
An ETRI CPS Modeling Language for

 Hybrid System Simulation

Sanghyun Yoon

 Konkuk University

TR-DS-2015-01

November 25, 2015

Konkuk University

Department of Computer Science and Engineering

Dependable Software Labortory

An ETRI CPS Modeling Language for

 Hybrid System Simulation

Sanghyun Yoon

 Konkuk University

Abstract

This article describes ECML (ETRI CPS Modeling Language), a modeling langue for hybrid system simulation. ECML

extends DEV&DESS (Discrete Event and Differential Equation System Specification), with conveniences in modeling and

simulation. Modeling environment EcoPOD (ETRI CPS Open Developer) and visual simulator EcoSIM (ETRI CPS

Simulator) support visual modeling and simulation. We introduce modeling and simulation environment of ECML, and also

formal definition. The case study specifies a simple vehicle system with the formal definition.

1 Introduction

Hybrid system [1] is a dynamical system whose behavior is a combination of continuous and discrete dynamics.

The discrete part usually models modes of system operations, while the continuous part does physical

interactions with environments. Many approaches to modeling and analyzing hybrid system have been proposed.

Timed automata [2], (linear) hybrid automata [3] [4], CHARON [5] and ECML are the examples of the

modeling methods.

ECML (ETRI CPS Modeling Language) is an extension of the basic formalism DEV&DESS [6] with various

conveniences in modeling and simulation [7] [8], recently proposed by ETRI (Electronics and

Telecommunication Research Institute) in Korea. A modeling and simulation environment, EcoPOD (ETRI CPS

Open Developer) and EcoSIM (ETRI CPS Simulator) supports ECML.

This paper introduces a formal definition for ECML and overviews modeling and simulation environment of

ECML. The formal definition was proposed in [9] in Korean and various researches describes modeling and

simulation environment. An ECML model is composed structural model and behavioral model. ECML model

communicates with environment model. When conducting simulation, a specified ECML model is translated

into C++ programming codes, and environment model generates input scenario for ECML model and calculates

outputs of ECML model. The translated model and scenario are executed and visualized.

This paper is organized as follows. Section 2 overviews related work about modeling and simulation

environment of ECML. It also includes our previous work verifying ECML model with formal verification.

Section 3 introduces ECML and formal definition of ECML. Section 4 shows an example with a vehicle control

system. The system is specified with formal definition which introduced in Section 3. We conclude the paper in

Section 5.

2 Related Work

An ECML is modeled in CPS (Cyber-Physical System) domain modeler, ‘EcoPOD’ [10] [11]. The model is

loaded by hybrid simulation environment, ‘EcoSIM.’ EcoSIM translates the model into simulation program, and

then executes and control the program based on scenario. The simulation result is visualized by 3D visualizer

[12] as shown in <Figure 1>. Relation of model, simulation and physical system is described in [13].

Scenario based 3D Visualization

ECML Modeling Environment

Figure 1 ECML modeling and simulation environment

Including the ECML modeling and simulation environment, a dependable CPS software development

environment ‘EcoSuite’ was proposed. EcoSuite [14] is includes EcoPOD, EcoSIM, EcoView, EcoHILS and

EcoAce. EcoView visualizes simulation result, and EcoHILS [15] supports HILS (Hardware in the Loop

Simulation) using hardware EcoAce. They are connected with real time control middleware EDDS [16].

Figure 2 An example of ECML formal verification result (in EcoPOD)

Our previous researches applied formal verification to verify ECML model. [17] and [18] verified DEV&DESS

model which is basic formalism of ECML with HyTech [19]. [20] translated ECML into linear hybrid automata,

and [21] and [22] verified translated linear hybrid automata with HyTech. We also performed a case study with

SpaceEx [23] to verify ECML model [24], and then ECML model to SpaceEx model translator and formal

verification interface are imported in EcoPOD [25] as shown in <Figure 2>.

There are some approaches which use ECML in various ways. For example, [26] translated Simulink model into

ECML, and an approach implementing simulation models for SAM fuzzy controllers without the use of external

components is represented in [27].

3 ECML

3.1 Variables

ECML models three different rate types of variables: discrete event, discrete value and continuous value,

specifically. The three typed variables have different behavior of value each other. When an event is occur,

discrete event type variable is assigned a value and reset to zero. Discrete value type variable’s value is held

until next assignment is occurred. The value of continuous value type variable is changing continuously, and the

rate defines rate of change of the value at a phase.

