An ETRI CPS Modeling Language for
Hybrid System Simulation

Sanghyun Yoon

Konkuk University

TR-DS-2015-01

November 25, 2015

Konkuk University
Department of Computer Science and Engineering

Dependable Software Labortory

An ETRI CPS Modeling Language for
Hybrid System Simulation

Sanghyun Yoon

Konkuk University

Abstract

This article describes ECML (ETRI CPS Modeling Language), a modeling langue for hybrid system simulation. ECML
extends DEV&DESS (Discrete Event and Differential Equation System Specification), with conveniences in modeling and
simulation. Modeling environment EcoPOD (ETRI CPS Open Developer) and visual simulator EcoSIM (ETRI CPS
Simulator) support visual modeling and simulation. We introduce modeling and simulation environment of ECML, and also
formal definition. The case study specifies a simple vehicle system with the formal definition.

Introduction

Hybrid system [1] is a dynamical system whose behavior is a combination of continuous and discrete dynamics.
The discrete part usually models modes of system operations, while the continuous part does physical
interactions with environments. Many approaches to modeling and analyzing hybrid system have been proposed.
Timed automata [2], (linear) hybrid automata [3] [4], CHARON [5] and ECML are the examples of the
modeling methods.

ECML (ETRI CPS Modeling Language) is an extension of the basic formalism DEV&DESS [6] with various
conveniences in modeling and simulation [7] [8], recently proposed by ETRI (Electronics and
Telecommunication Research Institute) in Korea. A modeling and simulation environment, EcoPOD (ETRI CPS
Open Developer) and EcoSIM (ETRI CPS Simulator) supports ECML.

This paper introduces a formal definition for ECML and overviews modeling and simulation environment of
ECML. The formal definition was proposed in [9] in Korean and various researches describes modeling and
simulation environment. An ECML model is composed structural model and behavioral model. ECML model
communicates with environment model. When conducting simulation, a specified ECML model is translated
into C++ programming codes, and environment model generates input scenario for ECML model and calculates
outputs of ECML model. The translated model and scenario are executed and visualized.

This paper is organized as follows. Section 2 overviews related work about modeling and simulation
environment of ECML. It also includes our previous work verifying ECML model with formal verification.
Section 3 introduces ECML and formal definition of ECML. Section 4 shows an example with a vehicle control
system. The system is specified with formal definition which introduced in Section 3. We conclude the paper in
Section 5.

Related Work

An ECML is modeled in CPS (Cyber-Physical System) domain modeler, ‘EcoPOD’ [10] [11]. The model is
loaded by hybrid simulation environment, ‘EcoSIM.” EcoSIM translates the model into simulation program, and
then executes and control the program based on scenario. The simulation result is visualized by 3D visualizer
[12] as shown in <Figure 1>. Relation of model, simulation and physical system is described in [13].

Figure 1 ECML modeling and simulation environment

Including the ECML modeling and simulation environment, a dependable CPS software development
environment ‘EcoSuite’ was proposed. EcoSuite [14] is includes EcoPOD, EcoSIM, EcoView, EcoHILS and
EcoAce. EcoView visualizes simulation result, and EcoHILS [15] supports HILS (Hardware in the Loop
Simulation) using hardware EcoAce. They are connected with real time control middleware EDDS [16].

Favigate Search HisPropeny Run Wik Help
- & A A R e X 100% - BQ
£ (& Reurce (L7055)
1 CP% Exploner 1 Doman Mode Libeary = O] L) Quadt Controbier ThaustController co T State Variskle Bounds 10 wirk sbovioral Modelt cpv @ Quadtt | G~ O]9 €S 3D Model List 11 =8
2= y Supphr ‘ThrustControlier. ThustContrall e =
haieges Pt oo
ThiustContrcl ThrutCertrol2 . Chabiages Farat - aloene
CrssingThnas Houinatp
o e | || o |
_ | | |
L e pe—— F
TGl TusContst . S —
Weretty 2 » | ey « Mrimuroch o S oS
J) 0 BADRGCList TMovement == © A |
. - W w e
Thnustconrelise Treuscormols pleft MU TolM DiMoveman « 0] f [BT
fesrgmieust | —
- Jrn—- e *® 3
s ° 2030 &0 fwEngniiust
7 Sotve List| 7 Solver Mol List 27 i eendngThrust J = w s far—
ﬂ 5 Thsconioler veloey et oG <51 1
o @
e
MiEaDe Clsisohar] ClaiSoed Clsisohe
g -

