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a b s t r a c t

Simulation is a widely used functional verification method for FBD programs of PLC-based digital I&C
system in nuclear power plants. It is difficult, however, to estimate the thoroughness (i.e., effectiveness or
quality) of a simulation in the absence of any clear measure for the estimation. This paper proposes two
sets of structural coverage adequacy criteria for the FBD simulation, toggle coverage and modified con-
dition/decision coverage, which can estimate the thoroughness of simulation scenarios for FBD programs,
as recommended by international standards for functional safety. We developed two supporting tools to
generate numerous simulation scenarios and to measure automatically the coverages of the scenarios.
The results of our experiment on five FBD programs demonstrated that the measures and tools can help
software engineers estimate the thoroughness and improve the simulation scenarios quantitatively.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Simulation plays an important role in understanding and veri-
fying the function of programmable logic controller (PLC) programs
[1e3] written in the function block diagram (FBD) [4], when
developing safety-related digital instrumentations and control
systems (I&Cs) in nuclear power plants (NPPs). Since PLC applica-
tion software, such as an executable program like Bistable Proces-
sor, is too primitive to apply any verification methods, its system
test can often be completed after testing the PLC that is configured
or downloaded with the application software. Therefore, functional
verification of PLC application software has tended to focus on FBD
programs in the design phase, in order to ensure the functional
correctness of the application as soon as possible, before down-
loading it into specific PLC hardware.

An inherent weakness of simulation-based verificationmethods
is that they do not provide any quantitativemeasure to estimate the
thoroughness, effectiveness, or quality of the simulation per-
formed. They infamously suffer from a lack of completeness with
respect to the coverage of system behaviors. The sufficiency of the
simulations remains doubtful, even if they correspond to all func-
tional requirements and were performed correctly. Practical
g, Konkuk University, Seoul,

by Elsevier Korea LLC. This is an
experience has shown that many design errors cannot be revealed
by a number of successful simulations [5,6].

This paper proposes two sets of structural coverage adequacy
criteria [7] for FBD simulations, where the term simulation
coverage indicates the structural coverage adequacy criteria in the
paper, i.e. the measures to estimate the thoroughness of functional
FBD simulation scenarios according to the structural elements of
FBD programs. Toggle coverage (TC) and modified condition/decision
coverage (MC/DC) are the two coverages used to measure or esti-
mate how much a set of simulation scenarios satisfies the simula-
tion coverages. They also provide invaluable information to
improve and refine the scenarios, quantitatively. If the achieved
simulation coverage is considered insufficient, either additional
simulation scenarios shall be specified, or a rationale shall be
provided.

We developed two supporting tools, FBDSim and FBDCover, for
automatic measurement of numerous simulation scenarios. They
can read and measure the simulation coverage upon any FBD
programwritten according to the PLCopen TC6 standard format [8].
Three experiments were run using the supporting tools to simulate
five FBD programs. The first simulation takes a processing value as
an input which is randomly generated. The second takes values
with an increasing or decreasing tendency. The last takes not only
the processing values but also other inputs for testing or error
signals. Both coverages increased as the experiment progressed.
Our experimental results demonstrated the capability of the mea-
sures and tools to help software engineers refine and improve the
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simulation scenarios quantitatively.
Our approach corresponds to the recommendation by the IEC

standards for the functional safety of safety-related systems [9e11].
They recommend that “To evaluate the completeness of test cases and
to demonstrate that there is no unintended functionality, the coverage
of requirements at the software unit level shall be determined and the
structural coverage (e.g., statement coverage, branch coverage and
MC/DC) shall be measured.” We extended the recommendation to
the functional simulation of the whole FBD program, consisting of
numerous execution cycles, unlike the software unit test limited to
performing only a single or several execution cycles [12].

The remainder of the paper is organized as follows: Section 2
provides the background for the study including a literature sur-
vey of the relevant research. The quantitative measures for FBD
simulation are proposed in Section 3 and the supporting tools we
developed are explained in Section 4. The experimental results are
analyzed in Section 5, and finally section 6 concludes the paper and
provides remarks on future research extension and direction.
2. Related work

2.1. The PLC software development

The typical software development process for PLC-based digital
I&Cs (e.g. a reactor protection system (RPS) and an engineered
safety features-components control system (ESF-CCS)) is in Fig. 1.
The software requirements specification (SRS) is first written in
natural languages, and then the design specification is manually
modeled with PLC programming languages such as FBD or ladder
diagram (LD). Commercial PLC vendors provide PLC SW engineer-
ing tools (e.g. TriStation 1131 of Invensys for TriStation 1131 PLC,
SIMATIC-Manager of Siemens for SIMANTIC Controller PLC, pSET of
PONU-Tech for POSAFE-Q PLC, and SPACE of AREVA for TELEPERM
XS PLC) that mechanically translate FBD or LD programs into ANSI-
C programs and executable codes subsequently for specific target
PLCs.

