
Future Generation Computer Systems 28 (2012) 1272–1282
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A safety-focused verification using software fault trees✩

Sungdeok Cha a, Junbeom Yoo b,∗

a Korea University, Department of Computer Science and Engineering, Anam-dong Seongbuk-gu, Seoul 136-701, Republic of Korea
b Konkuk University, Division of Computer Science and Engineering, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea

a r t i c l e i n f o

Article history:
Received 30 October 2010
Received in revised form
7 January 2011
Accepted 3 February 2011
Available online 3 March 2011

Keywords:
Safety analysis
Software fault tree
Software verification
Combinational equivalence checking

a b s t r a c t

When developing safety-critical software such as reactor protection systems (RPS) in nuclear power
plants, a demonstration of software trust (e.g., safety) is not only absolutely essential but also usually
mandated by government authorities. While automated generation of fault trees has become possible
with increased use of formal specifications, industrial use of fault trees has been limited primarily to safety
demonstrations that the system is free from behavior captured in the root node. In this paper, we propose
to extend the use of automated fault tree for verification purposes. As a fault tree represents an abstract
and partial behavioralmodel of software on credible causes leading to a hazard, itmust still satisfy various
properties (e.g., fairness, correctness). Verification of a fault tree is useful when developing safety-critical
software because (1) it strengthens a safety-focused software development process; (2) it provides an
opportunity to detect potentially critical errors early; and (3) it is less likely to experience a state explosion
problem. This paper demonstrates how to convert a fault tree into a semantically equivalent logic formula
so that they can be subject to formal verification using tools like Verification Interacting with Synthesis
(VIS). We evaluated the feasibility of FTA’s applicability as a verification tool on a prototype model of a
nuclear power reactor protection system (RPS) software to be deployed in plants under construction in
Korea.

Crown Copyright© 2011 Published by Elsevier B.V. All rights reserved.
l

1. Introduction

Fault tree analysis (FTA) [1] is the most widely used safety
analysis [2] technique when developing safety-critical real-time
systems such as RPS (Reactor Protection System) in nuclear power
plants. An independent safety demonstration is often mandated
by regulatory agencies. FTA is essentially a logical argument,
in graphical notation, that the system is free from the root-
node failure. It is essentially a partial and abstract model of
software behavior with respect to failure modes. Unfortunately,
existing techniques still have intrinsic limitations in that fault trees
contain only information explicitly captured in the specification or
source code and that it rarely serves beyond safety demonstration
purposes.

Increased use of formal specification has made mechanical
(e.g., automated [3–6] or template-based [7,8]) construction of

✩ This research was partially supported by the National IT Industry Promotion
Agency (NIPA) under the program of Software Engineering Technologies Develop-
ment and also by the MKE (The Ministry of Knowledge Economy), Korea, under the
ITRC (Information Technology Research Center) support program supervised by the
NIPA (National IT Industry Promotion Agency (NIPA-2010-(C1090-0903-0004) and
NIPA-2010-(C1090-1031-0003)). This researchwas also supported by the Basic Sci-
ence Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology (2010-0002566).
∗ Corresponding author. Tel.: +82 2 450 3258.

E-mail addresses: scha@korea.ac.kr (S. Cha), jbyoo@konkuk.ac.kr (J. Yoo).

0167-739X/$ – see front matter Crown Copyright© 2011 Published by Elsevier B.V. A
doi:10.1016/j.future.2011.02.004
fault trees possible, and such advances create possibilities of
extending the use of fault trees beyond safety demonstrations.
In this paper, we propose to extend the use of mechanically
constructed fault trees for verification purposes by applying
a semantic preserving translation into a propositional logic
formula. Contributions include refinement of software fault tree
semantics and development of an algorithm to translate a
fault tree into Verilog. Because a fault tree must still satisfy
various properties (e.g., fairness, correctness, etc.), we use VIS’s
combinational equivalence checking [9] to automate verification.
Should verification fail, we have detected a logical error in the fault
tree. A counterexample provides tips on why properties were not
met and how the behavioral model must be fixed.

We argue that fault tree-based verification of safety-critical
behavior has the following advantages: (1) it encourages safety-
focused development of software throughout life-cycle phases;
(2) it provides opportunities to detect potential errors early and
identify missing safety requirements; and (3) the state explosion
problem is less likely to occur as verification is carried out using a
partial (but relevant) behavioral model. In order to demonstrate
effectiveness of our idea, we performed a case study using a
prototype specification of KNICS1 RPS BP (Bistable Processor) logic.
The same system, to be installed in the nuclear power plants

1 Korea Nuclear Instrumentation and Control System.

l rights reserved.

http://dx.doi.org/10.1016/j.future.2011.02.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:scha@korea.ac.kr
mailto:jbyoo@konkuk.ac.kr
http://dx.doi.org/10.1016/j.future.2011.02.004

S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282 1273
under construction in Korea, was used in other papers [10,11,5]
too. Results indicate that fault tree-based verification can detect
errors quicker than full-scale formal verifications do and that
mechanically generated fault trees serve a useful role in safety
verification too. Quantitative results obtained from preliminary
FTA-based verification appear quite promising, and a full-scale
evaluation using the entire KNICS RPS system is planned. It
encompasses refinement of the semantics of software fault trees
and mechanical translation into Verilog programs.

The rest of our paper is organized as follows. Section 2 reviews
recent advances on software fault tree analysis techniques. Formal
verification techniques with emphasis on VIS are also briefly
reviewed. In Section 3, to help readers better understand the
example, we explain the KNICS nuclear reactor protection system
mechanism and describe fault trees constructed for the KNICS
RPS system. It must be noted that the KNICS system used in this
paper has passed operational ‘‘fitness’’ evaluation from the Korean
regulation agency called KINS (Korean Institute of Nuclear Safety)
and that the system is to be deployed in 2013. Research on this
paper began after completing the KNICS RPS certification process.
We also explain key features of NuFTA, a CASE tool being developed
by our research group, with the focus on automated fault tree
construction and Verilog translation. Section 4 shows how the
safety-focused software verification process is applied. Section 5
describes several practical issues that must be addressed to apply
the proposed idea to the real-world applications. Finally, Section 6
concludes the paper.

