COMPSAC 2013
2013.07.22 ~07.25
Kyoto Japan

SQAF-DS: A Software Quality Assessment
Framework for Dependable Systems

2013.07.25

JUNBEOM YOO

KONKUK University
http://dslab.konkuk.ac.kr

==
hY
1
“ ?:)EPENDAELE SOFTWARE 1
lt LABORATORY
i

K KONKUK
UNIVERSITY

Dependability

The extent of the user’s confidence that it will operate as they expect and
not fail in normal use

A emergent property consisting of

. + . + .
Proposed by Ian Sommerville [41]

Our interest !

EF'ENDAELESDFTW RE 2
LABORATORY

K‘U KONKUK
UNIVERSTTY

“Safety Analysis” of IAEA

safety analysis. Evaluation of the potential hazards associated with the

conduct of an activity.

® Safety analysis is often used interchangeably with safety assessment. However,
when the distinction is important, safety analysis should be used for the study
of safety, and safety assessment for the evaluation of safety — for example,
evaluation of the magnitude of hazards, evaluation of the performance of

safety measures and judgement of their adequacy, or quantification of the
overall radiological impact or safety of a facility or activity.

IAEA Safety Glossary

Terminology Used in Nuclear Safety
and Radiation Protection
2007 Edition

1]
EPENDABLE SOFTWARE 3
LABORATORY

Safety Analysis Techniques

Analysis Techniques for achieving safety

Assessment Techniques for assessing current status of safety

KU vavs

U.S. NRC. NUREG/CR-6430 127]

Safety Analysis (Achievement)

/

“ All failures identified by FMEA should be analyzed by FTA,
and all potential errors (reasons) identified by FTA should be
resolved and confirmed throughout the whole life-cycle of

software development.” \

Safety Assessment

& 'DEPENDABLE SOFTWARE

Dependability Assessment

An important activity as well as dependability analysis (achievement)
— It helps us determine when to stop the analysis effort

A prompt decision whether to keep the analysis up, while preserving a
required level of dependability

— One of key factors to cost-effective software development

This Paper Proposes

A way to reduce the effort for dependability assessment:

SOAF-DS (Software Quality Assessment Framework for Dependable System)

— Intends to reduce the assessment time and cost thorough using test cases as
a means of the assessment

— First, develop dependability requirements from dependability analysis

— Formally checks inclusion/satisfaction relation between dependability
requirements and test cases

— Case study: Safety

A Software Quality Assessment Framework

for Dependable System (SQAF-DS)

Software Dependability Analysis

Software Development Process
i o 3 - o
 Dependability Requirements | | Test Cases |
b ‘ e ; 4
Transformation Transformation
[]

J0
Dependability Properties

Models of Test Cases

Formal Checking
?

Dependability Properties C Test Cases

FALSE
5 NG _/:
3 v

L=

We DO NOT KNOW
whether

dependability properties are

implemented or not.

ﬁ@mDAELE SOFTWARE

LABORATORY

We need OTHER

| dependability assessment
Dependability properties | Dependability properties methods, the same as
are WELL implemented. |

before.

are NOT implemented.
|

A Software Quality Assessment Framework
for Dependable System (SQAF-DS)

Software Dependability Analysis Software Development Process

‘;x‘vh'/ ~
i i N
 Dependability Requirements | | Test Cases |
|| |
e e
Transformation ~ Transformation
" =
S = =

Dependability Properties Models of Test Cases

EPENDABLE SOFTWARE
LABORATORY

KU

KONKUK
UNIVERSTTY

|

EPENDABLE SOFTWARE
LABORATORY

K‘U KONKUK
UNIVERSTTY

Dependability Properties Models of Test Cases

S
4 -~)
. B -
oA P o
X N | N i
™ 1
|
> L &
Ve = : -x:‘;

Formal Checking
7

Dependability Properties C Test Cases !

TRUE . FALSE
1 //,/ _/}- \ e #
|I\~__-’ //r \ . /I;n

\)

/ We DO NOT KNOW
| Test Execution | whether
o dependability properties are
it implemented or not.
TRUE e -f-:‘}‘l\ FALSE
Nt 7= N\
B \ \> .
S We need OTHER
dependability assessment
Dependability properties | Dependability properties methods, the same as
are WELL implemented. are NOT implemented. before.