Simulation is the first functional verification method for FBD
programs. Engineers execute an FBD program (usually a whole FBD
program, not a unit) with a set of predefined simulation scenarios
that execute 100 to 10,000 PLC execution cycles, and check whether
the program works as intended. Preparing meaningful simulation
scenarios is a crucial factor for success in this functional verification
with simulation.

PLC SW engineering tools often produce supplementary C pro-
grams to perform both control flow graph (CFG)-based structural
testing [7] and simulation, since the PLC executable codes are too
Fig. 1. A typical software deve
primitive to do the system/integration/unit testing. Conventional
software testing tools for C programs such as LDRA [13] and the one
embedded in SCADE [14] can perform various test on the C pro-
grams. Measuring CFG-based structural coverages like all state-
ments and MC/DC can also be used to assess the quality of the test
cases [15,16].

This test approach suffers a problem in that the translated/in-
termediate C programs lack sufficient control flows to check the
CFG-based structural coverages [17]. FBD or LD are dataflow-based
programming languages for PLC, and programswritten in FBD or LD
include almost no control flows, except for a few blocks containing
a selection function like SEL and MUX. On the other hand [18],
developed three new dataflow-based structural coverages for FBD
programs, and proposed the direct testing of FBD programs [12,19].
They are all, however, structural testing techniques for software
units with a single (or several) execution(s). They cannot be simply
applied to simulation scenarios of massive execution cycles (e.g.,
100e10,000 cycles) for a whole FBD program.
2.2. Coverage adequacy criteria in software testing

Many approaches are available in software testing [20]. Reviews,
walk-throughs, and inspections are referred to as static testing,
whereas executing programmed code with a given set of test cases
is referred to as dynamic testing, which is pertinent to our discus-
sion and we refer to simply as testing. To describe the viewpoint
taken by test engineers when designing test cases, software testing
methods are traditionally divided into black- and white-box testing
[21e24], in which test cases are derived from the structure of
programs and from program specifications, respectively, as shown
in Fig. 2.

Functional (black-box) testing can be performed in any step of
the software development process when functional specifications
are in preparation, whereas structural (white-box) testing can only
be applied to units or components, due to the limitation of required
code analysis such as data-flow or control-flow. They both test the
functionality of a program according to its requirements specifi-
cation, but their measures of the thoroughness of test cases differ.

Several software metrics or measures are frequently used to
assist in determining the adequacy of the testing or test cases.
Adequacy criterion is a set of test obligations [7] used to investigate
test cases. Each requirement in a requirements specification or code
elements, such as statement, branch, condition, and path, are ex-
amples of the obligations. A test suite satisfies an adequacy crite-
rion, if and only if all the tests succeed (pass), and every test
obligation in the criterion is satisfied by at least one of the test cases
lopment process for PLC.



Fig. 2. Black-box testing vs. White-box testing.
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in the test suite. For example, the statement coverage adequacy
criterion is satisfied by test suite S for program P if each executable
statement in P is executed by at least one test case in S and the
outcome of each test execution has been passed.

However, often no test suite can satisfy a criterion for a given
program, due to defensive programming or code reuse. The
unsatisfiability of adequacy criteria is managed bymeasuring to the
extent to which a test suite approaches an adequacy criterion,
which is called coverage adequacy criterion and often called ‘OOO
coverage,’ for brevity, e.g., statement coverage and branch coverage.
Measuring coverage (i.e., the percentage of satisfied test obliga-
tions) can be a useful indicator of progress toward a thorough test
suite. Trouble spots requiring more attention in testing can also be
identified.