2. Background

2.1. Fault tree analysis techniques

To the best of our knowledge, recent advances on fault tree
analysis techniques belong to one of the following categories:
dynamic (temporal) analysis, formalization of FTA, compositional
analysis, or mechanical fault tree construction.

Dynamic fault tree (DFT) [12] and its Galileo FTA tool [13]
use Markov chains to analyze behavior of dynamic system events
such as sequential dependencies, functional dependencies, or
redundancy. Temporal extensions to fault trees [14], based on a
temporal logic called Propositional Linear Temporal Logic (PLTLP),
include a set of new gates such as UNTIL-PAST, PREV, andWITHIN.
Similarly, temporal fault tree (TFT) methodology enables temporal
analysis using gates such as TAND gate (i.e., AND.THEN). Other
extensions include Priority-AND (PAND) gate [15].

Formalization of fault tree semantics is the necessary step for
the mechanical generation of fault trees as well as their formal
verification. [16] proposed a formal semantics of fault trees in
temporal logic and defined the consistency relation between the
system model and fault trees. [17] addressed how software safety
requirements may be derived from the fault trees. It uses a
system model common to both fault tree analysis and program
development, but issues related to the decomposition problem
of fault trees remain unaddressed. [18] proposed to use Interval
Temporal Logic with continuous semantics as a means of defining
fault tree semantics so that the decomposition problem can be
better addressed. Similarly, [19] defined formal semantics of
dynamic fault trees using Z specification language, but one can
neither validate (e.g., via simulation) nor verify the correctness of
safety requirements discovered by the fault trees. An executable
algebraic specification (e.g., CafeOBJ [20]) can be used as an
alternative to Z. Lastly, [21] reported practical experiences on
application of fault tree analysis to infinite state systems based on
fault tree semantics defined in [22].

Approaches to compositional FTA, essential in applying safety
analysis on large and complex systems, include Failure Propagation
and Transformation Notation (FPTN) [23] and HiP-HOPS [4]. The
former illustrates how component modules describing the local
generation and propagation of failures may be composed into
larger systemmodules. The latter extends key concepts introduced
in FPTN to include algorithms for synthesis of fault trees and
FailureMode and Effect Analysis (FMEA). A key difference between
FPTN and HiP-HOPS is that failures in FPTN may propagate
between FPTN modules while failures in HiP-HOPS propagate
only via input and output parameters on connections between
components. Component Fault Trees (CFTs) [24,25] and State-
Event Fault Trees (SEFTs) [26,27] are successors to FPTN and HiP-
HOPS techniques. In CFTs, local failure logic of components is
defined in a graph of interconnected and modularized fault trees.
SEFT enables representation of states in the failure logic, thereby
allowing analysis of systems that exhibit dynamic failure behavior.

Mechanical construction of fault trees is the topicmost relevant
to the ideas described in this paper. Fault trees can be generated
from source codes written in various languages (e.g., C, Ada83,
Ada95, or Function Block Diagrams), requirements specification,
or design documents. [7,28,29] defined fault tree templates for
Ada83 or Ada95 constructs (e.g., if-then-else, procedure call,
rendezvous, etc.) so that safety analysis can be guided by the
relevant failure semantics of language constructs. [8,30] defined
fault tree templates for Function Block Diagrams (FBDs) [31]
which is one of the most widely used PLC (Programmable
Logic Controller) programming languages. For example, FBD was
successfully used in the development of the KNICS RPS system,
and [5] proposed how fault trees can be synthesized from a
formal requirements specification written in a language named
NuSCR [11]. Likewise, [6,32,33] describes how fault trees can be
mechanically generated from other formal specifications written
in languages such as Statecharts [34] or RSML (Requirements State
Machine Language) [35].

Fault tree construction on a design document is addressed
in [4] in which fault trees are generated from an architectural
diagram similar to a data flow diagram. It treats the internal
logic behind each component in a black-box manner and analyzes
interactions among software components. [36] extended the idea
of fault tree generation to include Matlab–Simulink models. [3] is
another approach for generating fault trees from an architecture
description language called RIDL (Reliability Imbedded Design
Language). An analysis tool named Galileo [37] was implemented,
too. RIDLmay express the impact of architectural decisions such as
redundant modules and components on system reliability.

2.2. Formal methods and VIS

Formalmethod techniques encompass formal specification lan-
guages and formal verification techniques. The former addresses
how mathematics or logic could be effectively used to describe
software requirements or design without ambiguity, incomplete-
ness or inconsistency. Various flavors (e.g., algebraic, tabular,
graphical, logic-based, or automata-based) of formal specification
languages have been proposed. Formal specification languages
known to have been successfully used in industrial projects in-
clude Statechart [34], RSML [35], timed automata - UPPAAL [38],
SCR [39], Petri-Nets [40], NuSCR [11], Z [41], process algebra [42]
and SDL [43].

Approaches to formal verification generally belong to either de-
ductive reasoning or algorithmic verification. Deductive reason-
ing [44] is a verification methodology in which human experts
use axioms and proof rules to guide the reasoning process. Al-
though modern state-of-the-art theorem provers such as PVS [45]
provide features to automate certain degrees of reasoning, the
success of the proof mostly depends on the technical expertise
of analysts making critical decisions in building proof strategies.

1274 S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282
Fig. 1. Simplified architecture of the KNICS RPS.
Model checking [46–49] is widely used in industry because it
exhaustively searches finite system space to examine if proper-
ties are always satisfied. Although the state explosion problem
is still a practical obstacle in verifying the behavior of large and
complex systems, rapid advances on model checking theories and
tools have made it possible to verify many industrial systems.
Representative model checking tools include SMV [48], Spin [50],
VIS [9], andUPPAAL [38]. Code verification is also an active research
topic, and tools such as CBMC [51] or BLAST [52] work directly on
C programs.