10

K‘U KONKUK
UNIVERSTTY

Case Study: Camera Control SW of Cell Phones

Vi

(Initialized \I (Pos tview W
do/camsensorPWon do fviewImage
dojcamsens orInit do fplayMavie
i Recording \|
startP ostvied do frecord J
startRecord e

startPreview

sGotRecordStopEvent==true || isM ulled == true || isGotCamsensorError==true]stopRecord

(Snapshot \I

dojcamSnapshot J

-

Preview

dojstartPreviewTimer
do/selectMode

do/selectSize do/fsavePhoto

el

[isGotCamsensorError==true || isSavephoto==0K]res tartPre view

SW requirement specification in UML (excerpted)

a "-‘]f\.
.
Qo ??IZ)EPENDAELE SOFTWARE 1 1
A e/
AR

LABORATORY

Press camera button, KU tvessmry
An FTA f()r the failure / but a picture is not taken
“Camera button is pressed,
but a picture is not taken.”

Camera is not
ready to take a
picture

startSnapshot
event is ignored

Camera

button is out
of order

—

Other events
occur
simultaneously

Current state
is not startSnapshot

event occurs

startSnapshot
event occurs

Preview

startPostview startRecord
event occurs event occurs

MINIMAL CUT-SET : Camera button is out of order
| startSnapshot event is ignored
M@mmﬁfjﬁwm | Camera is not ready to take pictures 12

LABORATORY

Safety Requirement (1) :

“If the camera button is pressed, then startSnapshot event should be executed
at first, even if three events occur simultaneously.”

Safety Requirement (2) :

“If the camera button is pressed when the system is ready to take pictures, then
it should take a picture, eventually.”

Safety Property (1) :

AG(((state=Preview) & startSnapshot & startRecord & stopPostview)
> AX (state=Snapshot))

Safety Property (2) :

AG(((state=Preview) & startSnapshot & ! startRecord & ! stopPostview)
> AF (state=Snapshot))

K‘U KONKUK
UNIVERSTTY

Test cases (Input) Expected output
(state = Preview, startSnapshot = 1) (state = Snapshot)
(state = Preview, startRecord = 1) (state = Recording)
(state = Preview, startPostview = 1) (state = Postview)

(state = Preview, stopPreview =1 , isTimeOut =1) or

(state = Preview, stopPreview =1 , isGotCameraStopEvent = 1) {state =arapped)

(state = Snapshot, restartpreview =1 | isGotCamsensorError = 1)

(state = Snapshot, restartpreview = 1 | isSavephoto = OK) (state.= Preview)

(state = Recording, stopRecord =1, isDotRecordStopEvent = 1)
(state = Recording, stopRecord =1 , isMemoryFulled = 1) (state = Preview)
(state = Recording, stopRecord =1, isGotCamsensorError = 1)

(state = Postview, stopPostview = 1) (state = Preview)

(state = Stopped, exitCamera = 1) (state = Idle)

A test suite for the UML specification

o
[} DEPENDABLE SOFTWARE 14
AT L ABORATORY

F

SMYV input program

test cases

e . -

¥ o
{dooadCurFieiio P o e switch(state, event){ e
SRR T g (AlbumEditing , stopAlbumEdit):Albumview; ‘
</TestCase>

(Albumview , startAlbumEdit)AlbumEditing;

{Albumview , startEdit)Editing;

(Albumyiew , startVideo).Playing;

(Aloumview , startPrint):Printing;

(Aloumview , send_to_MMS):Sending;

(Albumview , closeAlbum):Stopped;

(Editing , stopEdit):Albumview;

(Idle , startAlbum):Albumview;

(Idle , startCamera)Initialized;

(Initialized , oper_preview).Preview;

(Playing , stopVideo):Albumview;

(Postview , stopPostview).isComplete ?Preview:Postview,
(Preview , startPostview):Posiview; w |
(Preview , startRecord):Recording;

(Preview , startSnapshot):Snapshot;

(Preview , stopPreview).isTimeOut|lisGotCameraStopEvent?Stopped.Preview,
(Printing , postEvent)isComplete?Albumview:Printing;

(Recording , restartPreview)isComplete?Preview:Recording;

(Sending , SendEvent)isComplete?Albumview:Sending;