Coverage adequacy criterion can be used as a measure for the
both testing methods, i.e., functional and structural. Functional
testing should achieve 100% of requirements coverage at all levels
of functional test suites. If not, some requirementswill not be tested
by the test suite, which may lead to serious consequences. How-
ever, due to the difficulty in achieving 100% of structural coverages
in structural testing, appropriate levels (%) are used. In practice, we
develop functional test suites first, and then measure the structural
coverage on the basis of the test suites to identify what is missing,
in line with the recommendations of international standards on
functional safety [9,10].
Fig. 3. Relation among structural test adequacy criteria in SW testing and FBD
simulation.
2.3. Coverage adequacy criteria for FBD

Many studies on coverage adequacy criteria include very few on
FBD. Jee et al. [18] proposed three different coverage criteria for the
FBD test: basic coverage (BC), input condition coverage (ICC), and
complex condition coverage (CCC). They interpret an FBD program
as a directed data flow graph in order to identify a data flow path.
The three coverage criteria use the data flow path to generate test
cases and measure the adequacy of the test cases quantitatively.
The measures and testing technique are useful to evaluate the
coverage on the FBD program. Their work is similar to ours in terms
of a coverage criteria proposal, except that their focus on one cycle
test and on finding a critical path did not include verification of an
FBD program as PLC software in continuous operation.

Maruchi et al. [25] proposed MC/DC for data flow languages
(MC/DC4d) and propagation toggle coverage (PTC) for data flow
language. The MC/DC4d is an improved version of traditional MC/
DC coverage such that “Each input connected to outputs is shown to
independently affect the values of the outputs.” The PTCis also
improved to support the MC/DC4d: “Each edge (including inputs) in
a program is shown to independently affect the values of the outputs.”
Both coverages are based on affecting-edge (fan-in condition) and
affected-edge (fan-out). It is useful to evaluate variable changes, but
it is hard to find a continuously setting value or more complex
condition such as a fixed value after changing from zero to one or
reverse. Further continuous operation such as simulation was not
considered, even though one cycle or limited composition cycle is
inappropriate to find such complex logic.

3. Quantitative measures for FBD simulations

This paper proposes two FBD simulation coverages, toggle
coverage and MC/DC, which can quantitatively measure the thor-
oughness of the functional FBD simulations according to the
structural elements of FBD programs. We applied the idea of the



Table 1
Estimation of TCB for the block (1) in Fig. 4

Cycle Input values Block (1)LT_INT TCB (%)

RNG_MIN PV_OUT OUT TP TN

1 10 5 0 0
2 10 15 1 X 50
3 10 25 1 50
4 10 5 0 X 100
5 10 35 1 X 100
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structural coverage adequacy criteria of software testing, which
could be applied to a software unit or component with a single
execution cycle, to the FBD simulation to estimate the structural
coverage of FBD simulation scenarios in a whole FBD programwith
multiple execution cycles. The FBD simulation coverage checks
each block directly, whereas software testing measures the cover-
ages according to CFG and DFG transformed from source codes.

Themeasurement starts with the coverages of a basic element, a
block, and gradually expands to a software program and then to
massive simulation scenarios. Toggle coverage for a block (TCB) is
the basic measure, and it expands to the toggle coverage for a
program (TCP) and massive simulation scenarios (TCT). The MC/DC
expands in the same way (MCDCB / MCDCP / MCDCT). Basic
coverages for a block and a program such as TCB, TCP, MCDCB, and
MCDCP correspond to the structural coverages of software testing.
However, total coverages, TCT and MCDCT, which are supersets of
basic coverages, can measure the structural coverages of all sets of
simulation scenarios upon a whole FBD system.

Fig. 3 shows the correspondence between software testing and
the FBD simulation in terms of structural coverages. While the
structural coverages such as statement, branch, and MC/DC are
applicable only to software units or components, the FBD simula-
tion coverages can be used for both an FBD unit and the whole FBD
system. The toggle coverage corresponds to the branch and state-
ment coverage of software testing and the MC/DC corresponds to
MC/DC of software testing. Other structural coverages, for example
path coverage, that are not applicable to an FBD program are not
shown in the figure.

3.1. Toggle coverage of FBD simulation

Toggle coverage [26] is one of the oldest coverage measures in
circuit design verification. It measures bits of wires or registers in
the circuit design that have toggled. The measurement focuses on
howmany bits are changed from a value of zero to one (0-to-1) and
back from one to zero (1-to-0) during simulation. A bit is said to be
fully covered, i.e. 100% coverage, when it toggles back and forth at
least once. The toggle coverage of the FBD simulation shows that
how many outputs of blocks toggle during simulation.