VIS is the system we use in extending the use of fault trees
as a verification aid. It integrates formal verifications, simula-
tion, and synthesis of finite states hardware systems. It uses
Verilog as a front end and supports fair CTL (Computational
Tree Logic) model checking, language emptiness checking, com-
binational equivalence checking, sequential equivalence checking,
cycle-base simulation and hierarchical synthesis. In the case of se-
quential equivalence checking, the Verilog program has reg type
variables to store information internally. In our earlier work [53],
we developed an algorithm to translate FBD into a semantically
equivalent Verilog programand proved behavioral equivalence be-
tween the successive revisions. When developing safety critical
software, such verification is important because minor modifica-
tions or code optimization may result in unexpected failures. We
also developed VIS Analyzer [54] to provide a graphical interface
so that domain experts may take full advantage of VIS’s powerful
featureswithout being overwhelmedby a primitive and text-based
interface. Nuclear engineers found the VIS Analyzer interface easy
enough to use without having to rely on technical support from
formal methods experts.

3. Software fault trees for the KNICS RPS

KNICS RPS is a digital system whose responsibility is to
shutdown a nuclear reactor safely in case of emergency. It has been
approved for operational fitness evaluation tests in two nuclear
power plants being built in Korea. As a safety-critical system, it has
four redundant and physically isolated channels to provide defense
in depth. The high-level architecture diagram2 for single channel
RPS is shown in (Fig. 1). It consists of two bistable processors
(BPs), two coincidence processors (CPs), an automatic test and

2 (Fig. 1) represents a preliminary design. The certified design has been slightly
modified.
interface processor (ATIP) and a cabinet operator module (COM).
Subsystems are interconnected with different networks.

BP generates a trip signal to the CPs by comparing values of 18
process variables against predefined threshold values. There are
four different trip logics built in the system: (1) fixed set-point trip
(10 variables); (2) variable set-point trip (3 variables); (3) manual
reset trip (3 variables); and (4) digital trip (2 variables). Upon
receiving trip signals, CPs execute two-out-of-four voting logic to
determine if the trip signalmust be sent to the hardware actuators.
All RPS channels are duplicated, and each one has two independent
BPs and CPs respectively. ATIP, primarily used to execute for either
manual or automated tests initiated by operators, interact with BP
or CP in a single channel or multiple channels as a whole through
the common bus. COM, located at an operator room and connected
to other processors through the common bus, has two parts: (1) a
computer-based unit which provides status information regarding
the overall RPS equipment, and (2) a hardware unitwhichperforms
protection-related controls such as channel bypass and initiation
circuit reset.

In the KNICS RPS, BP trip logics and CP voting logics replace
traditional relay-based analog systems. They are classified as
safety-critical units whose safety assurance demonstration is
mandated. In order to fulfill regulatory requirements and enhance
software quality, safety analysis was performed thoroughly [55]
in addition to verification and validation (V & V) activities [56]. In
particular, a formal specification language named NuSCRwas used
to describe RPS requirements.

The NuSCR language has 4 basic constructs: FOD (Function
Overview Diagram), FSM (Finite State Machine), TTS (Timed
Transition System) [57] and SDT (Structural Decision Table). The
FOD, shown in (Fig. 2(a)) allows hierarchical modeling of arbitrary
depth. The proper prefix (e.g., ‘g ’ for a group node and ‘f ’ for
a function node) is used to improve understandability of the
specification. We use a partial specification of ‘‘manual reset
variable set-point rising trip’’ logic in BP, shown in (Fig. 2), to
illustrate our approach. (Fig. 2(b)) illustrates the NuSCR feature
to specify real-time requirements using duration constraints
embedded in transition conditions. We chose these notations in
close consultation with domain experts while carefully balancing
tradeoffs between the language’s flexibility in expressiveness and
capability to perform automated analysis.

If the system is in the ‘Normal’, the default state, an immediate
transition to the ‘Waiting ’ occurs when the trigger condition
is satisfied. When the condition is augmented with timing
constraints, as is the case in transition from the ‘Waiting ’ to ‘Trip’
state, the condition must remain true for the specified duration.
FSM is the same as TTS, but has no timing constraint. SDT,

S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282 1275
(a) FOD for g_Manul_Reset_Variable_Set_Point_Rising_Trip.

(b) TTS for th_X_Trip. (c) SDT for f_X_Valid.

Fig. 2. g_Manul_Reset_Variable_Set_Point_Rising_Trip logic in simplified NuSCR specification.
Fig. 3. A screen-dump of NuSCR specification of KNICS RPS BP in NuSRS and a fault tree produced by NuFTA.
organized in a style similar to theAND-OR table, specifies details on
what action (e.g., assignment) must take place when. For example,
the first column indicates that the f_X_Valid value becomes 0
when the f_X value lies in between (including the boundary)
the two threshold values. Otherwise, it receives 1 as its value.
For detailed description of NuSCR features and formal semantics,
please consult [11]. (Fig. 3) shows the NuSCR specification of the
KNICS RPS BP. The specification was developed using a NuSCR
supporting tool NuSRS.

(Fig. 4) is a fault tree mechanically generated from the
above NuSCR specification according to the synthesis procedure
described in [5,58]. It illustrates credible causes and dependencies
among them as to how the root node event, the th_X_Trip value
becoming zero and thereby shutting down the reactor, may occur.

1276 S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282
Table 1
Experiments on computation ability of NuFTA (range of variable x: 0–100, unit= s).

