid sys-

tems, Softw. Tools Technol. Transf. 1 (1–2) (1997) 110–122 .
[11] G. Frehse , PHAVEr: algorithmic verification of hybrid systems past hytech, Hy-

brid Syst.: Comput. Control (2005) 258–273 .

http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0006
http://dslab.konkuk.ac.kr/Publication/Publication.htm
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0011

S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144 143

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[12] G. Frehse , C. Le Guernic , A. Donzé, S. Cotton , R. Ray , O. Lebeltel , R. Ripado ,
A. Girard , T. Dang , O. Maler , SpaceEx: scalable verification of hybrid systems,

in: Computer Aided Verification, Springer, 2011, pp. 379–395 .
[13] E.M. Clarke , E.A. Emerson , A.P. Sistla , Automatic verification of finite-state con-

current systems using temporal logic specifications, ACM Trans. Program. Lang.
Syst. 8 (2) (1986) 244–263 .

[14] W. Visser , M.B. Dwyer , M. Whalen , The hidden models of model checking,
Softw. Syst. Model. 11 (4) (2012) 541–555 .

[15] S. Nair , J.L. de la Vara , M. Sabetzadeh , D. Falessi , Evidence management for

compliance of critical systems with safety standards: a survey on the state of
practice, Inf. Softw. Technol. 60 (2015) 1–15 .

[16] D. Aceituna , G. Walia , H. Do , S.-W. Lee , Model-based requirements verification
method: conclusions from two controlled experiments, Inf. Softw. Technol. 56

(3) (2014) 321–334 .
[17] J.L. de la Vara , A. Ruiz , K. Attwood , H. Espinoza , R.K. Panesar-Walawege ,

Á. López , I. del Río , T. Kelly , Model-based specification of safety compliance

needs for critical systems: a holistic generic metamodel, Inf. Softw. Technol.
72 (2016) 16–30 .

[18] R.K. Panesar-Walawege , M. Sabetzadeh , L. Briand , Supporting the verification
of compliance to safety standards via model-driven engineering: approach,

tool-support and empirical validation, Inf. Softw. Technol. 55 (5) (2013) 836–
864 .

[19] A. De Roo , H. Sözer , M. Ak ̧s it , Verification and analysis of domain-specific mod-

els of physical characteristics in embedded control software, Inf. Softw. Tech-
nol. 54 (12) (2012) 1432–1453 .

20] I. Chun , J. Kim , H. Lee , W. Kim , S. Park , E. Lee , Faults and adaptation pol-
icy modeling method for self-adaptive robots, in: Proceedings of International

Conference on Ubiquitous Computing and Multimedia Applications, Springer,
2011, pp. 156–164 .

[21] S. Kang , M. Kim , J. Park , I. Chun , W. Kim , LVC-interoperation development

framework for acquiring high reliable cyber-physical weapon systems, J. Ko-
rean Inst. Commun. Inf. Sci. 38 (12) (2013) 1228–1236 .

22] W.-T. Kim , I.-G. Chun , S.-H. Lee , J.-M. Park , A large-scale autonomous CPS soft-
ware platform (in Korean), Commun. Korean Inst. Inf. Sci. Eng. 12 (31) (2013)

16–28 .
23] M.-J. Kim , S. Kang , W.-T. Kim , I.-G. Chun , Human-interactive hard-

ware-in-the-loop simulation framework for cyber-physical systems, in: Pro-

ceedings of Second International Conference on Informatics and Applications
(ICIA), IEEE, 2013, pp. 198–202 .

[24] H.Y. Lee , I. Chun , W.-T. Kim , DEV&DESS-based cyber-physical systems modeling
language with uncertainty consideration, in: Proceedings of the 2013 Spring

Simulation Multiconference Poster Session, Society for Computer Simulation
International, 2013, p. 1 .

25] H. Choi , S. Cha , J.Y. Jo , J. Yoo , H.Y. Lee , W.-T. Kim , Formal verification of

DEV&DESS formalism using symbolic model checker hytech, in: Control and
Automation, and Energy System Engineering, Springer, 2011, pp. 112–121 .

26] H. Choi , S. Cha , J.Y. Jo , J. Yoo , H.Y. Lee , W.-T. Kim , Formal verification of ba-
sic DEV&DESS formalism using hytech, Inf.-Inter. Interdiscip. J. 16 (1 B) (2013)

821–826 .
[27] J. Jo , J. Yoo , H. Choi , S. Cha , H.Y. Lee , W.-T. Kim , Translation from ECML to linear

hybrid automata, in: Embedded and Multimedia Computing Technology and
Service, Springer, 2012, pp. 293–300 .