- Adequacy criterion: An output of each Boolean block should be
toggled back and forth at least once by a simulation scenario.

- Rationale: A fault in a function block can only be revealed by
executing the faulty function block.

- Corresponding SW testing coverages: statement coverage.

The FBD program in Fig. 4 is a part of the simplified trip (shut-
down) logic in RPS BPs. It has 5 blocks (2 LT, 2 AND, and 1 OR
blocks), 7 inputs (3 integer (I) and 4 Boolean (B) input variables),
Fig. 4. An example FBD pro
and 1 output (TRIP). RNG_MIN and RNG_MAX are constants fixed at
10 and 20,000 respectively. The two FBD simulation coverages use
the small example to explain how to measure the thoroughness of
simulation scenarios in detail.
3.1.1. TCB: toggle coverage for a block
The basic measure for the toggle coverage begins with a block

(TCB). A Boolean block has two toggles, a positive toggle (0-to-1, TP)
and a negative toggle (1-to-0, TN). The block is fully covered where
the two toggles are detected at least once during a simulation
scenario. If a simulation catches only TP, then the toggle coverage of
the block is 50% TCB. If neither TP nor TN is detected, i.e., the block
produces a constant value such as 0 or 1 while executing the
simulation, it is 0% TCB.

TCB ¼
the number of toggles executed
the number of possible toggles

� 100ð%Þ

Table 1 shows how to estimate TCB with a simulation scenario
having 5 execution cycles. The initial values of the inputs, RNG_MIN
and PV_OUT, at the first cycle are 10 and 5 respectively. The block,
(1)LT_INT, toggles at the 2nd (TP), 4th (TN), and 5th(TP) cycles. TCB is
calculated at every execution cycle of a scenario, and duplicate
toggles in the shade columns do not count. Therefore, the TCB of (1)
LT_INT becomes 50% at the 2nd cycle and 100% at the 4th cycle.
3.1.2. TCP: toggle coverage for an FBD program
TCP is a set of TCB of blocks that organize an FBD program. An

FBD program is organized with blocks connected each other.
Simulating an FBD program measures the TCB of all blocks in the
program. We can estimate all the TCB and calculate the coverage by
using the program, TCP.

TCP ¼
P

TCB by a scenario
the number of blocks in a program

ð%Þ

The FBD program in Fig. 4 takes a value measurement of the
input, PV_OUT. The PV_OUT is valid when it only has a value
gram called trip logic.



Table 2
Estimation of TCT for the FBD program in Fig. 4

SS C I
PV_OUT

Blocks TCT (%)

(1) (2) (3) (4) (5)

O TP TN O TP TN O TP TN O TP TN O TP TN

1st 1 10,000 1 1 1 0 0 0
2 15,000 1 1 1 0 0 0
3 25,000 1 0 X 0 X 1 X 1 X 40
4 25,000 1 0 0 1 1 40
… … … … … … … … … … … … … … … … … …

2nd 1 10,000 1 1 1 0 0 40
2 0 0 X 1 0 X 1 X 1 X 70
3 10,000 1 X 1 1 X 0 X 0 X 90
… … … … … … … … … … … … … … … … … …

SS: Simulation Scenario, C: Cycle, I: Input value, O: Output.
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between RNG_MIN and RNG_MAX, but is invalid when its value is
less than or equal to RNG_MIN or larger than or equal to RNG_MAX.
If a simulation scenario of the program includes only a range of the
valid values (i.e. 10 < PV_OUT <20,000), the Boolean block (1)
LT_INT will never toggle, but it gets stuck at 1. The block (2)LT_INT
has the same result too. In other words, the block (1)LT_INT
executed by the simulation scenario never gets both of TP and TN.
Thus, the simulation scenario will have 0% of TCB for the (1)LT_INT.

We may get the 100% of TCB in two ways. Refining a simulation
scenario make the TCB increasing. For example, if PV_OUT in the
scenario has rising values from below the RNG_MIN to above
RNG_MIN, changing the value downward in the middle of the
scenario increases the TCB. However, this is not straightforward,
since we have to refine the simulation scenario with several
execution cycles. The block toggle coverage can also be improved by
giving the task to other simulation scenarios. The FBD simulation
coverage is measured from a set of simulation scenarios, and others
can satisfy the coverage for the block. Total toggle coverage mea-
sures the toggle coverage in a block by a whole set of simulation
scenarios.

