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An Empirical Evaluation of Coverage Criteria for FBD Simulation

Using Mutation Analysis

Dong-Ah LEE', Eui-Sub KIM', Nonmembers, and Junbeom YOO, Member

SUMMARY Two structural coverage criteria, toggle coverage and
modified condition/decision coverage, for FBD (Function Block Diagram)
simulation are proposed in the previous study. This paper empirically eval-
uates how effective the coverage criteria are to detect faults in an FBD
program using the mutation analysis.
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1. Introduction

Software testing is one of indispensable activities in the soft-
ware development process. Software testing methods are
traditionally divided into functional (black-box) testing and
structural (white-box) testing, in which test cases are de-
rived from program specifications and from the structure of
programs, respectively. Functional testing verifies the func-
tional correctness of software in any step of the software
development process. Structural testing not only verifies
the functional correctness but also measures coverage which
means what percent of code has been exercised when a test
suite runs. One or more structural coverage criteria, such as
statement coverage, branch coverage, and condition cover-
age, are used to measure the coverage.

FBD (function block diagram) [1] is a commonly used
programming language to develop software for PLC (pro-
grammable logic controller). Safety-critical systems often
use the FBD to design software for digital [&Cs (instrumen-
tation and control system). For example, the KNICS (Korea
Nuclear Instrumentation and Control System) project imple-
mented trip (shutdown) logics of a BP (bistable processor)
for RPS (reactor protection systems). Testing FBD software
often performs simulation-based testing for functional veri-
fication. The previous study [2] proposed two sets of struc-
tural coverage criteria for simulation scenarios of FBD, tog-
gle coverage (TC) and modified condition/decision coverage
(MC/DC), also known as simulation coverages. The simu-
lation coverages are similar to structural coverage criteria
of software testing, however they are for structural elements
of an FBD program and the software testing is for source
codes.

This paper empirically evaluate the effectiveness of
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the simulation coverages [2] using mutation analysis. Soft-
ware requires rigorous quality when developing safety crit-
ical systems such as digital 1&Cs in nuclear power plants
(NPPs). Simulation verifies functional correctness of the
software written in FBD. The simulation requires strong cri-
teria to improve confidence in thoroughness. The mutation
analysis is a fault-based software analysis technique to mea-
sure the adequacy of a test suite or the effectiveness of a ad-
equacy criterion [3], [4]. The analysis seeds artificial faults
(mutations) into an FBD program, then the simulation with a
set of scenarios tries to detect the faults in the FBD program
having one of the faults (mutants). If the scenarios achieving
a higher percent of coverage finds more mutants than ones
with a lower percent, the coverage criterion is effective to
detect the faults.

The analysis uses trip (shutdown) logic programs [5]
of BP, which is a part of the RPS developed in the KNICS
project [6]. We generated three types of simulation scenar-
ios, random, guided, and manual scenarios. Results of the
mutation analysis show that simulation scenarios achieving
a higher percent of both coverages (TC and MC/DC) detect
more mutants than ones achieving a lower percent. In other
words, the both coverage criteria are suitable for use as a
measure of whether simulation scenarios are sufficient to de-
tect faults in an FBD program.

The remaining part of the paper proceeds as follows:
Sect. 2 briefly introduces the structural coverage criteria for
FBD simulation and mutation analysis. Section 3 gives a
full explanation of research questions and evaluation pro-
cess and Sect.4 explain analysis results of the evaluation.
Finally, Sect.5 concludes the paper and provides remarks
on future research.

2. Background
2.1 Structural Coverage Criteria for FBD Simulation

FBD, one of the five standard PLC programming lan-
guages [1], is a commonly used graphical language to de-
velop software for safety-critical systems. For example, the
KNICS project used FBD to implement control software of
NPPs [6]. The FBD program in Fig. 1 is a simplified trip
(shutdown) logic. It has 5 blocks (2 LT, 2 AND, and 1 OR
blocks), 7 inputs (3 integer (I) and 4 boolean (B) inputs),
and 1 boolean output (TRIP). RNG_MIN and RNG_MAX are con-
stants fixed with 10 and 20,000 respectively.

Simulation verifies that an FBD program is function-
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ally correct. Thoroughness, quality, or effectiveness of sim-
ulation scenarios are important to increase confidence of
the simulation. Structural coverage criteria for FBD sim-
ulation [2], [7] improve and refine the simulation scenarios
quantitatively.

(1) Toggle coverage (TC)

TC measures how many boolean outputs of blocks in an
FBD program are changed from a value of zero to one (0-to-
1) and back from one to zero (1-to-0) during simulation. An
output is fully covered, i.e. 100% TC, when it toggles back
and forth at least once. For example, the output of the block
(1) LT_INT in Fig. 1 is fully covered, when the PV_OUT has
5, 15, and 5 sequentially. Simulation of an FBD program
uses a set of simulation scenarios, and (7C) measures all
toggles during the simulation with massive scenarios. For
instance, the FBD program in Fig. 1 has 10 possible toggles
which the five blocks have two possible toggles. If a set of
simulation scenario toggles all possible ones, then simula-
tion using the scenarios achieves 100% TC.