Q ﬁ Q ﬁ e Voo TL Movos
ClmsSohmt Clsbohars ClasSoht ClsScl ot s
pu r L

ap || ot | at | an| - g v ¥)

1 scovewconnecton =n : 2 X : P —
name type 5 Progress |4, Srategy Table i Policy Table| 4 CPS Properties T eachable Siates =2 | 3E Outine =B
cusogie e sue [T B ——
| Mesursdlocabon Hesdngheciotso) worigip 10-15 o012 -0 2030 o040
ncomegooines Upecr 3D Crusngreu: 1s 115 w02 o0 P
' acoslraton onte Mvingsatizm 12 2234 10-20 30-40 0-40
NearaFoelaton e [Py 13 2.2 e e o0
et 1 2-u 10-30 210 050

Figure 2 An example of ECML formal verification result (in EcoPOD)

Our previous researches applied formal verification to verify ECML model. [17] and [18] verified DEV&DESS
model which is basic formalism of ECML with HyTech [19]. [20] translated ECML into linear hybrid automata,
and [21] and [22] verified translated linear hybrid automata with HyTech. We also performed a case study with
SpaceEx [23] to verify ECML model [24], and then ECML model to SpaceEx model translator and formal
verification interface are imported in EcoPOD [25] as shown in <Figure 2>.

There are some approaches which use ECML in various ways. For example, [26] translated Simulink model into
ECML, and an approach implementing simulation models for SAM fuzzy controllers without the use of external
components is represented in [27].

ECML

3.1 Variables

ECML models three different rate types of variables: discrete event, discrete value and continuous value,
specifically. The three typed variables have different behavior of value each other. When an event is occur,
discrete event type variable is assigned a value and reset to zero. Discrete value type variable’s value is held
until next assignment is occurred. The value of continuous value type variable is changing continuously, and the
rate defines rate of change of the value at a phase.

Variables in ECML also have port types and various data types. ECML has three port types such as input (X),
output (Y) and state (S¢,S?). An ECML BM gets data from connected model with input variable, changes
internal states with state variable, and sends data with output variable. Data types determine the possible values
for the type variable. Integer, Double, Boolean and String are the examples and ECML supports also user-
defined data type. Modeling environment ‘EcoPOD’ and visual simulator ‘EcoSIM’ support visual modeling and
simulation [28], as illustrated in <Figure 3>.

file Edit Novigate Search Project HilsProperty Bun Window Help
3 @)100% v& Qv v i v v

[8.2 CPS | & Resource

——
[D] outUp : Vector3D = VectdfaD(0.0, 1.0, 0.0)