28] S. Yoon , J. Jo , I.-g. Chun , J. Yoo , Verification and analysis of ECML models using

HyTech (in Korean), in: Korea Computer Software Engineering 2014(KCSE2014),
2014, pp. 2–10 .

29] J. Jo , A systematic verification of ECML model using hytech, (Master’s thesis),
Department of Computer & Information Communication Engineering, Konkuk

University, Korea, 2013 .
30] L.P. Carloni , R. Passerone , A. Pinto , A.L. Sangiovanni-Vincentelli , et al. , Lan-

guages and tools for hybrid systems design, Found. Trends® Electron. Des. Au-

tom. 1 (1–2) (2006) 1–193 .
[31] J. Jo , S. Yoon , J. Yoo , H. Lee , W. Kim , Case study: verification of ECML model

using SpaceEx, in: Proceedings of Korea-Japan Joint Workshop on ICT, Pohang,
Korea, 2012, pp. 1–4 .

32] G. Frehse , R. Kateja , C. Le Guernic , Flowpipe approximation and clustering
in space-time, in: Proceedings of Hybrid Systems: Computation and Control

(HSCC’13), ACM, 2013, pp. 203–212 .

[33] G. Frehse, A brief experimental comparison of the STC and LGG anal-
ysis algorithms in SpaceEx, 2012 . “ http://spaceex.imag.fr/documentation/

user-documentation ”.
34] M.F. Karoui , H. Alla , A. Chatti , Monitoring of dynamic processes by rectangular

hybrid automata, Nonlinear Anal. Hybrid Syst. 4 (4) (2010) 766–774 .
[35] A. Allahham , H. Alla , Post and pre-initialized stopwatch petri nets: formal se-

mantics and state space computation, Nonlinear Anal. Hybrid Syst. 2 (4) (2008)

1175–1186 .
36] M. Sipser , Introduction to the Theory of Computation, Cengage Learning, 2012 .

[37] K. Bae , J. Krisiloff, J. Meseguer , P.C. Ölveczky , Designing and verifying dis-
tributed cyber-physical systems using multirate PALS: an airplane turning con-

trol system case study, Sci. Comput. Program. 103 (2015) 13–50 .
38] J.H. Jeon , I. Chun , P.S.M. Kim Won-Tae , Design and method in modeling of cy-

ber-physical systems, in: Proceedings of JCICT & The first Yellow Sea Interna-

tional Conference on Ubiquitous Computing (YES-ICUC), 2011 .
39] J. Jeon , I. Chun , K. Won-Tae , Metamodel-based CPS modeling tool, Embed. Mul-

timed. Comput. Technol. Serv. (LNCS) 181 (2012) 285–291 .
40] E.I. Kim , M.J. Park , I.-g. Chun , W.-T. Kim , Reliability support framework for cy-
ber physical systems, in: Proceedings of 2011 International Symposium on Em-

bedded Technology (ISET 2011), 2011, pp. 1–5 .
[41] J.Y. Kim , D.N. Choi , H.J. Kim , J.M. Kim , W.-T. Kim , Abstracted CPS model:

a model for interworking between physical system and simulator for CPS
simulation, in: Proceedings of the 2012 Symposium on Theory of Modeling

and Simulation - DEVS Integrative M&S Symposium (TMS/DEVS 2012), 2012,
pp. 26–29 .

42] T.A. Henzinger , The theory of hybrid automata, in: Proceedings of the eleventh

Annual Symposium on Logic in Computer Science (LICS’96), IEEE Comp. Soc.
Press, 1996, pp. 278–292 .

43] R. Alur , A. Thomas , Real-time system = discrete system+ clock variables, Int. J.
Softw. Tools Technol. Trans. 1 (1–2) (1997) 86–109 .

44] D. Harel , On visual formalism, Commun. ACM 31 (5) (1986) 514–530 .
45] ANTLR v3, (http://www.antlr3.org/).

46] P. Schrammel , B. Jeannet , From hybrid data-flow languages to hybrid automata:

a complete translation, Technical Report, 2012 . Research Report n7859.
[47] C. van Beek , N.G. Jansen , K.E. Eooda , R.R. Schiffelers , K.L. Man , M.A. Reniers , Re-

lating Chi to hybrid automata, in: Proceedings of the 2003 Winter Simulation
Conference, 2003, pp. 632–640 .