Variables in ECML also have port types and various data types. ECML has three port types such as input (X),

output (𝑌) and state (𝑆𝐶,𝑆𝐷). An ECML BM gets data from connected model with input variable, changes

internal states with state variable, and sends data with output variable. Data types determine the possible values

for the type variable. Integer, Double, Boolean and String are the examples and ECML supports also user-

defined data type. Modeling environment ‘EcoPOD’ and visual simulator ‘EcoSIM’ support visual modeling and

simulation [28], as illustrated in <Figure 3>.

Figure 3 The modeling and simulation tool for ECML ('EcoPOD' and 'EcoSIM')

3.2 Structural Model & Behavioral Model

An ECML model is structured with a set of basic components, hierarchically. A basic component is modeled

with BM (Behavioral Model), while their composition is modeled with SM (Structured Model). <Figure 3>

shows an example model in ‘EcoPOD.’ CBM (CPS Behavioral Model) are BMs and CSM (CPS Structured

Model) are SM. They communicate each other with connected input and output ports. The BM is defined as

follows:

BM = 〈𝑋, 𝑌, 𝑆, 𝐼𝑛𝑖𝑡, 𝐶𝑜𝑛𝑑𝐸 , 𝑇𝑟𝑎𝑛𝑠𝐸 , 𝑇𝑟𝑎𝑛𝑠𝑆, 𝐶𝑂𝑛𝑑𝑆, 𝑅𝑎𝑡𝑒, 𝑂𝑢𝑡𝐶 , 𝑂𝑢𝑡𝐷, 𝑂𝑢𝑡𝐸, 𝑂𝑢𝑡𝑆〉

 𝑋 = 𝑋𝐶 × 𝑋𝐷 × 𝑋𝐸 is the set of inputs, where,

 𝑋𝐶 = {(𝑥1
𝐶 , 𝑥2

𝐶 , …)|𝑥1
𝐶 ∈ 𝑋1

𝐶 , 𝑥2
𝐶 ∈ 𝑋2

𝐶 , … } is the structured set of continuous value inputs with

input variables 𝑥𝑖
𝐶

 𝑋𝐷 = {(𝑥1
𝐷, 𝑥2

𝐷 , …)|𝑥1
𝐷 ∈ 𝑋1

𝐷, 𝑥2
𝐷 ∈ 𝑋2

𝐷 , … } is the structured set of discrete value inputs with

input variables

 𝑋𝐸 is the set of discrete event inputs

 𝑌 = 𝑌𝐶 × 𝑌𝐷 × 𝑌𝐸 is the set of outputs, where,

 𝑌𝐶 = {(𝑦1
𝐶 , 𝑦2

𝐶 , …)|𝑦1
𝐶 ∈ 𝑌1

𝐶 , 𝑦2
𝐶 ∈ 𝑌2

𝐶 , … } is the structured set of continuous value outputs with

output variables 𝑦𝑖
𝐶

 𝑌𝐷 = {(𝑦1
𝐷 , 𝑦2

𝐷 , …)|𝑦1
𝐷 ∈ 𝑌1

𝐷 , 𝑦2
𝐷 ∈ 𝑌2

𝐷 , … } is the structured set of discrete value outputs with

output variables 𝑦𝑖
𝐷

 𝑌𝐸 is the set of discrete event outputs

 𝑆 = 𝑃 × 𝑆𝐷 × 𝑆𝐶 is set of states; the Cartesian product of phases P, discrete states 𝑆𝐷 and

continuous states 𝑆𝐶

 𝐼𝑛𝑖𝑡 = 𝑆0 × 𝑋0 × 𝑌0 is the initial condition set to define initial states and initial values of inputs and

outputs

 𝐶𝑜𝑛𝑑𝐸 ∶ 𝑆 × 𝑋 → 𝐵𝑜𝑜𝑙 is the external event transition condition function for conditioning the

execution of the external events

 𝑇𝑟𝑎𝑛𝑠𝐸 ∶ 𝑆 × 𝑋 → 𝑆 is the external event transition function

 𝑂𝑢𝑡𝐸 ∶ 𝑆 × 𝑋 → 𝑌 is the output function for external event transitions

 𝐶𝑜𝑛𝑑𝑆 ∶ 𝑆 × 𝑋𝐶 × 𝑋𝐷 → 𝐵𝑜𝑜𝑙 is the state transition condition function for conditioning the execution

of the internal state events

 𝑇𝑟𝑎𝑛𝑠𝑆 ∶ 𝑆 × 𝑋𝐶 × 𝑋𝐷 → 𝑆 is the internal state transition function

 𝑂𝑢𝑡𝑆 ∶ 𝑆 × 𝑋𝐶 × 𝑋𝐷 → 𝑌 is the output function for internal state transitions

 𝑅𝑎𝑡𝑒 ∶ 𝑆 × 𝑋𝑐 × 𝑋𝐷 → 𝑆𝐶 is the rate of change function

 𝑂𝑢𝑡𝐶 ∶ 𝑆 × 𝑋𝐶 × 𝑋𝐷 → 𝑌𝐶 is the continuous value output function

 𝑂𝑢𝑡𝐷 ∶ 𝑃 × 𝑆𝐷 × 𝑋𝐷 → 𝑌𝐷 is the discrete output function

A BM corresponds to an atomic DEV&DESS model. The semantics of an ECML BM are described as follows:

1. Intervals 〈𝒕𝟏, 𝒕𝟐〉 with no events: Only the continuous states SC change. The continuous states at

the end of the interval are computed form the state at the beginning plus the integral of the rate of

change function 𝑅𝑎𝑡𝑒(𝑠(𝑡), 𝑥𝐶(𝑡), 𝑥𝐷(𝑡))(t = 〈𝑡1, 𝑡2〉) along the interval. The continuous behavior

of the model is specified by 𝑅𝑎𝑡𝑒(𝑠(𝑡), 𝑥𝐶(𝑡), 𝑥𝐷(𝑡)) and the continuous value output function

𝑂𝑢𝑡𝐶(𝑠(𝑡), 𝑥𝐶(𝑡), 𝑥𝐷(𝑡)), while the discrete value output is generated by the discrete value output

function 𝑂𝑢𝑡𝐷(𝑝(𝑡), 𝑠𝐷(𝑡), 𝑥𝐷(𝑡)).

2. An internal state event occurs first at time t in interval 〈𝒕𝟏, 𝒕𝟐〉: The continuous states at the time

of the transition are computed from the state at the beginning plus the integral of the rate of change

function 𝑅𝑎𝑡𝑒(𝑠(𝑡′), 𝑥𝐶(𝑡′), 𝑥𝐷(𝑡′))(t′ = ⟨𝑡1, 𝑡]) along the interval until time 𝑡 . Likewise, the

hybrid output is generated until time 𝑡 . At time 𝑡 , the state transition condition function

𝐶𝑜𝑛𝑑𝑆(𝑠(𝑡), 𝑥𝐶(𝑡), 𝑥𝐷(𝑡)) evaluates to true. That is, an internal state event occurs. Here, the internal

state transition function 𝑇𝑟𝑎𝑛𝑠𝑆(𝑠(𝑡), 𝑥𝐶(𝑡), 𝑥𝐷(𝑡)) is executed to define a new state. The output

function for internal state transitions 𝑂𝑢𝑡𝑆(𝑠(𝑡), 𝑥𝐶 , 𝑥𝐷(𝑡)) is called to generated an output at time 𝑡.

3. An external discrete event occurs first at time t in interval 〈𝒕𝟏, 𝒕𝟐〉: The continuous states at the

time of the transition are computed from the state at the beginning plus the integral of the rate of

change function 𝑅𝑎𝑡𝑒(𝑠(𝑡′), 𝑥𝐶(𝑡′), 𝑥𝐷(𝑡′))(t′ = ⟨𝑡1, 𝑡]) along the interval until time 𝑡. Likewise,

the continuous output is generated until time 𝑡. At time 𝑡, the external event transition condition

function 𝐶𝑜𝑛𝑑𝐸(𝑠(𝑡), 𝑥(𝑡)) evaluates to true. That is, the external event transition occurs. Here, the

external event transition function 𝑇𝑟𝑎𝑛𝑠𝐸(𝑠(𝑡), 𝑥(𝑡)) is executed to define a new state. The output

function for external event transitions 𝑂𝑢𝑡𝐸(𝑠(𝑡), 𝑥(𝑡)) is called to generate an output at time 𝑡.

A SM of ECML corresponds to a coupled DEV&DESS model. A structured model contains basic models BMs,

coupled each other with connecting ports describing flow of data typed of discrete, continuous and event. ‘CSM

CPSVehicle2’ in <Figure 3> is an example of ECML SM.

4 An Example: Vehicle Control System

This section models a ‘vehicle control system’ with ECML. In actual vehicle control system, the vehicle moves

along Euclidean shortest path in ℜ2 space. It receives current position, destination position, obstacle positon

and the other information from environment. On the other hand, our case study approximates actual model,

since the purpose is showing examples which are specified the introduced formal definition. There are no

obstacles, and vehicle moves along east and north directions in case study model.

Figure 4 An ECML SM for simplified 'vehicle control system'

<Figure 4> shows an SM Vehicle for ‘vehicle control system.’ Vehicle control system is structured with

subsystems such as ‘Control,’ ‘Thruscontroller,’ ‘Engine’ and ‘VehicleEnv.’ It has three inputs and two outputs.

destx and desty are inputs which set destination position of vehicle. When order is true, it changes current

position of vehicle from initial position (0,0) to the destination position, and current position of vehicle is

outputted through outlocx and outlocy.