Monitor variables Types of trip logic Time to trip Time to pre-trip

LO_SG1_LEVEL Fixed 0.138 0.109
VAR_OVER_PWR Variable >10 min >10 min
HI_LOG_POWER Fixed 0.092 0.142
LO_PZR_PRESS Manual reset 0.205 0.197
SG1_LO_FLOW Manual reset 0.111 0.108
HI_LOCAL_POWER Digital 0.008 0.004

Table 2
Experiments on scalability of NuFTA (for variable LO_SG1_LEVEL, unit = s).

Range of a variable Time to trip Time to pre-trip

0–10 0.096 0.093
0–100 0.138 0.109
0–1,000 0.351 0.170
0–10,000 3.377 0.453

Two possible causes are (1) unsafe conditionmay have been newly
detected as indicated in the ‘Waiting ’ to ‘Trip’ transition, and the
detailed causes are shown in the condition nodes 1 and 2; or (2) the
system could have already been in the ‘Trip’ state, and the trigger
condition to ‘Normal’ state remains unsatisfied (e.g., condition 3).

NuFTA [58] is an assistant tool we continue to enhance
as a part of the NuSRS tool-set for a software development
frameworkbased on formalmethods [53]. It automatesmechanical
generation of fault trees and generates a propositional logic
formula representing the minimal cut-set of the fault tree.
NuFTA performs backward analysis starting from the system
configuration corresponding to the root node event and continues
until it finds all the credible combinations of input variables.
The process is computation-intensive, and in general, the process
can’t be fully automated in theory. This is especially true when
performing backward analysis on time-dependent failure modes.

As a practical alternative and a tool specialized for the nuclear
engineering industry, NuFTA constructs a fault tree mechanically
for the important safety-critical aspects of RPS design such as
shutdown logic (e.g. trip or pre-trip signals). Our experience of
usingNuFTA on the preliminary KNICS design indicates that NuFTA
can mechanically generate fault trees relatively quickly and that
the fault tree was of an acceptable quality to safety engineers. We
performed experiments using 6 of 18 monitor process variables,
but the remains are their variants. Experimental results, shown in
Tables 1 and 2, show that NuFTA completed fault tree generation
on handling 15 monitor process variables in 18, or 3 out of 4 trip
logics, almost instantly. An exception occurred when constructing
a fault tree on Var_Over_Pwr logic, and the state explosion problem
encountered during the execution of backward analysis is the
most likely cause. We plan to enhance the fault tree generation
algorithm. It must be stressed that the current NuFTA synthesis
algorithm is focused more on correctness of its output and not on
optimization of the fault trees.

4. Safety-focused verification using software fault trees

Given a software fault tree which can be mechanically
generated from a formal specification, we now explain how one
can formally verify it. As introduced earlier, we first translate the
fault tree into a propositional logic formula using NuFTA and then
into a Verilog program which is an input front-end of the VIS
verification system. Properties that the requirements must satisfy
are also abstracted from the fault tree analysis and translated
into a Verilog program, too. Once two Verilog programs become
available, VIS’s combinational equivalence checking determines
whether the model of the fault tree satisfies the model of
requirements properties. (Fig. 5) describes an overview of the
safety-focused verification using software fault trees.
4.1. Fault tree to Verilog translation

When translating a fault tree into a Verilog module, variables
used in the root node are declared as output variables. Likewise,
all the variables appearing in the leaf nodes (events) are declared as
input variables. In addition, the Verilog module needs additional
input variables to keep track of state configurations. The fault
tree shown in (Fig. 4), constructed through two system execution
cycles, needs two additional variables, ‘Trip(t)’ and ‘Waiting(t-1)’,
to capture the current and previous system states, respectively.
Assignments made to the output variable also depend on the
pattern used in the AND/OR logic of the fault tree.
th_X_Trip

= ¬ (th_X_Trip == 0) // negation of the fault tree in ⟨ Fig. 4⟩
= ¬ (Trip(t) ∧ (‘‘Condition 1’’ ∨ ‘‘Condition 2’’ ∨ ‘‘Condition 3’’))
= ¬ (Trip(t) ∧ ‘‘Condition 1’’) ∧ ¬ (Trip(t) ∧ ‘‘Condition 2’’) ∧ ¬ (Trip(t) ∧

‘‘Condition 3’’)
= // for Condition 1

¬ (Trip(t) ∧ (Waiting(t −1) ∧ (f _X_Valid ∨ f _Module_Error ∨ f _Channel_Error)
))

// for Condition 2
∧ ¬ (Trip(t) ∧ (Waiting(t − 1) ∧ (f _X ≥ h_X_Setpoint)))

// for Condition 3
∧ ¬ (Trip(t) ∧ (Trip(t − 1) ∧ ¬ (¬ f _X_Valid ∧ ¬ f _Module_Error ∧ ¬

f _Channel_Error
∧ (f _X < h_X_Setpoint - k_Hys))));

The Verilog module SFT_Formula, shown in (Fig. 6) is
manually translated from the fault tree in (Fig. 4). It has
5 input variables, 1 output variable, and 2 state variables
(i.e., ‘Current_State’ and ‘Previous_State’). For convenience sake, we
defined that two input variables may be assigned values ranging
from 0 to 6 and that three input variables are of the Boolean
type. The output variable th_X_Trip is assigned a new value as
indicated in the logic formula of the fault tree above. In order
to assist readers to better understand the mapping between the
fault tree and Verilog program, illustrative comments are included.
Unfortunately, propositional logic used in fault tree construction is
unable to support all the features (e.g., time constraints expressed
in durations) supported by NuSCR specification. As discussed in
Section 5 below, we plan to revisit the technical challenge of
extending the semantic definition of fault trees so that NuFTA and
NuSCR specification languages may become fully compatible. In
order to achieve this goal, other logic (e.g., duration calculus) may
need to be used instead.

When performing fault tree analysis on the combination func-
tion, use of reg type variable is unnecessary because information
on internal states need not be maintained. When safety analysis
involves state-dependent information, one must apply sequential
equivalence checking instead of combinational equivalence check-
ing. In such a case, VISmodel checkingwould take longer, and state
explosion is more likely to occur.