. CPS. Do.. |~ O &k CPSvehicle2 &) =0
. A ik Palette
% CPSVehicle2 A &
@ Environment o
Domain Obje ~+ Couplin
CPSVehicle CSMCPSVehicle2 o
Diagrar & Fault Model
7 3D = Vectord - vecte
Rl (D] MRPosiion tzmonn Vector3D(0.0, 0.0, 00) [D] out_enemy_e - Vector3D - Vector3D(0.0, 0.0, 0.0) ™ Eault Monitor
& cpsv 1O MRINCINE VeI 30 = VectoraD(0. 0, 0.0, 0.0)
ap - Mapinfo = Mapinf5 " + CBNEngager & Sub Model
= Resourc:, 1o - Mapinfo = Mapindo(0.0, 0.0[0 §j2e-aeinfo = Mapinfol) ~ s MapReceiver / ent @ structural
< " (D) out_enesr spot - in{ =10 Model
Children
C &s5. @s. = Dl outincine foat T T Theignt : foat /-\rl (D] alive : float = 100.0 sl
Ground 2 | D] out_alive float = 100.0 D} missie - String Model
Children
‘ /q [D}in_egerhy_c JVectof2D = VectoraD(0.0, 0.0, 0.0) -rn/ [Al cannon_angle float & port
=00 5
\ / P /ém FTTRETS o] witesss] b CBIETC w (D] turret_angle : float input Port
MP; haller 2
BMP2 Challenger [Dlin_enemy_soef- tif—7 i so0 T 0] missie_angle_e fia Output Port
‘ r“/[mmf:uv External M.
’ + CBNFontrol & CBNPYnamics [Outincine| Vector2D = Vector3D(0.0, 00, 0.0) Sl Simulink
| IDpnOuter sy TOTPower TBRR@Ang figpt = 0.0
Pantsyr-S1 Valentine [D] IncomingOrder - String J gy—" [D] Heading - Vector3D = Ve,
o VeclerSU'= Vector3D(@, 0.0, 0.0) [D]d_heading : float = 0.0
& - VectoraD = Vector3D(0.0, (1000} -
‘ [Cl speed| float = 0.0
‘ ctordD = VectoraD(0.0, L{ 00) D] velocity - float
AV Nvalkii |
[D) OutOrder : String = "Standby”
=0 TR [D)in_speed - fioat = D) outjocatioh - Vedtor3D = Vector3D(0.0, 0.0, 0.0)
E) D] Posttion : VectordD = Vec

Structural Model A

[D] HeightMap : M

[D] IncomingOrder v I \ L [D] Up : Vector3D = Vector3
< > 7
D] order - String v
< >
I Properties = Progress 4 Fault Table 4 Strategy Table . Policy Table .+ CPS Properties T Reachable States i2 | TJ Goal Table ™ RTI Connection| [BuildScript a

Figure 3 The modeling and simulation tool for ECML ("EcoPOD" and 'EcoSIM")

3.2 Structural Model & Behavioral Model

An ECML model is structured with a set of basic components, hierarchically. A basic component is modeled
with BM (Behavioral Model), while their composition is modeled with SM (Structured Model). <Figure 3>
shows an example model in ‘EcoPOD.” CBM (CPS Behavioral Model) are BMs and CSM (CPS Structured
Model) are SM. They communicate each other with connected input and output ports. The BM is defined as
follows:

BM = (X, Y, S, Init, Cond?, Trans®, Trans’, COnd®, Rate, Out®, Out®, Out®, Out®)

® X =2X¢xXPxXF isthe set of inputs, where,
B XC={(xf, xS,)xf e XE,x§ € XS, ...} is the structured set of continuous value inputs with
input variables xf
B XD ={(xP,xD, .)|xP e XP,xD € X2, ..} is the structured set of discrete value inputs with
input variables
B XF isthe set of discrete event inputs
® V=Y xYPxVYE isthe set of outputs, where,
B YC={(f,y5, D)Iyf e YE,ys e YF, ..} is the structured set of continuous value outputs with
output variables yf
B YD ={&P,yP, .)yP e YL,y €YD, ..} is the structured set of discrete value outputs with
output variables y?
B YZ isthe set of discrete event outputs
® S=pPxSPxSC is set of states; the Cartesian product of phases P, discrete states S° and
continuous states S¢
® [nit =S, X X, X Y, is the initial condition set to define initial states and initial values of inputs and
outputs
® (Condf:S xX - Bool is the external event transition condition function for conditioning the
execution of the external events
® Transf: Sx X — S isthe external event transition function
Out? : S x X - Y is the output function for external event transitions
CondS : S x X¢ x XP > Bool is the state transition condition function for conditioning the execution
of the internal state events
Transs : S x X¢ x XP - S is the internal state transition function
Out’ : § x X¢ x XP > Y is the output function for internal state transitions
Rate : S X X¢ x XP — S€ is the rate of change function
Out® : S x X¢ x XP - Y€ is the continuous value output function
OutP : P x S? x XP - YP s the discrete output function