Figure 5 An ECML BM 'Control'

BM Control is described in <Figure 5>. It receives order (inorder), destination position (indestx, indesty) and

current position (inlocx, inlocy). Initial state of BM Control is standby phase. If ‘inorder>=1,’ it transits to

moving phase, and then it calculates distance from current position to destination position. The distance is

outputted through xvector and yvector ports. Current position is passed to other subsystem through clocx and

clocy, and order is done through ismoving. Formal definition of 𝐵𝑀𝐶𝑜𝑛 for the subsystem Control is as follows:

𝐵𝑀𝐶𝑜𝑛 = 〈𝑋, 𝑌, 𝑆, 𝐼𝑛𝑖𝑡, 𝑇𝑟𝑎𝑛𝑠𝐸, 𝐶𝑜𝑛𝑑𝐸 , 𝑂𝑢𝑡𝐸 , 𝑂𝑢𝑡𝐶〉
where,

 𝑋𝐷 = {𝑖𝑛𝑜𝑟𝑑𝑒𝑟, 𝑖𝑛𝑑𝑒𝑠𝑡𝑥, 𝑖𝑛𝑑𝑒𝑠𝑡𝑦, 𝑖𝑛𝑙𝑜𝑐𝑥, 𝑖𝑛𝑙𝑜𝑐𝑦 | 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 = 𝑜𝑟𝑑𝑒𝑟, 𝑖𝑛𝑑𝑒𝑠𝑡𝑥 = 𝑑𝑒𝑠𝑡𝑥,
𝑖𝑛𝑑𝑒𝑠𝑡𝑦 = 𝑑𝑒𝑠𝑡𝑦, 𝑖𝑛𝑙𝑜𝑐𝑥 = 𝑙𝑜𝑐𝑥, 𝑖𝑛𝑙𝑜𝑐𝑦 = 𝑙𝑜𝑐𝑦}

 𝑌𝐶 = {𝑥𝑣𝑒𝑐𝑡𝑜𝑟, 𝑦𝑣𝑒𝑐𝑡𝑜𝑟, 𝑐𝑙𝑜𝑐𝑥, 𝑐𝑙𝑜𝑐𝑦 | {𝑥𝑣𝑒𝑐𝑡𝑜𝑟, 𝑦𝑣𝑒𝑐𝑡𝑜𝑟, 𝑐𝑙𝑜𝑐𝑥, 𝑐𝑙𝑜𝑐𝑐𝑦} ∈ ℜ}

 𝑌𝐷 = {ismoving | ismoving ∈ {0,1}}

 𝑃 = {s𝑡𝑎𝑛𝑑𝑏𝑦, 𝑚𝑜𝑣𝑖𝑛𝑔}

 𝐼𝑛𝑖𝑡 = {𝑃 = standby}

 𝐶𝑜𝑛𝑑𝐸 ∶
 (𝑃 = 𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 ≥ 1)

 (𝑃 = 𝑚𝑜𝑣𝑖𝑛𝑔, 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 ≤ 0)

 𝑇𝑟𝑎𝑛𝑠𝐸 ∶
 (𝑃 = 𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 ≥ 1) → (𝑃 = 𝑚𝑜𝑣𝑖𝑛𝑔)

 (𝑃 = 𝑚𝑜𝑣𝑖𝑛𝑔, 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 ≤ 0) → (𝑃 = 𝑠𝑡𝑎𝑛𝑏𝑦)

 𝑂𝑢𝑡𝐸 ∶
 (𝑃 = 𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 ≥ 1) → (𝑖𝑠𝑚𝑜𝑣𝑖𝑛𝑔 = 1)

 (𝑃 = 𝑚𝑜𝑣𝑖𝑛𝑔, 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 ≤ 0) → (𝑖𝑠𝑚𝑜𝑣𝑖𝑛𝑔 = 0)
 𝑂𝑢𝑡𝐶 ∶

 (𝑃 = 𝑚𝑜𝑣𝑖𝑛𝑔) →
(𝑥𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑖𝑛𝑑𝑒𝑠𝑡𝑥 − 𝑖𝑛𝑙𝑜𝑐𝑥 ∧ 𝑦𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑖𝑛𝑑𝑒𝑠𝑡𝑦 − 𝑖𝑛𝑙𝑜𝑐𝑦 ∧ 𝑐𝑙𝑜𝑐𝑥 = 𝑖𝑛𝑙𝑜𝑐𝑥 ∧ 𝑐𝑙𝑜𝑐𝑦 = 𝑖𝑛𝑙𝑜𝑐𝑦)

Figure 6 An ECML BM 'Thrustcontroller'