4.2. Safety property to Verilog translation

A fault tree, as a partial model of system behavior with
respect to the hazard, must still satisfy ‘fairness’ and ‘correctness’
properties. In the KNICS project, for example, the fairness
property requires that a shutdown signal must be immediately
generated if any input variable lies outside of the threshold values
(e.g., predefined setpoints). The correctness property is useful in
detecting potential logical errors in the fault tree. A correctness
requirement may specify that ‘‘the shutdown signal should be
produced (th_X_Trip := 0) only when the system is in the ‘Trip’
state’’. For the fault tree shown in (Fig. 4), these properties must
be shown to hold, and the corresponding logic formulae are shown
below:
Fairness:
1. (F1) If the value of input variables is out of bounds, the system

should fire a shutdown signal immediately (th_X_Trip := 0).

S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282 1277
Fig. 4. A software fault tree generated from the NuSCR specification in Fig. 2 (excerpted).
2. (F2) Only after all conditions resulting in the ‘out of bounds
error’ cease to be true, it can cancel the shutdown signal.

3. (F3) If the trip condition regarding the operation variable f_X is
satisfied, it should fire a shutdown signal immediately.

4. (F4) If the trip condition regarding the operation variable f_X is
canceled, it should stop firing the shutdown signal immediately.

Correctness:

1. (C1) When the system enters the state ‘Normal’, no shutdown
signal should be fired.

2. (C2) When the system enters the state ‘Waiting ’, no shutdown
signal should be fired.

3. (C3) When the system enters the state or remains at the state
‘Trip’, a shutdown signal should be fired.

th_X_Trip =
¬ (¬Trip(t) ∧ (f _X_Valid ∨ f _Module_Error ∨ f _Channel_Error)) // (F1)
∨ (Trip(t) ∧ (¬f _X_Valid ∧ ¬f _Module_Error ∧ ¬f _Channel_Error)) // (F2)
∨ ¬ (¬Trip(t) ∧ (f _X ≥ h_X_Setpoint)) // (F3)
∨ (Trip(t) ∧ (f _X < h_X_Setpoint - k_Hys)) // (F4)
∨ (Normal(t) ∧ ¬Normal(t − 1)) // (C1)
∨ (Waiting(t) ∧ ¬Waiting(t − 1)) // (C2)
∨ ¬ (Trip(t) ∧ Trip(t−1) ∨ ¬ (Trip(t) ∧ ¬Trip(t−1)); // (C3)

Encoding the safety properties in Verilog, shown in (Fig. 7),
is almost identical to the formula. Output variable th_X_Trip is
assignedwith the value 1 or 0, but in cases that no safety properties
are concerned, it generates a safe (i.e., 1) in the same ways as the
SFT_Formula. As the safety property specification did not use reg
variable, VIS’s combinational equivalence checkingmaybe applied.

In the case study, VIS combinational equivalence checking,
executed in the Cygwin environment, found that ‘‘Networks are
combinationally equivalent ’’. One must enter a series of commands
(e.g., ‘flatten_hierarchy’ and ‘build_partition_mdds’). While line-by-
line explanation of the results shown in (Fig. 8) is unnecessary and
is clearly outside the scope of the paper, we note the following:

• The counterexample described a scenario which led to differ-
ent systembehavior. Detailswere sometimesmissing (e.g., vari-
ables whose values remain unchanged in successive states are
not shown) and information display is primitive (e.g., f_X is an
integer value but shown in bit vector format), for nuclear safety
engineers, it was nearly impossible to accurately understand
the root cause of different behaviors although VIS is a very pow-
erful verification.

• Current VIS implementation provides only a command-based
interface. Most domain experts (e.g., nuclear engineers) have
neither expertise on formal methods to take full advantage nor
the patience (or necessary resources) in reassembling missing
information to pinpoint the cause of behavioral inequivalence.

(Fig. 9), VIS_Analyzer (version 3.0), is a tool we developed to
provide a more user-friendly interface. Using the GUI, one can
choose input files, launch a behavioral equivalence checking task
by executing a series of commands in the background, and display

1278 S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282
Fig. 5. An overview of safety-focused verification using software fault trees.
Fig. 6. A Verilog program translated from the fault tree in (Fig. 4) (SFT_Formula.v).

S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282 1279
Fig. 7. A Verilog program translated from safety properties (Property_Formula.v).
Fig. 8. A verification process of combinational equivalence checking using VIS.

a counterexample in tabular notation using integer values. It can
also visualize the result in a flowchart-like manner to help domain
experts better understand the result. Such a feature is especially
useful when analyzing the results of sequential equivalence
checking and model checking. Results are often too complicated
and long to understand. Every time we execute the combinational
equivalence checking, VIS presents different counterexamples if
possible.

4.3. Analysis of verification results

The counterexample presented in (Fig. 8) helped engineers
and verification experts to accurately understand the cause of the
difference between the twomodels. In the requirements specifica-
tion depicted in (Fig. 2), the counterexample is interpreted as fol-
lows: ‘‘In ‘Waiting ’ state, three input errors occur (f_X_Valid = 1,
f_Channel_Error = 1 and f_Module_Error = 1) and the condition ‘f_X
< h_X_Setpoint ’ is satisfied at the same time, then the difference
occurs’’. We analyzed the NuSCR specification for the th_X_Trip de-
scribed in (Fig. 2(b)). In state ‘Waiting ’, any one of the three er-
rors makes it transit to the state ‘Trip’ and fire the shutdown sig-
nal (th_X_Trip := 0). If, however, the condition ‘f_X < h_X_Setpoint ’
is satisfied, then it can also transit to the state ‘Normal’. Conse-
quently, the state ‘Waiting ’ had two outgoing transitions, but can
be selected nondeterministically. It was a logical error found in the
NuSCR specification, since all constructs in NuSCR should be com-
plete and consistent [11].