A BM corresponds to an atomic DEV&DESS model. The semantics of an ECML BM are described as follows:

1. Intervals (t;,t,) with no events: Only the continuous states S¢ change. The continuous states at
the end of the interval are computed form the state at the beginning plus the integral of the rate of
change function Rate(s(t),xc(t), xP (t))(t = (t4,t,)) along the interval. The continuous behavior
of the model is specified by Rate(s(t),xc(t),xD(t)) and the continuous value output function
Out®(s(t),x(t),x2(t)), while the discrete value output is generated by the discrete value output
function Out? (p(t), sP(t), xP (t)).

2. An internal state event occurs first at time t in interval (t,,t,): The continuous states at the time
of the transition are computed from the state at the beginning plus the integral of the rate of change
function Rate(s(¢),x¢(¢"),xP(t))(t' = (t;,t]) along the interval until time ¢. Likewise, the
hybrid output is generated until time t¢. At time t, the state transition condition function

Cond’(s(t),xC(t), xP(t)) evaluates to true. That is, an internal state event occurs. Here, the internal
state transition function Trans®(s(t),x¢(t),xP(t)) is executed to define a new state. The output
function for internal state transitions Out®(s(t), x¢, xP(t)) is called to generated an output at time t¢.
3. An external discrete event occurs first at time t in interval (tq,t,): The continuous states at the
time of the transition are computed from the state at the beginning plus the integral of the rate of
change function Rate(s(t"),xC(t"),xP(t))(t' = (t;, t]) along the interval until time t. Likewise,
the continuous output is generated until time t. At time ¢, the external event transition condition
function Cond®(s(t),x(t)) evaluates to true. That is, the external event transition occurs. Here, the
external event transition function Trans®(s(t), x(t)) is executed to define a new state. The output
function for external event transitions Out® (s(t), x(t)) is called to generate an output at time ¢.

A SM of ECML corresponds to a coupled DEV&DESS model. A structured model contains basic models BMs,
coupled each other with connecting ports describing flow of data typed of discrete, continuous and event. ‘CSM
CPSVehicle2’ in <Figure 3> is an example of ECML SM.

An Example: Vehicle Control System

This section models a “vehicle control system” with ECML. In actual vehicle control system, the vehicle moves
along Euclidean shortest path in R? space. It receives current position, destination position, obstacle positon
and the other information from environment. On the other hand, our case study approximates actual model,
since the purpose is showing examples which are specified the introduced formal definition. There are no
obstacles, and vehicle moves along east and north directions in case study model.

CSMehicle

[D] order - int —fBtirorder—mt+ | ® CBNFontrol ector dnuble
ector : dol \Thrustcontroller
[A] destx : double| " —TATindestx - double [A \] inxheadin \? CB [C] heading : int
. A] clocx - double
[A] desty - double| _aTingesTy doubt & [A] inyheading ~touble
[A] inlocx - double locy : double

[A]inlocy : doubl
[+ CBNEngine
[D] inmoving : int

Figure 4 An ECML SM for simplified ‘vehicle control system’

outMomentum : double
[A] locx : double

[A] inllomentum *Haubl¢C ByiVehicleEnv

— [A] outlocx - double
locy - double

[D] inheading : int
S [A] outlocy - double

[A]inclocx : double
A] inclocy - double

<Figure 4> shows an SM Vehicle for ‘vehicle control system.” Vehicle control system is structured with
subsystems such as ‘Control,” ‘Thruscontroller,” ‘Engine’ and ‘VehicleEnv.” It has three inputs and two outputs.
destx and desty are inputs which set destination position of vehicle. When order is true, it changes current
position of vehicle from initial position (0,0) to the destination position, and current position of vehicle is
outputted through outlocx and outlocy.