Subsystem Thrustcontroller sets direction (i.e., heading) of vehicle. <Figure 6> shows ECML 𝐵𝑀𝑇𝐶 for a

subsystem Thrustcontroller. inxheading and inyheading are variables which describe distance between current

position and destination position. Vehicle of our case study has two heading, hence it has two phases. Initial

phase is east, and it moves in the right direction (i.e., heading=0). When the vehicle arrives to x-axis of

destination (i.e., inxheading<=0), it transit to north phase, and it moves in the up direction. Formal definition of

the ECML 𝐵𝑀𝑇𝐶 for the subsystem Thrustcontroller is as follows:

𝐵𝑀𝑇𝐶 = 〈𝑋, 𝑌, 𝑆, 𝐼𝑛𝑖𝑡, 𝑇𝑟𝑎𝑛𝑠𝐸, 𝐶𝑜𝑛𝑑𝐸 , 𝑂𝑢𝑡𝐸〉
where,

 𝑋𝐶 = {𝑖𝑛𝑥ℎ𝑒𝑎𝑑𝑖𝑛𝑔, 𝑖𝑛𝑦ℎ𝑒𝑎𝑑𝑖𝑛𝑔 | 𝑖𝑛𝑥ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑥𝑣𝑒𝑐𝑡𝑜𝑟, 𝑖𝑛𝑦ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑦𝑣𝑒𝑐𝑡𝑜𝑟}

 𝑌𝐶 = {ℎ𝑒𝑎𝑑𝑖𝑛𝑔 | ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ∈ {0, 90}}

 𝑃 = {𝑒𝑎𝑠𝑡, 𝑛𝑜𝑟𝑡ℎ}

 𝐼𝑛𝑖𝑡 = {𝑃 = 𝑒𝑎𝑠𝑡, ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 0}

 𝐶𝑜𝑛𝑑𝐸 ∶
 (𝑃 = 𝑒𝑎𝑠𝑡, 𝑖𝑛xheading ≤ 0)

 (𝑃 = 𝑛𝑜𝑟𝑡ℎ, 𝑖𝑛𝑦ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ≤ 0)

 𝑇𝑟𝑎𝑛𝑠𝐸 ∶
 (𝑃 = 𝑒𝑎𝑠𝑡, 𝑖𝑛xheading ≤ 0) → (𝑃 = 𝑛𝑜𝑟𝑡ℎ)

 (𝑃 = 𝑛𝑜𝑟𝑡ℎ, 𝑖𝑛𝑦ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ≤ 0) → (𝑃 = 𝑒𝑎𝑠𝑡)

 𝑂𝑢𝑡𝐸 ∶
 (𝑃 = 𝑒𝑎𝑠𝑡, 𝑖𝑛xheading ≤ 0) → (ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 90)

 (𝑃 = 𝑛𝑜𝑟𝑡ℎ, 𝑖𝑛𝑦ℎ𝑒𝑎𝑑𝑖𝑛𝑔 ≤ 0) → (ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 0)

Figure 7 An ECML BM 'Engine'

<Figure 7> shows ECML 𝐵𝑀𝐸𝑛𝑔 for a subsystem Engine. The model has an input and an output. inmoving is

an order sent from 𝐵𝑀𝐶𝑜𝑛 . If ‘𝑖𝑛𝑚𝑜𝑣𝑖𝑛𝑔 ≥ 1’ in phase standby, it transits to accelerating. Momentum is a

continuous state representing momentum of engine. In accelerating phase, the value of Momentum is increased

by ‘d(Momentum)=1.’ When Momentum reaches to own maximum value 15, it transits to maintaining, and

maintains the Momentum. If ‘inmoving<0,’ it transits to stopping and reduces Momentum. The value of

Momentum is outputted through outMomentum port in every phase in 𝐵𝑀𝐸𝑛𝑔. Formal definition of the ECML

𝐵𝑀𝐸𝑛𝑔 for the subsystem Engine is as follows:

Figure 8 An ECML BM 'VehicleEnv'

𝐵𝑀𝐸𝑛𝑔 = 〈𝑋, 𝑌, 𝑆, 𝐼𝑛𝑖𝑡, 𝑇𝑟𝑎𝑛𝑠𝐸, 𝐶𝑜𝑛𝑑𝐸 , 𝑇𝑟𝑎𝑛𝑠𝑆, 𝐶𝑜𝑛𝑑𝑆 , 𝑂𝑢𝑡𝐶 , 𝑅𝑎𝑡𝑒〉

where,

 𝑋𝐷 = {𝑖𝑛𝑚𝑜𝑣𝑖𝑛𝑔 | 𝑖𝑛𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑖𝑠𝑚𝑜𝑣𝑖𝑛𝑔}