3.1.3. TCT: total toggle coverage for massive simulation scenarios
Total toggle coverage (TCT) measures the TCB of all Boolean

blocks in an FBD program for a set of simulation scenarios. An FBD
program has 100% of TCT, if all Boolean blocks have been toggled by
a set of simulation scenarios at least once. Individual toggle cov-
erages (TCB, TCP) can be used to measure and improve a single
simulation scenario, while TCT can be used to measure the thor-
oughness of the whole set of FBD simulation scenarios.

TCT ¼
P

TCB by a set of scenarios
the number of blocks in a program

ð%Þ
Table 3
Important conditions for MCDCB.

Blocks Important Conditions

AND (IN1, IN2): {(0, 1), (1, 0), (1
AND (IN1, IN2, IN3): {(0, 0, 1), (
OR (IN1, IN2): {(0, 0), (0, 1), (1
OR (IN1, IN2, IN3): {(0, 0, 0), (
GT (IN1 > IN2), (IN1 � IN2)
GE (IN1 � IN2), (IN1 < IN2)
LT (IN1 < IN2), (IN1 � IN2)
LE (IN1 � IN2), (IN1 > IN2)
EQ (IN1 ¼ IN2), (IN1 s IN2)
SR (SET, RESET, prev): {(0, 0,
RS (SET, RESET, prev): {(0, 0,
SEL (G): {0, 1}
MUX (K): {0, …, N} where N is t
TCT continues measuring the coverage until the simulation ex-
ecutes all the scenarios in the set. Table 2 shows the measurement
of TCT with 2 consecutive simulation scenarios. The toggles in the
shade of the 2nd scenario are not measured repeatedly, because
they have been already checked when the toggles occurred the first
time in the 1st scenario.

3.2. Modified condition/decision coverage (MC/DC) for FBD
simulation

MC/DC is the most widely used structural coverage in software
testing [27,28]. It tries to effectively test important combinations of
conditions, without exponentially increasing. Important combina-
tions mean a set of test inputs for a compound condition that each
basic condition independently affects the outcome of each decision.
Measuring MC/DC for the FBD simulation begins with measuring
theMC/DC of a block which is the basic element in an FBD program.
The MC/DC for a block is measured by the same procedure as that
for MC/DC [7], but the detail is beyond the scope of this paper.

- Adequacy criterion: Each important condition should be
executed at least once by a simulation scenario.

- Rationale: Multiple condition coverage is impractical in prac-
tice. MC/DC was developed to achieve many of the benefits of
multiple-condition testing while retaining the linear growth in
required test cases of condition/decision testing.

- Corresponding SW testing coverages: MC/DC coverage, mul-
tiple condition coverage
3.2.1. MCDCB: MC/DC for a block
MCDCB measures how many important conditions are covered
, 1)}
0, 1, 0), (1, 0, 0), (1, 1, 1)}
, 0)}
0, 0, 1), (0, 1, 0), (1, 0, 0)}

0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}
0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

he number of inputs
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by a simulation scenario in a block. MCDCB of a Boolean block is
fully covered by a simulation scenario, if all important conditions
are covered by the simulation scenario. If a simulation does not
achieve 100% MCDCB, it implies that the block has been executed
without one or more important conditions.

MCDCB ¼
the number of important condition executed

the number of importnat conditions
ð%Þ

Table 3 summarizes the important conditions for widely used
function blocks in order to achieve 100% of MCDCB. For example, of
the four combinations of inputs of AND block ((0,0), (0,1), (1,0),
(1,1)), only three (i.e., (0,1), (1,0), (1,1)) are important for 100% of the
MCDCB of the block. Blocks, such as AND and OR, may have more
than two inputs. The number of combinations increases in line with
the increase in the number of inputs, and the number of important
combinations increases too.

3.2.2. MCDCP: MC/DC for an FBD program
MCDCP is a set of the MCDCB of blocks that organize an FBD

program, which has the same relation between the toggle cover-
ages for a block and a program. Simulating an FBD program mea-
sures theMCDCB of all blocks in the program. We use all theMCDCB
to calculate the MC/DC of the program, MCDCP.