CBMControl

Variable
+| <Discrete Variable= [A] xvector : double

+| =Continuous Variable>

standby
[D] inorder - int ﬂ [A] yvector - double
[A] indestx : double
[ATindesty : double move [inorder>=1] / ismoving=1 [A] clocx : double

standby [inorderk=0] / ismoving=0

[A] inlocx : double moving 1Al clocy - double

ﬂ xvector = indestx-inlocx

. ector = indesty-inloc
[A] inlocy © double; :rocx - inlocx ty v [D] ismoving : int

clocy = inlocy

Figure 5 An ECML BM 'Control*

BM Control is described in <Figure 5>. It receives order (inorder), destination position (indestx, indesty) and
current position (inlocx, inlocy). Initial state of BM Control is standby phase. If ‘inorder>=1, it transits to
moving phase, and then it calculates distance from current position to destination position. The distance is
outputted through xvector and yvector ports. Current position is passed to other subsystem through clocx and
clocy, and order is done through ismoving. Formal definition of BM.,, for the subsystem Control is as follows:

BMc¢on = (X,Y,S, Init, Trans®, Cond®, Out®, Out®)

where,

® XD ={inorder, indestx, indesty, inlocx, inlocy | inorder = order, indestx = destx,
indesty = desty, inlocx = locx, inlocy = locy}
Y¢ = {xvector, yvector, clocx, clocy | {xvector, yvector, clocx, cloccy} € R}
Y? = {ismoving | ismoving € {0,1}}
P = {standby, moving}
Init = {P = standby}
Cond?® :
B (P = standby,inorder = 1)
B (P = moving,inorder < 0)
® Transf:

B (P = standby, inorder = 1) - (P = moving)

B (P = moving,inorder < 0) - (P = stanby)
® Outf:

B (P = standby,inorder = 1) - (ismoving = 1)

B (P = moving, inorder < 0) - (ismoving = 0)
® Out’:

B (P =moving) —

(xvector = indestx — inlocx A yvector = indesty — inlocy A clocx = inlocx A clocy = inlocy)

CBM hrustcontroller

Variable
+| <Discrete Variable>
+| <Continuous Variable>

[A] inxheading : double [D] heading : int

/ heaci'lng:[}

east talorth [inxheading<=0]/ heading=90 north

* L

tokast [inyheadiag<=8-T/ heading=0

Figure 6 An ECML BM "Thrustcontroller’

[A] inyheading : double

Subsystem Thrustcontroller sets direction (i.e., heading) of vehicle. <Figure 6> shows ECML BMy. for a
subsystem Thrustcontroller. inxheading and inyheading are variables which describe distance between current
position and destination position. Vehicle of our case study has two heading, hence it has two phases. Initial
phase is east, and it moves in the right direction (i.e., heading=0). When the vehicle arrives to x-axis of
destination (i.e., inxheading<=0), it transit to north phase, and it moves in the up direction. Formal definition of
the ECML BMjy for the subsystem Thrustcontroller is as follows:

BMy; =(X,Y,S, Init, Trans®, CondE, Out®)
where,
® X = {inxheading, inyheading | inxheading = xvector, inyheading = yvector}
Y¢ = {heading | heading € {0,90}}
P = {east,north}
Init = {P = east, heading = 0}
Cond?® :
B (P = east,inxheading < 0)
B (P =north,inyheading < 0)
® Transt:
B (P = east, inxheading < 0) —» (P = north)
B (P = north,inyheading < 0) —» (P = east)
® Outf:
B (P = east, inxheading < 0) = (heading = 90)
B (P = north,inyheading < 0) = (heading = 0)