48] A. Agrawal , G. Simon , G. Karsai , Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations, Electron. Notes Theor.

Comput. Sci. 109 (2004) 43–56 .

49] S. Han , K. Huang , Equivalent semantic translation from parallel DEVS models
to time automata, in: ICCS 2007, in: Part I, LNCS 4487, 2007, pp. 1246–1253 .

50] S. Borland , Transforming statechart models to DEVS, (Ph.D. thesis), McGill Uni-
versity, 2003 .

[51] T. Baar , Correctly defined concrete syntax, Softw. Syst. Model. 7 (4) (2008)
383–398 .

52] M.A. Dave , Compiler verification: a bibliography, ACM SIGSOFT Softw. Eng.

Notes 28 (6) (2003) 2 .
53] T. Hoare , The verifying compiler: a grand challenge for computing research, J.

ACM 50 (1) (2003) 63–69 .
54] L.A. Rahim , J. Whittle , A survey of approaches for verifying model transforma-

tions, Softw. Syst. Model. 14 (2) (2013) 1003–1028 .
55] M. Kone ̌cn ̀y , W. Taha , F.A. Bartha , J. Duracz , A. Duracz , A.D. Ames , Enclosing

the behavior of a hybrid automaton up to and beyond a zeno point, Nonlinear

Anal. Hybrid Syst 20 (2016) 1–20 .
56] D. Lepri , E. Ábrahám , P.C. Ölveczky , Sound and complete timed CTL model

checking of timed Kripke structures and real-time rewrite theories, Sci. Com-
put. Program 99 (2015) 128–192 .

[57] K. Bae , J. Meseguer , Model checking linear temporal logic of rewriting formulas
under localized fairness, Sci. Comput. Program 99 (2015) 193–234 .

58] H.A. Hansen , G. Schneider , M. Steffen , Reachability analysis of complex planar

hybrid systems, Sci. Comput. Program 78 (12) (2013) 2511–2536 .
59] A. Chutinan , B.H. Krogh , Verification of polyhedral-invariant hybrid automata

using polygonal flow pipe approximations, in: Proceedings of Hybrid Systems:
Computation and Control, LNCS 1569, 1999, pp. 76–90 .

60] E. Asarin , T. Dang , O. Maler , The d/dt tool for verification of hybrid systems, in:
Proceedings of Computer Aided Verification, LNCS 2404, 2002, pp. 746–770 .

[61] A. Kurzhanski , P. Varaiya , Ellipsoidal Toolbox manual. EECS Department, 2008 .
62] E. Kostousovat , Control synthesis via parallelotopes: optimzation and parallel

computations, Optim. Methods Softw. 14 (4) (2001) 267–310 .

63] C. Graves , S. Veres , Using MATLAB toolbox LDQUO;GBT RDQUO; in identifica-
tion and control, in: Proceedings of IEE Colloquium on Identification of Uncer-

tain Systems, 1994, pp. 11/1–11/6 .
64] A. Pinto , L. Carloni , R. Passerone , A. Sangiovanni-Vincentelli , Interchange for-

mat for hybrid systems: abstract semantics, Hybrid Syst.: Comput. Control
3927 (2006) 491–506 .

65] S. Ratschan, Z. She, HSolver: verification of hybrid systems based on the con-

straint solver RSolver, (Online) “http://hsolver.sourceforge.net/ ”.
66] C. Brooks , A. Cataldo , E.A. Lee , J. Liu , X. Liu , S. Neuendorffer , H. Zheng ,

Hyvisual: a hybrid system visual modeler, Technical Memorandum UCB/ERL
M05/24, University of California, Berkeley, 2005 .

[67] A. Platzer , J. Quesel , Keymaera: a hybrid theorem prover for hybrid systems
(system description), Autom. Reason. 5195 (2008) 171–178 .

68] I. Mitchell , A toolbox of level set methods version 1.0, Department of Computer

Science, University of British Columbia, UBC CS TR-2004-09, 2004 .
69] S. Osher , A level set formulation for the solution of the Dirichlet problem for

Hamilton–Jacobi equations, SIAM J. Math. Anal. 24 (1993) 1145 .
[70] A. Girard , G.J. Pappas , Approximation metrics for discrete and continuous sys-

tems, IEEE Trans Autom. Control 52 (5) (2005) 782–798 .
[71] M. Kvasnica , P. Grieder , M. Baoti ́c , M. Morari , Multi-parametric toolbox (MPT),

Hybrid Syst.: Comput. Control 2993 (2004) 121–124 .