MCDCP ¼
P

MCDCB by a scenarios
the number of blocks in a program

ð%Þ

If the PV_OUT in Fig. 4 only has the valid value (i.e.,
10 < PV_OUT < 20,000), the (3)AND_BOOL block reaches only 33%
of MDCDB. A simulation scenario including invalid values (10 �
PV_OUT or PV_OUT � 20,000) improves the MCDCB of the (3)
AND_BOOL, thereforeMCDCP also increases. TheMCDCP can also be
increased by giving the task to other simulation scenarios. The FBD
simulation coverage is measured from a set of simulation scenarios,
and others can satisfy the MCDCP for the function block. The total
MC/DC, MCDCT, measures the MCDCB by a whole set of simulation
scenarios.

3.2.3. MCDCT: total MC/DC for massive simulation scenarios
MCDCT measures theMCDCB of all Boolean function blocks in an

FBD program for a set of simulation scenarios. An FBD has 100% of
MCDCT, if all important combinations of input conditions for all
Boolean function blocks in an FBD program are covered by a set of
simulation scenarios at least once, i.e., MCDCB for all blocks are
covered by a set of simulation scenarios at least once. Individual
Fig. 5. A screen-du
MCDCP can be used to measure and improve a single simulation
scenario, whileMCDCT can be used to measure the thoroughness of
the whole set of FBD simulation scenarios.

MCDCT ¼
P

MCDCB by a set of scenarios
the number of blocks in a program

ð%Þ

4. The supporting tools development

We developed two supporting tools, FBDSim and FBDCover, to
automate the measurement for numerous simulation scenarios.
They can read and measure the simulation coverages of any FBD
programwritten according to the PLCopen TC6 standard format [8].
The tools are used in conjunction with the NuDE 2.0 [29,30], a
software development framework based on formal methods.

4.1. FBDSim

Commercial PLC SW engineering tools are not compatible with
others, and it is often impossible to simulate an FBD program
independently from its PLC SW engineering tools. We developed
FBDSim to simulate an FBD program, PLC-independently, as
depicted in Fig. 5. It reads an FBD programwritten according to the
PLCopen TC6 standard format [8] and a set of FBD simulation sce-
narios, and then automatically simulates the FBD programwith the
scenarios in batches.

The FBD program for simulation is provided by an FBD Editor
[31], which can read, edit, and store an FBD program of the PLCopen
TC6 XML format. The FBD simulation scenarios are produced by an
automatic scenario generator, FBD Scenario Generator [32], which
produces numerous simulation scenarios according to the RPS trip
(shutdown) logics. It requests auxiliary information from the FBD
program in order to make the scenarios meaningful. Initial values
and the rate of change in all input variables, trip/pre-trip set-points,
the overall percentage of trip situations, and the number of PLC
execution cycles for each scenario are requested. The results of the
FBD simulation are transferred to FBDCover to measure coverages
and provide quantitative information in a concise manner.

4.2. FBDCover

FBDCover, as depicted in Fig. 6, is a visualization tool to provide
quantitative information about the FBD simulation coverages.
mp of FBDSim.



Fig. 6. A screen-dump of FBDCover.
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Graphs indicate the results of the FBD simulation after the simu-
lation by FBDSim. A list of all simulation scenarios is provided. Total
coverages and basic coverages are depicted separately, and clicking
an individual scenario shows the basic, i.e., block/output toggle
coverages and block MC/DC coverage for the scenario. It also
identifies a set of uncovered points in regard with the basic
coverages.

Software engineers can use the quantitative information to
refine an individual simulation scenario or to improve the total
coverages of the whole set of FBD simulation scenarios.

Fig. 7 describes the toolchain of two supporting tools within the
NuDE 2.0 framework. FBD Editor reads, edits and stores an FBD
program of PLCopen TC6 XML format, and FBD Scenario Generator
reads the FBD program and produces a set of simulation scenarios.
FBDSim reads the FBD program and FBD simulation scenarios and
executes the program with the scenarios in batches. FBDCover is
seamlessly executed to display the quantitative information of
coverages in graphics.