 𝑌𝐶 = {𝑜𝑢𝑡𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 | 𝑜𝑢𝑡𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∈ ℜ}

 𝑃 = {𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔, 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔, 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔}

 𝑆𝐶 = {𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ∈ ℜ}

 𝐼𝑛𝑖𝑡 = {𝑃 = 𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 0}

 𝐶𝑜𝑛𝑑𝐸 ∶
 (P = standby, inmoving ≥ 1)

 (P = maintaining, inmoving ≤ 0)

 𝑇𝑟𝑎𝑛𝑠𝐸 ∶
 (P = standby, inmoving ≥ 1) → (𝑃 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔)

 (P = maintaining, inmoving ≤ 0) → (𝑃 = 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔)

 𝐶𝑜𝑛𝑑𝑆 ∶
 (𝑃 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔, 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ≥ 15)

 (𝑃 = 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔, 𝑀𝑜𝑚𝑒𝑛𝑚𝑡𝑢𝑚 ≤ 0)

 𝑇𝑟𝑎𝑛𝑠𝑆 ∶
 (𝑃 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔, 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 ≥ 15) → (𝑃 = 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔)

 (𝑃 = 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔, 𝑀𝑜𝑚𝑒𝑛𝑚𝑡𝑢𝑚 ≤ 0) → (𝑃 = 𝑠𝑡𝑎𝑛𝑑𝑏𝑦)

 𝑂𝑢𝑡𝐶 ∶
 (𝑃 = {𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔, 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔, 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔}) → (𝑜𝑢𝑡𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚)

 𝑅𝑎𝑡𝑒 ∶
 (𝑃 = {𝑠𝑡𝑎𝑛𝑑𝑏𝑦, 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔}) → (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚̇ = 0)

 (𝑃 = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑛𝑔) → (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚̇ = 1)

 (𝑃 = 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔) → (𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚̇ = −1)

The subsystem VehicleEnv models change of vehicle’s current position. <Figure 8> is ECML 𝐵𝑀𝐸𝑛𝑣 for the

subsystem. Initial phase is init, and it transits to px or py phase according to heading value which is sent from

𝐵𝑀𝑇𝐶 (i.e.,inheading). ‘inheading==90’ represents vehicle is moving in the right direction, so horizontal value

of current position is increased by engine momentum. Otherwise, when ‘inheading==0,’ vehicle is moving in

up the direction, hence vertical value of current position is increased. Formal definition of the 𝐵𝑀𝐸𝑛𝑣 for the

subsystem VehicleEnv is as follows:

𝐵𝑀𝑉𝐸 = 〈𝑋, 𝑌, 𝑆, 𝐼𝑛𝑖𝑡, 𝑇𝑟𝑎𝑛𝑠𝐸 , 𝐶𝑜𝑛𝑑𝐸 , 𝑇𝑟𝑎𝑛𝑠𝑆, 𝐶𝑜𝑛𝑑𝑆, 𝑂𝑢𝑡𝑆, 𝑅𝑎𝑡𝑒 〉
where,

 𝑋𝐶 = {𝑖𝑛𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚, 𝑖𝑛𝑐𝑙𝑜𝑐𝑥, 𝑖𝑛𝑐𝑙𝑜𝑐𝑦 | 𝑖𝑛𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝑜𝑢𝑡𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚, 𝑖𝑛𝑐𝑙𝑜𝑐𝑥 = 𝑐𝑙𝑜𝑐𝑥, 𝑖𝑛𝑐𝑙𝑜𝑐𝑦 =
𝑐𝑙𝑜𝑐𝑦}

 𝑋𝐷 = {𝑖𝑛ℎ𝑒𝑎𝑑𝑖𝑛𝑔 | inheading = heading}

 𝑌𝐶 = {𝑙𝑜𝑐𝑥, 𝑙𝑜𝑐𝑦 | {𝑙𝑜𝑐𝑥, 𝑙𝑜𝑐𝑦} ∈ ℜ}

 𝑃 = {𝑖𝑛𝑖𝑡, 𝑝𝑥, 𝑝𝑦}

 𝑆𝐶 = {𝑝𝑙𝑜𝑐𝑥, 𝑝𝑙𝑜𝑐𝑦 | {𝑝𝑙𝑜𝑐𝑥, 𝑝𝑙𝑜𝑐𝑦} ∈ ℜ}

 𝐼𝑛𝑖𝑡 = {𝑃 = 𝑖𝑛𝑖𝑡, 𝑝𝑙𝑜𝑐𝑥 = 0, 𝑝𝑙𝑜𝑐𝑦 = 0}

 𝐶𝑜𝑛𝑑𝐸 ∶
 (𝑃 = 𝑖𝑛𝑖𝑡, 𝑖𝑛ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 0)