(2) Modified condition/decision coverage (MC/DC)

MC/DC measures how many important combinations of
blocks in an FBD program simulation covers. The important
combinations means sets of inputs for a condition of a block
which independently affects an output of the block. For ex-
ample, combinations of inputs of (3)AND_BOOL block has
four possible input sets ((0,0), (0,1), (1,0), (1,1)), however
only three combinations (i.e., (0,1), (1,0), (1,1)) are impor-
tant combinations. MC/DC counts all the important combi-
nations executed with respect to a set of simulation scenarios
along the same way as 7C.

2.2 Mutation Analysis

Mutation analysis, which is often called mutation testing for
software testing, is one of software analysis techniques to
measure the adequacy of a test suite or the effectiveness of a
test adequacy criterion. Research activities about techniques
and tools of mutation analysis are increasing, and applica-
bility is getting widespread [3], [8]. A mutant is a modi-
fied version of an original program, which has an artificial
fault. The mutation analysis tries to detect the mutant us-
ing test suites—distinguish the behavior of the mutant from
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Fig.1 A small FBD program for a trip (shutdown) logic
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that of the original one—and evaluates the adequacy of the
test suites. If a test suite is adequate for an test criterion and
detects mutants as much as the adequacy, the test criterion
is effective to assess quality of the test suite. Using muta-
tion analysis, this paper analyzes coverage criteria for FBD
simulation proposed in the previous work [2].

Shin [12] [13] analyzed FBD test coverage criteria us-
ing mutation analysis. The criteria measure coverages about
testing of FBD programs. Each test case independently ex-
ecutes an FBD program, which means that the test cases do
have single scan cycle. The criteria in this paper are for
simulation-based testing of FBD programs, however. The
simulation executes an FBD with the use of simulation sce-
narios which have multiple scan cycles. It is worth noting
that it is necessary to execute FBD programs with multiple
scan cycles to verify the function correctness because PLC
programs are executed in a permanent loop.

3. Empirical Design
3.1 Research Questions and Subjects

This paper investigates the following research questions:

e RQ1: How effective is TC for FBD simulation in fault
detection?

e RQ2: How effective is MC/DC for FBD simulation in
fault detection?

To answer the questions, we designed our experiments
as described in Fig.2. We generated three types of simula-
tion scenarios, random (S,), guided (S, ), and manual scenar-
ios (Sy,), for an original FBD program using an automated
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v
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Fig.2  The demonstration process and targets of research questions for

RQI
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Table 1  Mutation operators for an FBD program
ID Operator Description Constraint
CVR constant value replacement replace a constant value C1 by C2 Cl+C2
ABR arithmetic block replacement replace arithmetic block ¢ with arithmetic block ¢ ejyey # ey dey
LBR logical block replacement replace logical block ¢ with logical block ¢ e1yey #+ e1den
CBR comparison block replacement replace comparison block ¢ with comparison block ¢ e|yey # e dey
IVR input variable replacement swap an input variable V; with another | Vi1>2
Table 2  Summary of 7C, MC/DC, and K for the three types of simulation scenarios
Name of Number of . Types of snn;latlon scenarios .
FBD programs Mutants r 8 n
TCs, MC/DCs, Ks, TCse MC/DCs, Ksg TCs,, MC/DCsy, K,
FFT 43 11 40 55 64 74 83 85 91 90
VFT 63 15 42 55 66 72 84 88 91 90
MFT 67 15 45 55 66 72 83 88 92 91
FRT 43 12 40 55 65 73 83 87 91 90
VRT 63 14 42 55 66 72 84 87 92 90
tool, FBDScenaGen+ [9]. The processing value, which is as follows:
a name of processing data for the FBD program, has ran- a number of detected mutants
dom values in the S,. On the other hands, the value in the K= x 100(%)

S, has guided values, such as an increase or decrease. The
Sy, is manually generated by an domain expert. We simu-
lated an original FBD program with each set of simulation
scenarios and measured 7C and MC/DC using FBDCover
[7]. Meanwhile, we applied mutation operators in Sect. 3.2
to the original FBD program in order to generate a number
of mutants. We also simulated the mutants, i.e., faulty FBD
programs, with the three sets of simulation scenarios and
measured how many mutants the scenarios detect. Finally
we analyze them in order to answer the research questions.
The experiment uses FBD programs [5] for the second
phase of KNICS APR-1400 RPS BP [6] as an original FBD
program. It was excerpted from an almost (but, not officially
final version) commercial NPP in operation. The BP con-
sists of 18 shutdown logics written in FBD, but we only use
5 representative trip programs, ‘fixed set-point falling trip’
(FFT), ‘variable set-point falling trip’ (VFT), ‘manual reset
falling trip” (MFT), ‘fixed set-point rising trip’ (FRT), and
‘variable set-point rising trip’ (VRT), in this experiment.