(Fig. 10) illustrates a corrected version of th_X_Trip in (Fig. 2(b)).
Nondeterministic transitions occurred because the shutdown sig-
nal (th_X_Trip := 0) could be fired in two ways (i.e., ‘Trip_By_Logic ’
and ‘Trip_By_Error ’). Different types of shutdown conditions
should be distinguished explicitly as shown in (Fig. 10). When
VIS’s combinational equivalence checkingwas applied again on the
modified definition of th_X_Trip, verification was successful in that
‘‘Networks are combinationally equivalent ’’.

It must be emphasized that the error described above was
NOT artificially seeded by the authors and that it was a genuine
mistake made by professional engineers in the early state of
system development. It is the same example used in our earlier
papers (e.g., [5]). Using the procedure we explain in this paper, the
logical mistake was found early, and the fix was properly made in
subsequent versions of the NuSCR specification.

Because fault trees are usually generated during a relatively
early state of requirements engineering, additional safety require-
ments are often derived. If one can utilize a fault tree as a verifi-
cation aid, as we demonstrate in this paper, it is quite likely that

1280 S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282
Fig. 9. Verification results produced by the VIS Analyzer 3.0.
Fig. 10. A modified NuSCR definition of th_X_Trip.

potential semantic errors are detected early prior to the initiation
of full-scale verification. Therefore, one can further increase trust in
software and reduce the cost necessary for software development.

5. Practical issues

While useful, there are several practical issues to address for
this technique to becomemore useful in industry. They are: (1) un-
derstandability of the constructed fault trees; (2) optimization of
the logic formula; (3) mechanization of the translation from fault
tree logics into Verilog programs; (4) combinational vs. sequential
equivalence checking; (5) compositional fault tree analysis; and
(6) an evaluation study.
Understandability of the constructed fault trees: When working on
a complex system, a fault tree often contains too many nodes
(e.g., several hundred nodes or more) for safety engineers to
effectively understand. The fault tree synthesis algorithm needs to
be enhanced to reduced potential redundancies in the fault trees.
To accomplish the objective,weplan towork ondefining semantics
used in the NuFTA more concisely. Utilization of ideas developed
in the model checking research community would prove useful
in better managing the complexity when conducting backward
analysis. In addition, backward analysis of real-time behavior
needs to be fully supported.
Optimization of the logic formula: Brute-force application of
minimal cut-set analysis apparently does not scale well in
industrial projects. For example, the logic formula described in
(Fig. 3) represents the minimal cut-set of the trip signal in the
LO_SG1_LEVEL trip logic, but it has too many Boolean combinators.
We plan to enhance NuFTA to generate more concise logic
formulae through unfolding and optimizing techniques. Current
implementation assigns each value of the processmonitor variable
into each leaf node.While intuitive, it is not necessarily an efficient
strategy. Furthermore, propositional logic used in the current
implementation is not powerful enough to support all features
included in the NuSCR specification. We plan to revisit the issue
of fault tree semantic definition.
Automated translation of fault trees into Verilog: The proposed ver-
ification technique constructs a software fault tree mechanically
fromNuSCR formal requirement specifications and then translates
it into a logic formula with the support of NuFTA. When engineers
translate the formula into Verilog programs, errors might occur
in the process. Both logic formulae produced by NuFTA and Ver-
ilog programs are mathematical functions. If internal information
on state history need not be tracked, one can build an automated
translator based on our earlier work [56,59]. Safety properties,
often available only in natural language format, must also be

S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282 1281
translated first into a logic formula and then into a Verilog program
in hand. While the first step can’t be automated, we plan to de-
velop a translator for the second step, after refining the semantics
of a software fault tree constructed from the NuSCR specification
firmly.
Combinational vs. sequential equivalence checking: Combinational
checking is a quick mathematical comparison between two
functions which have no internal states to keep information.
Otherwise, we must apply sequential equivalence checking, and it
is slower. The current version of NuFTA produces a fault tree and a
logic formula, which are corresponding to just one execution cycle
of the whole system.
Compositional fault tree analysis: Fault trees and logic formulae
produced by NuFTA are often too complicated and large to be used
as inputs to VIS equivalence checking. While the example used
throughout the paper is the fault tree against one node th_X_Trip in
the NuSCR specification Fig. 2(b), in practice, all nodes in the FOD,
described in (Fig. 3), should be used to construct a fault tree for one
trip/pretrip signal.
An evaluation study: Results to date on extending the use of fault
trees beyond that of safety analysis appear promising. Fault trees
can guide an early application of safety-focused model checking.
To determine applicability of the idea to real-world applications,
we plan to conduct a fuller andmore realistic experiment in which
larger and more complex examples in RPS design are used. To
conduct more industrial case studies, we must first develop a
translator from fault trees into Verilog programs.

6. Conclusion

This paper proposed a safety-focused verification technique
where a software fault tree mechanically constructed from
formal specifications is used as a formal verification tool. This is
possible because a fault tree is an abstract model of its software
specification or source code, containing information relevant to
the root-node event. We first translate the fault tree into a logic
formula, and then into a Verilog program which is an input front-
end of the VIS verification system. Properties which the system
should preserve are also abstracted from aspects of the fault
tree constructed and translated into a Verilog program too. It
then performs the VIS’s combinational equivalence checking to
check whether the model of the fault tree satisfies the model of
requirements properties.

Combinational equivalence checking is more cost-effective
than full-scale verificationmethods such as sequential equivalence
checking and model checking. We used a prototype version of
the KNICS RPS in Korean nuclear power plants to demonstrate
its effectiveness, and it showed that the proposed technique can
detect important safety errors in requirements specification early.

References

[1] W.E. Vesely, F.F. Goldberg, N.H. Roberts, D.F. Haasl, Fault tree handbook,
Technical report NUREG-0492, US Nuclear Regulatory Commission (1981).

[2] N.G. Leveson, SAFEWARE, System Safety and Computers, Addison Wesley,
1995.