 (𝑃 = 𝑖𝑛𝑖𝑡, 𝑖𝑛ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 90)

 𝑇𝑟𝑎𝑛𝑠𝐸 ∶
 (𝑃 = 𝑖𝑛𝑖𝑡, 𝑖𝑛ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 0) → (𝑃 = 𝑝𝑥, 𝑝𝑙𝑜𝑐𝑥 = 𝑖𝑛𝑐𝑙𝑜𝑐𝑥)

 (𝑃 = 𝑖𝑛𝑖𝑡, 𝑖𝑛ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 90) → (𝑃 = 𝑝𝑦, 𝑝𝑙𝑜𝑐𝑦 = 𝑖𝑛𝑐𝑙𝑜𝑐𝑦)

 𝐶𝑜𝑛𝑑𝑆 ∶
 (𝑃 = 𝑝𝑥)

 (𝑃 = 𝑝𝑦)

 𝑇𝑟𝑎𝑛𝑠𝑆 ∶
 (𝑃 = 𝑝𝑥) → (𝑃 = 𝑖𝑛𝑖𝑡)

 (𝑃 = 𝑝𝑦) → (𝑃 = 𝑖𝑛𝑖𝑡)

 𝑂𝑢𝑡𝑆 ∶
 (𝑃 = 𝑝𝑥) → (𝑙𝑜𝑐𝑥 = 𝑝𝑙𝑜𝑐𝑥 + 𝑖𝑛𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚)

 (𝑃 = 𝑝𝑦) → (𝑙𝑜𝑐𝑦 = 𝑝𝑙𝑜𝑐𝑦 + 𝑖𝑛𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚)

 𝑅𝑎𝑡𝑒 ∶

 (𝑃 = {𝑖𝑛𝑖𝑡, 𝑝𝑥, 𝑝𝑦}) → (𝑝𝑙𝑜𝑐𝑥̇ = 0 ∧ plocẏ = 0)

5 Conclusion & Future Work

Hybrid system is a dynamical system whose behavior is a combination of continuous and discrete dynamics.

Many approaches to modeling and analyzing hybrid system have been proposed. ECML is an extension of basic

formalism DEV&DESS, proposed by ETRI. This paper introduced ECML with formalism, modeling and

simulation environment, EcoPOD and EcoSIM. The dependable CPS software development environment,

EcoSuite supports HILS using ECML. The vehicle control system example shows that the introduced formalism

can specify ECML model. Our previous work applied formal verification to verify ECML model. We will make

a paper about formal verification with SpaceEx. The paper will describe translation rule from ECML model to

SpaceEx model, supporting tool and case study.

References

[1] P. J. Antsaklis, J. A. Stiver and M. D. Lemmon, "Interface and controller design for hybrid control

systems," Hybrid Systems II, LNCS, vol. 999, pp. 462-492, 1995.

[2] R. Alur and D. L. Dill, "A theory of timed autoata," Theoretical computer science, vol. 126, no. 2, pp. 183-

235, 1994.

[3] R. Alur, C. Courcobetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S.

Yovine, "The algorithmic analysis of hybrid systems," Theoretical Computer Science, vol. 138, no. 1, pp. 3-

34, 1995.

[4] R. Alur, T. A. Henzinger and P. H. Ho, "Automatic symbolic verificiation of embedded systems," IEEE

Transactions on Software Engineering, vol. 22, no. 3, pp. 181-201, 1996.

[5] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, I. L. Vijay Kumar, P. Mishra, G. J. Pappas and O.

Sokolsky, "Hierarchical modeling and analysis of embedded systems," Proceedings of the IEEE, vol. 91,

no. 1, pp. 11-28, 2003.

[6] B. P. Zeigler, H. Praehofer and T. G. Kim, Theory of modeling and simulation, Academic Press, 2000.

[7] J. M. Kim, H. Y. Lee and I. G. Chun, "Hybrid modeling and simulation for verifying cyber-physical

systems," Proceedings of 2011 International Symposium on Embedded Technology (ISET 2011), 2011.

[8] H. Y. Lee, I. Chun and W. -T. Kim, "DVML: DEVS-based visual modeling language for hybrid systems,"

In Proceedings of Control and Automation, and Energy System Engineering - International Conference,

2011.

[9] S. Yoon., I. -G. Chun, W. -T. Kim, J. Jo and J. Yoo, "An etri cps modeling language for specifying hybrid

systems," Journal of KIISE (in Korean), vol. 42, no. 7, pp. 823-833, 2014.