The toolchain in Fig. 7 is an extension of the integrated software
testing (simulation) framework (IST-FPGA) for FPGA-based digital



Fig. 7. A toolchain of the supporting tools with the FBD Simulator.
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controller development [33], as shown in Fig. 8. The IST-FPGA
suggests integrating the three independently performed
simulation-based software test into one, and step 1 tries to develop
common test oracles of Verilog/VHDL programs for other steps.
Step 1 for Verilog/VHDL programs in the RTL design phase can be
extended up to FBD programs as a design specification, and the
toolchain which this paper proposes can make the integrated
software testing framework start from the FBD programs of the
design specification.
5. Experimental results

We performed experiments with FBD programs [34] for the
second phase of KNICS APR-1400 RPS BP [35]. It was excerpted from
anNPP (but, not officially final version) that is almost in commercial
operation. It consists of 18 shutdown logics of FBD programs, of
which we used 5 representative trip logics: fixed set-point falling
trip (FFT), fixed set-point rising trip (FRT), manual reset falling trip
(MFT), variable set-point falling trip (VFT), and variable set-point
rising trip (VRT).

We initially generated scenarios so that each input variable,
processing value (PV_OUT), has random values. Each program has a
set of 1000 simulation scenarios, with 100 execution cycles, that are
automatically generated by the FBD Scenario Generator. FBDSim
simulated the FBD programs with the sets of simulation scenarios
in batches. The scenarios having random PV_OUT values only
achieved 11e15% of TCT and 40e45% of MCDCT. The second attempt
designs the PV_OUT with a tendency to imitate the actual pro-
cessing values. Fig. 9 shows 1000 value sequences of PV_OUT for
FFT, which have a decreasing tendency. The FBD Scenario Generator
can also automatically generate scenarios for which the input
sequence has such tendencies. About 40% of the simulation



Fig. 8. IST_FPGA: an integrated software testing framework for FPGA [33].

Fig. 9. Trajectories of the 1,000 scenarios generated for FFT [33].

Fig. 10. TCT and MCDCT of the 5 logics with 3 types of simulation scenarios.
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scenarios generate the predefined trip signal. The scenarios
 including the given tendency achieved 36e56% of TCT and 72e73%
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of MCDCT.
Finally, we performed an experiment with the simulation sce-

narios manually modified for more concrete evaluation. The trip
logics have a processing value (PV_OUT) and also input variables for
testing and error signals. The testing signal indicates the test run of
system. A program never makes an output signal, such as a shut-
down signal, having true value, even if the PV_OUT violates an
allowable range in the case of a true testing signal. In addition, the
system takes signals for module and channel error to notify that
modules or channels are erroneous. It is difficult for engineers to
simulate every possible situation, even if they understand the
logics, requirements, and functions. The third experiment simulates
the logics using the simulation scenarios of the second experiment
in which the testing and error signals are modified manually.

Fig. 10 shows all the experimental results in which FBDCover
measures the coverages according the five logics. The third exper-
iment achieved 85e88% of TCT and 91e92% ofMCDCT. The coverage
gradually increased as the experiments proceeded. The first set of
simulation scenarios may be ineffective, since the processing var-
iable has meaningless values that are randomly generated. The
second experiment simulated programs with the processing vari-
able having values with a given tendency, such as increasing or
decreasing, according to the programs. The third results achieved
the highest percentage of both coverages, as we modified the
simulation scenarios with specific purposes. TCT and MCDCT could
be improved because the simulation results demonstrated an
insufficient number of simulation scenarios to execute the logics
thoroughly. The simulation coverages indirectly indicate which
cases are not simulated and how engineers need to improve the
thoroughness of the simulation.
6. Conclusion and future work

This paper proposes two sets of structural coverage adequacy
criteria for FBD simulations to indicate the structural coverage
adequacy criteria., i.e., the measures to estimate the thoroughness
of functional FBD simulation scenarios according to the structural
elements of FBD programs. The coverages are inspired by tradi-
tional software testing coverages, and we improve and modify the
coverages for their application in multi-cycle simulation. We
developed two supporting tools, FBDSim and FBDCover, to automate
the measurement for numerous simulation scenarios. With the
supporting tools, we performed the experimental study with FBD
programs for RPS logics in NPPs. The experiment estimated the
thoroughness of simulation scenarios. Simulation scenarios
designed for verification purposes achieved 49% of TCT and 72% of
MCDCT on average, which are respectively 36 and 30 higher percent
points than randomly generated ones. It was possible to increase
them to 87% and 91% by manually modifying the simulation sce-
narios. The results of the experiment showed that both coverage
criteria can be used to provide information on how thorough
simulation scenarios are. Future research needs to carefully
examine the effectiveness of the coverage criteria as measures to
find faults or defects in an FBD program. We are presently con-
ductingmutation analysis in order to demonstrate the effectiveness
of the measures proposed herein.
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