3.2 Mutant Generation and Mutation-Score Measurement

Mutants should be plausible as faulty programs. In other
words, the faults represent mistakes that programmers may
make. The mutants are created by seeding such faults fol-
lowing a pattern which is called mutation operators. We de-
fined mutation operators for an FBD program base on earlier
research [10]. Table 1 lists five mutations operators. The list
includes common mistakes during FBD programming. It
does not include faults which tools can identify, however.
For example, ‘FBD Checker’ [11] identifies the type mis-
match or missing links.

The mutation analysis measures that how much mu-
tants a set of simulation scenarios detect during a simulation,
called a mutation-score. The mutation-score, K, is described

a number of total mutants

We measure the K for each set of simulation scenarios for
each program. If a set of simulation scenarios finds all mu-
tants, then the K is 100%. Table 2 indicates the numbers of
mutants for each FBD programs we generated.

4. Analysis Results

A simulation scenario has 100 execution cycles and a set (S,
Sg» Sp) includes 1,000 simulation scenarios. Each of the sets
reports TC, MC/DC, and K of the 5 FBD programs individu-
ally. S, achieved 10-15% TCj, and 40-45% MC/DCs, while
S, achieved 64-66% TCs, and 72-74% MC/DCs,. The re-
sults of S, and S, means that a set of simulation scenar-
ios which is generated by a guidance is more effective to
achieve the both coverages than one randomly generated.
S, achieved 85-88% TCs,, and 91-2% MC/DCs,, against
all the original FBD programs.

Mutant generation uses only one mutation operator in
Table 1 to the original programs in order to generate one
mutant. Tens of mutants are generated by the operators for
every five programs. Table 2 shows that the number of gen-
erated mutants. We performed mutation analysis to the mu-
tants with S,, S,, and S,,. S, found about 55% of mutants,
S, found about 84% of mutants, and S,, found over 90% of
mutants.

(1) RQI1: How effective is TC for FBD simulation in fault
detection?

The graph (a) in Fig. 3 shows the correlation of K with TC.
The vertical axis represents K and the horizontal axis repre-
sents TC. The line is given as relationship between the two
variables. These two variables have a positive association
because as the TC increases, so does the K. The value of
Pearson’s 1 is 0.9934 and they have linear relationship of
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Fig.3  The correlation of the mutation-score (K) with the coverage crite-
ria (TC and MC/DC)

strong strength. In other words, the higher percent of 7C a
set of simulation scenarios achieves, the more mutants the
set detects.

(2) RQ2: How effective is MC/DC for FBD simulation in
fault detection?

The graph (b) in Fig.3 shows the correlation of K with
MC/DC. The value of r in this case indicates (r = 0.9777) that
there is a positive and linear relationship of strong strength
between the two variables. The higher percent of MC/DC,
in common with TC, a set of simulation scenario achieves,
the more faulty program the set finds.

The results give us information that both coverage cri-
teria, 7C and MC/DC, are effective to detect a fault in an
FBD program. A set of simulation scenario usually achieves
the higher percent of MC/DC than TC. Even if a set achieves
a low percent of about 10% TC, the set finds more than half
of mutants. In order to detect faults sufficiently, however,
the set should achieve a sufficiently high percent of both cri-
teria. 7C should be over about 87% and MC/DC should be
over about 91% to detect over 90% of faults in the experi-
ment.

One of the results indicates that the detection of mu-
tants by CBR is relatively more difficult than others. The
mutation-score S, for LBR is about 66% and S, for CBR is
about 25% for FFT. S, for LBR is about 89% and S, for
CBR is about 63%. The reason is that some of mutants by
CBR make a slight difference, such as generating LE_INT
from LT_INT. This means that it is difficult to detect these
kinds of fault by simulation-based testing.

5. Conclusion and Future Work

This paper reports empirical evaluations for FBD simulation
coverage criteria by mutation analysis. We used 5 represen-
tative FBD programs for the evaluation and generated tens
of mutants for each programs using mutation operators. The
experimental results demonstrated that simulation scenarios
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which achieve a higher percent of coverages are more effec-
tive to detect faults in an FBD program.

The most important limitation lies in the fact that
achieving a sufficiently high percent of coverages takes lots
of time and effort. It was possible to generate simulation
scenarios achieving over 87% TC and 90% MC/DC by do-
main experts manually. Although FBDScenaGen+ gener-
ated a number of simulation scenarios automatically, they
only detected under 84% of mutants. We have a plan to
improve the scenario generation using a machine learning
technique in our future work.
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