CBMENgine
Variable
<Discrete Variable>

+| <Continuous Variable>
B [A] Momentum : double = 0.0

/ Mom%rn#)
standby

& d{Momentum) = 0
outMomentum = Momentum

standby [Momfntum<:0 1/

[D] inmoving : int

stopping
S d(Momentum) = -1
outMomentum = Momentum

Figure 7 An ECML BM 'Engine’

acceleratin,

go [inmoving>=1]/ g
" d(Momentum) = 1

outhomentum = Momentum

maintain [Momrntum>:15 1/

maintaining
d(Momentum) = 0
outMomentum = Momentum

stop [inmoving<=0]
| *

[A] outtMomentum : double

<Figure 7> shows ECML BMg,, for a subsystem Engine. The model has an input and an output. inmoving is
an order sent from BM,,. If ‘inmoving = 1’ in phase standby, it transits to accelerating. Momentum is a
continuous state representing momentum of engine. In accelerating phase, the value of Momentum is increased
by ‘d(Momentum)=1." When Momentum reaches to own maximum value 15, it transits to maintaining, and
maintains the Momentum. If ‘inmoving<O0,” it transits to stopping and reduces Momentum. The value of
Momentum is outputted through outMomentum port in every phase in BMp,,,. Formal definition of the ECML
BMpg,, for the subsystem Engine is as follows:

where,

BMgyg = (X,Y,S, Init, Trans®, Cond®, TransS, Cond’, Out®, Rate)

XP = {inmoving | inmoving = ismoving}

Y¢ = {outMomentum | outMomentum € R}

P = {standby, accelerating, maintaining, stopping}

S¢ = {Momentum € R}

Init = {P = standby, Momentum = 0}

CondE :

B (P = standby, inmoving > 1)

B (P = maintaining, inmoving < 0)

Transt :

B (P = standby, inmoving = 1) —» (P = accelerating)
B (P = maintaining, inmoving < 0) - (P = stopping)
Cond" :

B (P = accelerating, Momentum = 15)

B (P = stopping, Momenmtum < 0)

TransS :

B (P = accelerating, Momentum = 15) - (P = maintaining)
B (P = stopping, Momenmtum < 0) - (P = standby)
Out® :

B (P = {standby, accelerating, maintaining, stopping}) - (outMomentum = Momentum)
Rate :

B (P = {standby, maintaining}) —» (Momentum = 0)
B (P = accelerating) » (Momentum = 1)

B (P = stopping) » (Momentum = —1)

[A] inMomentum : double

[DO] inheading : int

[A]inclocx : double

CBM/ehicleEnv

+| =Continuous Variable>
B [A] plocx - double = 0.0 X
& [A] plocy : double = 0.0 init [A] locx - double

ﬂ d(plocx) = 0
d(plocy) =0

Variable
%] <Discrete Variable> /Ploc’(:%Pk’CY:U

pytoinit [true==true]/ logy=plocy+in [Allocy : dauble

pxtoinit [trug==true locx=plocx+inMomentum

py [inhepding==90/"] / plocy=inclocy

px [inheading==(]/ plock=inclocx

[A]inclocy - double Ry px

ﬂ d(plocx) = 0 ﬂ d(plocx) =0
d(plocy) =0 d(plocy)=0

Figure 8 An ECML BM "VehicleEnv'

The subsystem VehicleEnv models change of vehicle’s current position. <Figure 8> is ECML BMg,, for the
subsystem. Initial phase is init, and it transits to px or py phase according to heading value which is sent from
BMy (i.e.inheading). ‘inheading==90’ represents vehicle is moving in the right direction, so horizontal value
of current position is increased by engine momentum. Otherwise, when ‘inheading==0,” vehicle is moving in
up the direction, hence vertical value of current position is increased. Formal definition of the BMg,,, for the
subsystem VehicleEnv is as follows:

BMyr = (X,Y,S, Init,Trans®, Cond®, Trans®, Cond®, Out’, Rate)

where,
® X¢ = {inMomentum, inclocx, inclocy | inMomentum = outMomentum, inclocx = clocx, inclocy =
clocy}
® XP = {inheading | inheading = heading}
® Y¢ ={locx,locy | {locx, locy} € R}
® P = {init,px,py}
® 5S¢ ={plocx,plocy | {plocx, plocy} € R}
® [nit = {P = init,plocx = 0,plocy = 0}
® (Condf:

B (P = init,inheading = 0)
B (P = init,inheading = 90)
® Transt:
B (P = init,inheading = 0) - (P = px, plocx = inclocx)
B (P = init,inheading = 90) -» (P = py, plocy = inclocy)

® (ondS:
B (P=px)
B (P=py)
® TransS:

B (P =px)— (P =init)
B (P =py) - (P =init)
® Outs:
B (P =px) - (locx = plocx + inMomentum)
B (P =py) - (locy = plocy + inMomentum)
® Rate:
B (P = {init,px,py}) = (plocx = 0 A plocy = 0)

Conclusion & Future Work

Hybrid system is a dynamical system whose behavior is a combination of continuous and discrete dynamics.
Many approaches to modeling and analyzing hybrid system have been proposed. ECML is an extension of basic
formalism DEV&DESS, proposed by ETRI. This paper introduced ECML with formalism, modeling and
simulation environment, ECOPOD and EcoSIM. The dependable CPS software development environment,
EcoSuite supports HILS using ECML. The vehicle control system example shows that the introduced formalism
can specify ECML model. Our previous work applied formal verification to verify ECML model. We will make
a paper about formal verification with SpaceEx. The paper will describe translation rule from ECML model to
SpaceEx model, supporting tool and case study.

References

[1] P. J. Antsaklis, J. A. Stiver and M. D. Lemmon, "Interface and controller design for hybrid control
systems,"” Hybrid Systems I, LNCS, vol. 999, pp. 462-492, 1995.

[2] R. Alur and D. L. Dill, "Atheory of timed autoata," Theoretical computer science, vol. 126, no. 2, pp. 183-
235, 1994.

[3] R. Alur, C. Courcobetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis and S.
Yovine, "The algorithmic analysis of hybrid systems," Theoretical Computer Science, vol. 138, no. 1, pp. 3-
34, 1995.

[4] R. Alur, T. A. Henzinger and P. H. Ho, "Automatic symbolic verificiation of embedded systems,” IEEE
Transactions on Software Engineering, vol. 22, no. 3, pp. 181-201, 1996.

[5] R. Alur, T. Dang, J. Esposito, Y. Hur, F. lvanéi¢, 1. L. Vijay Kumar, P. Mishra, G. J. Pappas and O.
Sokolsky, "Hierarchical modeling and analysis of embedded systems," Proceedings of the IEEE, vol. 91,
no. 1, pp. 11-28, 2003.

[6] B.P. Zeigler, H. Praehofer and T. G. Kim, Theory of modeling and simulation, Academic Press, 2000.

[7] J. M. Kim, H. Y. Lee and I. G. Chun, "Hybrid modeling and simulation for verifying cyber-physical
systems," Proceedings of 2011 International Symposium on Embedded Technology (ISET 2011), 2011.

[8] H.Y. Lee, I. Chun and W. -T. Kim, "DVML: DEVS-based visual modeling language for hybrid systems,"
In Proceedings of Control and Automation, and Energy System Engineering - International Conference,
2011.

[9] S. Yoon., I. -G. Chun, W. -T. Kim, J. Jo and J. Yoo, "An etri cps modeling language for specifying hybrid
systems," Journal of KIISE (in Korean), vol. 42, no. 7, pp. 823-833, 2014.

[10] J. -H. Jeon, I. -G. Chun, W. -T. Kim and S. -M. Park, "Design and method in modeling of cyber-phsical
systems,” In Proceedings of JCICT & The first Yellow Sea International Conference on Ubiquitous
Computing (YES-ICUC) 2011, 2011.

[11] J. Jeon, I. Chun and W. Kim, "Metamodel-based CPS modeling tool,” Embedded and Multimedia
Computing Technology and Service (LNCS), no. 181, pp. 285-291, 2012.

[12] E. -I. Kim, M. -J. Park, I. -G. Chun, W. -T. Kim and S. -M. Park, "Reliability support framework for cyber
physical systems," Proceedings of 2011 International Symposium on Embedded Technology (ISET 2011),
pp. 1-5, 2011.