[3] K. Vemuri, J. Dugan, K. Sullivan, Automatic synthesis of fault trees for
computer-based systems, IEEE Transactions on Reliability 48 (4) (1999)
394–402.

[4] Y. Papadopoulos, J. McDermid, R. Sasse, G. Heiner, Analysis and synthesis of
the behaviour of complex programmable electronic systems in conditions of
failure, Reliability Engineering and System Safety 71 (3) (2001) 229–247.

[5] T. Kim, J. Yoo, S. Cha, A synthesis method of software fault tree from
NuSCR formal specification using templates, Journal of the Korean Institute of
Information Scientists and Engineers-Software and Application 32 (12) (2005)
1178–1191 (in Korean).

[6] J. Yoo, S. Cha, H.S. Son, Automatic generation of goal-tree from statecharts
requirements specification, America Nuclear Society Transactions 88 (2003)
37–38.

[7] N.G. Leveson, P. Harvey, Analyzing software safety, IEEE Software 9 (5) (1983)
569–579.
[8] Y. Oh, J. Yoo, S. Cha, H.S. Son, Software safety analysis of function block
diagrams using fault trees, Reliability Engineering and System Safety 88 (3)
(2005) 215–228.

[9] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T.
Cheng, S.A. Edwards, S.P. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan,
S. Sarwary, T.R. Shiple, G. Swamy, T. Villa, VIS: a system for verification and
synthesis. in: Eighth International Conference on Computer AidedVerification,
CAV’96, 1996, pp. 428–432.

[10] J. Yoo, S. Cha, C.H. Kim, Y. Oh, Formal software requirements specification
for digital reactor protection systems, Journal of the Korean Institute of
Information Scientists and Engineers-Software and Application 31 (6) (2004)
750–759 (in Korean).

[11] J. Yoo, T. Kim, S. Cha, J.-S. Lee, H.S. Son, A formal software requirements
specification method for digital nuclear plants protection systems, Journal of
Systems and Software 74 (1) (2005) 73–83.

[12] R. Manian, J. Dugan, D. Coppit, K. Sulliva, Combining various solution
techniques for dynamic fault tree analysis of computer systems, in: 3rd
IEEE International High-Assurance Systems Engineering Symposium, 1998,
pp. 21–28.

[13] K. Sulliva, J. Dugan, D. Coppit, The Galileo fault tree analysis tool, in:
IEEE International Symposium of Fault Tolerant Computing, FTC-29, 1999,
pp. 232–235.

[14] G. Palshikar, Temporal fault trees, Information and Software Technology 44 (3)
(2002) 137–150.

[15] M. Walker, Y. Papadopoulos, Qualitative temporal analysis: Towards a full
implementation of the fault tree handbook, Control Engineering Practice 17
(10) (2009) 1115–1125.

[16] G. Bruns, S. Anderson, Validating safety models with fault trees, in: 12th
International Conference on Computer Safety, Reliability, and Security, 1993,
pp. 21–30.

[17] K. Hansen, A. Ravn, From safety analysis to software requirements, IEEE
Transactions of Software Engineering 24 (7) (1998) 573–584.

[18] G. Schellhorn, A. Thums,W. Reif, Formal fault tree semantics, in: The 6thWorld
Conference on Integrated Design and Process Technology (IDPT-2002), 2002.

[19] D. Coppit, K. Sullivan, J. Dugan, Formal semantics of models for computa-
tional engineering: a case study on dynamic fault trees, in: the 11th Inter-
national Symposium on Software Reliability Engineering, ISSRE-2000, 2000,
pp. 270–282.

[20] J. Xiang, K. Ogata, W. Kong, K. Futatsugi, From fault tree analysis to formal
system specification and verification with ots/cafeobj, Computer Software-
JSSST Journal 23 (3) (2006) 573–584.

[21] F. Ortmeier, G. Schellhorn, Formal fault tree analysis: practical experiences,
Electronic Notes in Theoretical Computer Science 185 (17) (2007) 139–151.

[22] A. Thums, Formale fehlerbaumanalyse, Ph.D. Thesis, Universit at Augsburg,
2004 (in German).

[23] P. Fenelon, J. McDermid, An integrated toolset for software safety analysis,
Journal of Systems and Software 21 (3) (1993) 279–290.

[24] B. Kaiser, P. Liggesmeyer, O. Mackel, A new component concept for fault trees,
in: The 8th Australian Workshop on Safety Critical Systems and Software, SCS
2003, 2003, pp. 37–46.

[25] L. Grunske, B. Kaiser, Automatic generation of analyzable failure propagation
models from component-level failure annotations, in: The 5th International
Conference on Quality Software, QSIC 2005, 2005, pp. 117–123.

[26] L. Grunske, B. Kaiser, Y. Papadopoulos, Model-driven safety evaluation
with state-event-based component failure annotations, in: 8th International
Symposium on Component-Based Software Engineering, CBSE 2005, 2005, pp.
33–48.

[27] B. Kaiser, C. Gramlich, M. Forster, State/event fault trees. A safety analysis
model for software-controlled systems, Reliability Engineering and System
Safety 92 (11) (2007) 1521–1537.

[28] N.G. Leveson, S. Cha, T. Shimeall, Safety verification of ada programs using
software fault trees, IEEE Software 8 (4) (1991) 48–59.

[29] S.-Y. Min, Y. kyu Jang, S. Cha, Y.-R. Kwon, D. Bae, Safety verification of ada95
programs using software fault trees, in: Computer Safety, Reliability and
Security (SAFECOMP), in: LNCS, vol. 1698/1999, 1999, pp. 226–238.

[30] G.-Y. Park, K.Y. Koh, E. Jee, P.H. Seong, Fault tree analysis of KNICS RPS software,
Nuclear Engineering and Technology 40 (5) (2008) 397–408.