[72] C. Brooks , E. Lee , X. Liu , S. Neuendorffer , Y. Zhao , H. Zheng , Heterogeneous
concurrent modeling and design in java (volume 1: introduction to ptolemy

ii), Tech. Rep. UCB/EECS-2008-28, Apr, 2008 .
[73] M. Antoniotti , A. Göllü, SHIFT and SMART-AHS: a language for hybrid sys-

tem engineering modeling and simulation, in: Proceedings of the Conference
on Domain-Specific Languages on Conference on Domain-Specific Languages

(DSL), 1997, USENIX Association, 1997 . 14–14

[74] N. Bjørner , A. Browne , E. Chang , M. Colón , A. Kapur , Z. Manna , H. Sipma ,
T. Uribe , STeP: deductive-algorithmic verification of reactive and real-time sys-

tems, in: Computer Aided Verification, Springer, 1996, pp. 415–418 .

http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0032
http://spaceex.imag.fr/documentation/user-documentation
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0044
http://www.antlr3.org/
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0058
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0059
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0060
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0061
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0062
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0063
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0063
http://hsolver.sourceforge.net/
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0064
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0065
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0066
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0067
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0068
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0069
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0070
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0071
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0072

144 S. Yoon, J. Yoo / Information and Software Technology 92 (2017) 121–144

[75] S. Yoon , I.-g. Chun , W.-T. Kim , J. Jo , J. Yoo , An ETRI CPS modeling language for
specifying hybrid systems (in korean), J. KIISE 42 (7) (2015) 823–833 .

[76] T. Henzinger , J. Preussig , H. Wong-Toi , Some lessons from the HyTech experi-
ence, in: Proceedings of the Fortieth IEEE Conference on Decision and Control,

2001., 3, IEEE, 2001, pp. 2887–2892 .
[77] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, J. Jouannaud, Software Engi-

neering with OBJ: Algebraic Specification in Action, Kluwer Academic Publish-
ers, pp. 3–167.

[78] A. Cimatti , E. Clarke , F. Giunchiglia , M. Roveri , NuSMV: a new symbolic model

verifier, Computer Aided Verification, Springer, 1999 . 6 82–6 82
[79] F. Wang , REDLIB for the formal verification of embedded systems, in: Proceed-

ings of Second International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation, 2006, pp. 341–346 .
[80] P. CsabaOlveczky , J. Meseguer , Real-Time Maude: a tool for simulating and an-
alyzing real-time and hybrid systems, in: Proceedings of Third International

Workshop on Rewriting Logic and its Applications, WRLA, 20 0 0, pp. 18–20 .
[81] Y. Annpureddy , C. Liu , G. Fainekos , S. Sankaranarayanan , S-taliro: a tool for

temporal logic falsification for hybrid systems, in: Proceedings of International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-

tems, Springer, 2011, pp. 254–257 .
[82] M. Althoff, An introduction to cora 2015., in: Proceedings of ARCH@ CPSWeek,

2015, pp. 120–151 .

http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0073
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0074
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0075
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0076
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0077
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0078
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0079
http://refhub.elsevier.com/S0950-5849(17)30455-X/sbref0079

	Formal verification of ECML hybrid models with spaceex
	1 Introduction
	2 Background
	2.1 ECML
	2.2 Linear hybrid automata
	2.3 The semantic gap between these two formalisms

	3 The ECMLtoLHA translation
	3.1 The translation of behavioral models
	3.1.1 Variables
	3.1.2 Initial condition
	3.1.3 Rate
	3.1.4 Phase & transition
	3.1.5 Passing and progress locations
	3.1.6 Sequential variable assignment
	3.1.7 Variable assignment at phase

	3.2 The translation of structural models
	3.2.1 Port
	3.2.2 Discrete event type port

	3.3 Restrictions and assumptions
	3.4 Implementing a CASE tool: ECMLtospaceex
	3.5 Further considerations on the translation

	4 Case study: A Barrel production system
	4.1 Overview of the model
	4.2 Translation of ECML models
	4.2.1 Barrel-Filler system
	4.2.2 Barrel-Mover system
	4.2.3 Translation of the structural ECML model

	4.3 Verification of the translated LHA

	5 Related work
	6 Conclusion and future work
	 Acknowledgments
	 References