(Snapshot, restartpreview).isComplete?Preview:Snapshot;

(Stopped , exitCamera)ldle;

<TestCase id="V 13"
<StartState value="AlbumEditing™/>
=<Eventvalue="stopAlbumEdit™>
<Action value="do/album_InitAppDate

[]

do/Album_PreStart
do/Album_InitFileTable
do/get_file_list
do/disp_file_list/>
<NextState value="Albumview"/>
<Eventvalue="closeAlbum™=
<Action value="do/stopPreviewTime
=EndState value="Stopped™/>
</TestCase>
<TestCase id="V 14™
=StartState value="AlbumEditing"/>
<Event value="stopAlbumEdit™/>
<Action value="do/album_InitAppDate

do/Album_PreStart
do/Album_InitFileTable
do/get_file_list
do/disp_file_list/>

Il

¥
PEC AG ((state=Preview)&(startRecord&startPostview&startSnapshot)-=AX(state=Snapshot))
ISPEC AG ((state=Preview) & startSnapshot & IstartPostview & IstartRecord -> AF(state=Snapshot})

<NextState value="Albumview"/>
<Eventvalue="startAlbumEdit/>
<Action value="do/CreatePopupFileinfo

do/CreatEditTitleFrm N
dofrename_file ~| ~|
4 »
i L I v
| Load Test Case Save Test Case File Execution
" PROPERTY

SPEC AG ((state=Preview)&(startRecord&startPosiview&startSnapshot}-=AX(state=Snapshot))
|SPEC AG ((state=Preview) & startSnapshot & !startPostview & IstartRecord -> AF(state=Snapshot))

TC2SMV

EPENDABLE SOFTWARE 1 5

(1) > False
(2) 2> True

EPENDABLE SOFTWARE
LABORATORY

File Prop View Goto History Abstraction

Property

[Resurt |

R{aRecori&statPostion RetanSnapshol) { false.

Tae Nov 01 12.09.26 itk

File Edit Run View

L

K

KONKUK
UNIVERSITY

A result of SMV model checking6

Safety Requirement (1) :

“If the camera button is pressed, then startSnapshot event should be executed
at first, even if three events occur simultaneously.”

Safety Property (1) : False

AG(((state=Preview) & startSnapshot & startRecord & stopPostview)
> AX (state=Snapshot))

Dependability Properties

Models of Test Cases

- We don’t know for now

—=> We need other methods to assess it!

Formal Checking

?
Dependability Properties C Test Cases

FALSE

We DO NOT KNOW
whether
dependability properties are
implemented or not.

(Test Execution

TRUE FALSE

We need OTHER
dependability assessment

methods, the same as
before.

Dependability properties | | Dependability properties
are WELL implemented. are NOT implemented.

17

K‘U KONKUK
UNIVERSTTY

Safety Requirement (2) :

“If the camera button is pressed when the system is ready to take pictures, then
it should take a picture, eventually.”

Safety Property (2) : True

AG(((state=Preview) & startSnapshot & ! startRecord & ! stopPostview)
- AF (state=Snapshot))

Dependability Properties Models of Test Cases

- It may be well implemented
(if the test succeeds)

-> Safety assessment has been done!

Formal Checking

?
Dependability Properties C Test Cases

TRUE -~ FALS

We DO NOT KNOW
whether
dependability properties are

implemented or not.

(Test Execution |

TRUE FALSE

We need OTHER
dependability assessment
methods, the same as
before.

Dependability properties | | Dependability properties
are WELL implemented. are NOT implemented.

-
18
| ENDABLE SOFTWARE 18
1 TORY

Needs More Consideration

Formal Checking : Inclusion vs. Satisfaction
- Model checking vs. Equivalence checking
-SMV vs. VIS
- SMV input programming language vs. Verilog

Transformation of safety requirements
- Safety analysis 2 Safety requirements = Safety Properties

Level of dependability requirements and test cases
- Scope of dependability analysis (System vs. Software vs. Component)
- System test vs. Unit test
- Model-based testing vs. Functional testing

KU

EONKUK
UNIVERSTTY

Thank you

http://dslab.konkuk.ac.kr

==
hY
1 ?:)EPENDAELE SOFTWARE 2 O
4
lt LABORATORY
i