[31] I.E. Commission, International Standard for Programmable Controllers:
Programming Languages, Part 3, 1993.

[32] R.Mojdehbakhsh, S. Subramanian, R. Vishnuvajjala,W. Tsai, L. Elliott, A process
for software requirements safety analysis, in: International Symposium on
Software Reliability Engineering, 1994 pp. 45–54.

[33] V. Ratan, K. Partridge, J. Reese, N. Leveson, Safety analysis tools for
requirements specifications, in: The 7th COMPASS Workshop, 1996,
pp. 149–160.

[34] D. Harel, On visual formalism, Communication of the ACM 31 (5) (1986)
514–530.

[35] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, J.D. Reese, Requirements
specification for process-control systems, IEEE Transactions on Software
Engineering 20 (9) (1994) 684–707.

[36] Y. Papadopoulos, M. Maruhn, Model-based synthesis of fault trees from
matlab-simulink models, in: The 2001 International Conference on Depend-
able Systems and Networks, DSN ’01, 2001, pp. 77–82.

[37] K. Sullivan, J. Dugan, C. Coppit, The Galileo fault tree analysis tool, in: The
29th Annual International Symposium on Fault-Tolerant Computing, 1999,
pp. 232–235.

[38] UPPAAL, http://www.uppaal.com/ (2010).

http://www.uppaal.com/

1282 S. Cha, J. Yoo / Future Generation Computer Systems 28 (2012) 1272–1282
[39] C.L. Heitmeyer, R.D. Jeffords, B.G. Labaw, Automated consistency checking of
requirements specifications, IEEE Transactions on Software Engineering 5 (3)
(1996) 231–261.

[40] K. Jensen, L. Kristensen, Coloured Petri Nets, in: Modelling and Validation of
Concurrent Systems, Springer, 2009.

[41] J.M. Spivey, The Z Notation: A Reference Manual, 2nd ed., Prentice Hall, 1992.
[42] S. Mishra, D. Kushwaha, A. Misra, Hybrid reliable load balancing with mosix

as middleware and its formal verification using process algebra, Future
Generation Computer System, in press (doi:10.1016/j.future.2010.12.007).

[43] S. Specification, D.L.F. Society, http://www.sdl-forum.org/.
[44] M. Huth, M. Ryan, in: Logic in Computer Science, 2nd ed., Cambridge, 2004.
[45] PVS: Specification and Verification System, http://pvs.csl.sri.com/.
[46] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, 1999.
[47] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state

concurrent systems using temporal logic specifications, ACM Transactions on
Programming Languages and Systems 8 (2) (1986) 244–263.

[48] K.L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
[49] S.-Y. Huang, K.-T. Cheng, Formal Equivalence Checking andDebugging, Kluwer

Academic Publishers, 1998, (Chapter 4).
[50] SPIN, http://spinroot.com/.
[51] CBMC: Bounded Model Checking for ANSI-C, http://www.cprover.org/cbmc/.
[52] BLAST: Berkeley Lazy Abstraction Software Verification Tool,

http://mtc.epfl.ch/software-tools/blast/.
[53] J. Yoo, E. Jee, S.S. Cha, Formal modeling and verification of safety-critical

software, IEEE Software 26 (3) (2009) 42–49.
[54] S. Jung, J. Yoo, S. Cha, VIS analyzer: a visual assistant for vis verification

and analysis, in: The 13th IEEE Computer Society symposium dealing with
the rapidly expanding field of object/component/service-oriented real-time
distributed computing (ORC) technology, ISORC 2010 Symposium, 2010.

[55] G.-Y. Park, J.-S. Lee, S.-W. Cheon, K.-C. Kwon, E. Jee, K.Y. Koh, Safety analysis
of safety-critical software for nuclear digital protection system, in: Computer
Safety, Reliability and Security (SAFECOMP), in: LNCS, vol. 4680/2007, 2007.

[56] J. Yoo, E. Jee, S. Cha, A verification framework for FBD based software in nuclear
power plants, in: The 15th Asia Pacific Software Engineering Conference
(APSEC), 2008, pp. 385–392.
[57] T. Henzinger, Z. Manna, A. Pnueli, Timed transition systems, REX Workshop,
1991, pp. 226–251.

[58] S. Yun, D.-A. Lee, J. Yoo, NuFTA: a case tool for automatic software fault tree
analysis, in: Transactions of the Korean Nuclear Society Spring Meeting 2010,
2010.

[59] E. Jee, S. Jeon, S. Cha, K. Koh, J. Yoo, G. Park, P. Seong, FBD verifier: interactive
and visual analysis of counterexample in formal verification of function block
diagram, Journal of Research and Practice in Information Technology 42 (3)
(2010) 255–272.

Sungdeok Cha is a professor in Korea University’s
Computer Science and Engineering Department. His
research interests include software safety and computer
security. Cha has a Ph.D. in information and computer
science from the University of California, Irvine. Contact
him at scha@korea.ac.kr.

Junbeom Yoo is an assistant professor in Konkuk Univer-
sity’s Department of Computer Science and Engineering.
His research interests include formal methods and safety
analysis. Yoo has a Ph.D. in computer science from the Ko-
rea Advanced Institute of Science and Technology. Contact
him at jbyoo@konkuk.ac.kr.

http://dx.doi.org/doi:10.1016/j.future.2010.12.007
http://www.sdl-forum.org/
http://pvs.csl.sri.com/
http://spinroot.com/
http://www.cprover.org/cbmc/
http://mtc.epfl.ch/software-tools/blast/
mailto:scha@korea.ac.kr
mailto:jbyoo@konkuk.ac.kr

	A safety-focused verification using software fault trees
	Introduction
	Background
	Fault tree analysis techniques
	Formal methods and VIS

	Software fault trees for the KNICS RPS
	Safety-focused verification using software fault trees
	Fault tree to Verilog translation
	Safety property to Verilog translation
	Analysis of verification results

	Practical issues
	Conclusion
	References