[10] J. -H. Jeon, I. -G. Chun, W. -T. Kim and S. -M. Park, "Design and method in modeling of cyber-phsical

systems," In Proceedings of JCICT & The first Yellow Sea International Conference on Ubiquitous

Computing (YES-ICUC) 2011, 2011.

[11] J. Jeon, I. Chun and W. Kim, "Metamodel-based CPS modeling tool," Embedded and Multimedia

Computing Technology and Service (LNCS), no. 181, pp. 285-291, 2012.

[12] E. -I. Kim, M. -J. Park, I. -G. Chun, W. -T. Kim and S. -M. Park, "Reliability support framework for cyber

physical systems," Proceedings of 2011 International Symposium on Embedded Technology (ISET 2011),

pp. 1-5, 2011.

[13] J. -Y. Kim, D. -N. Choi, H. -J. Kim, J. -M. Kim and W. -T. Kim, "Abstracted CPS model: a model for

interworking between physical system and simulator for CPS simulation," Proceedings of the 2012

Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium (TMS/DEVS

2012), 2012.

[14] W. -T. Kim, I. -G. Chun, S. Lee and J. Park, "A large-scale autonomous CPS software platform (in

Korean)," Communications of the Korean Institute of Information Scientists and Engineers, vol. 12, no. 31,

pp. 16-28, 2013.

[15] M. -J. Kim, S. Kang, I. -G. Chun and W. -T. Kim, "A research on effective cyber-physical systems tests

using EcoHILS (in Korean)," IEMEK Journal of Embedded Systems and Applications, vol. 4, no. 9, pp.

211-217, 2014.

[16] S. Lee, J. Kim, W. T. Kim and J. Ryou, "Communication entities discovery in complex CPS system,"

Control and Automation, and Energy System Engineering, no. 256, pp. 213-219, 2011.

[17] H. Choi, S. Cha, J. Jo, J. Yoo, H. Y. Lee and W. -T. Kim, "Formal verification of DEV&DESS formalism

using symbolic model checker HyTech," Control and Automation, and Energy System Engineering, pp.

112-121, 2011.

[18] H. Choi, S. Cha, J. Jo, J. Yoo, H. Y. Lee and W. -T. Kim, "Formal verification of basic DEV&DESS

formalism using Hytech," Information-An international interdisciplinary journal, vol. 16, no. 1 B, pp. 821-

826, 2013.

[19] T. A. Henzinger, P. -H. Ho and H. Wong-Toi, "HyTech: a model checker for hybrid systems," Software

Tools for Technology Transfer, vol. 1, no. 1-2, pp. 110-122, 1997.

[20] J. Jo, J. Yoo, H. Choi, S. Cha, H. Y. Lee and W. -T. Kim, "Translation from ECML to linear hybrid

automata," Embedded and Multimedia Computing Technology and Service, pp. 293-300, 2012.

[21] J. Jo, "A systematic verification of ECML model using HyTech," Master's thesis, Department of Computer

& Information Communication Engineering, Konkuk University, 2013.

[22] S. Yoon, J. Jo, I. -G. Chun and J. Yoo, "Verification and analysis of ECML model using HyTech (in

Korean)," In Proceeding of Korea Computer Software Engineering 2014 (KCSE 2014), pp. 2-10, 2014.

[23] G. Frehse, L. G. Colas, D. Alexandre, C. Scott, R. Rajarshi, L. Olivier, R. Rodolfo, G. Antoine, D. Thao

and M. Oded, "SpaceEx: Scalable verification of hybrid systems," Computer Aided Verification, pp. 379-

395, 2011.

[24] J. Jo, S. Yoon, J. Yoo, H. Lee and W. Kim, "Case Study: Verification of ECML model using SpaceEx,"

Proceedings of Korea-Japan Joint Workshop on ICT, 2012.

[25] J. Jo, I. Chun and W. Kim, "EcoVerifier: Tool support for formal verification of ECML using SpaceEx,"

Proceedings of 2014 International Symposium on Embedded Technology (ISET 2014), pp. 104-105, 2014.

[26] H. S. Son, W. Y. Kim, R. Y. Kim and H. -G. Min, "Metamodel design for model transformation from

Simulink to ECML in cyber physical systems," Computer Applications for Graphics, Grid Computing, and

Industrial Environment, no. 351, pp. 56-60, 2012.

[27] H. Y. Lee, S. -M. Park and T. H. Cho, "Simulation modeling of SAM fuzzy logic controllers," IEICE

Transactions on Information and Systems, vol. 7, no. E93-D, pp. 1984-1986, 2010.

[28] H. Y. Lee, I. Chun and W. -T. Kim, "DEV&DESS-based cyber-physical systems modeling language with

uncrtainty consideration," Proceedings of the 2013 Spring Simulation Multiconference Poster Session,

2013.