[13] J. -Y. Kim, D. -N. Choi, H. -J. Kim, J. -M. Kim and W. -T. Kim, "Abstracted CPS model: a model for
interworking between physical system and simulator for CPS simulation,"” Proceedings of the 2012
Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium (TMS/DEVS
2012), 2012.

[14] W. -T. Kim, I. -G. Chun, S. Lee and J. Park, "A large-scale autonomous CPS software platform (in
Korean)," Communications of the Korean Institute of Information Scientists and Engineers, vol. 12, no. 31,
pp. 16-28, 2013.

[15] M. -J. Kim, S. Kang, I. -G. Chun and W. -T. Kim, "A research on effective cyber-physical systems tests
using EcoHILS (in Korean)," IEMEK Journal of Embedded Systems and Applications, vol. 4, no. 9, pp.
211-217, 2014,

[16] S. Lee, J. Kim, W. T. Kim and J. Ryou, "Communication entities discovery in complex CPS system,"
Control and Automation, and Energy System Engineering, no. 256, pp. 213-219, 2011.

[17] H. Choi, S. Cha, J. Jo, J. Yoo, H. Y. Lee and W. -T. Kim, "Formal verification of DEV&DESS formalism
using symbolic model checker HyTech," Control and Automation, and Energy System Engineering, pp.
112-121, 2011.

[18] H. Choi, S. Cha, J. Jo, J. Yoo, H. Y. Lee and W. -T. Kim, "Formal verification of basic DEV&DESS
formalism using Hytech," Information-An international interdisciplinary journal, vol. 16, no. 1 B, pp. 821-
826, 2013.

[19] T. A. Henzinger, P. -H. Ho and H. Wong-Toi, "HyTech: a model checker for hybrid systems,” Software
Tools for Technology Transfer, vol. 1, no. 1-2, pp. 110-122, 1997.

[20] J. Jo, J. Yoo, H. Choi, S. Cha, H. Y. Lee and W. -T. Kim, "Translation from ECML to linear hybrid
automata," Embedded and Multimedia Computing Technology and Service, pp. 293-300, 2012.

[21] J. Jo, "A systematic verification of ECML model using HyTech," Master's thesis, Department of Computer
& Information Communication Engineering, Konkuk University, 2013.

[22] S. Yoon, J. Jo, I. -G. Chun and J. Yoo, "Verification and analysis of ECML model using HyTech (in
Korean)," In Proceeding of Korea Computer Software Engineering 2014 (KCSE 2014), pp. 2-10, 2014.

[23] G. Frehse, L. G. Colas, D. Alexandre, C. Scott, R. Rajarshi, L. Olivier, R. Rodolfo, G. Antoine, D. Thao
and M. Oded, "SpaceEx: Scalable verification of hybrid systems," Computer Aided Verification, pp. 379-
395, 2011.

[24] J. Jo, S. Yoon, J. Yoo, H. Lee and W. Kim, "Case Study: Verification of ECML model using SpaceEx,"
Proceedings of Korea-Japan Joint Workshop on ICT, 2012.

[25] J. Jo, I. Chun and W. Kim, "EcoVerifier: Tool support for formal verification of ECML using SpaceEx,"
Proceedings of 2014 International Symposium on Embedded Technology (ISET 2014), pp. 104-105, 2014.

[26] H. S. Son, W. Y. Kim, R. Y. Kim and H. -G. Min, "Metamodel design for model transformation from
Simulink to ECML in cyber physical systems," Computer Applications for Graphics, Grid Computing, and
Industrial Environment, no. 351, pp. 56-60, 2012.

[27] H. Y. Lee, S. -M. Park and T. H. Cho, "Simulation modeling of SAM fuzzy logic controllers,” IEICE
Transactions on Information and Systems, vol. 7, no. E93-D, pp. 1984-1986, 2010.

[28] H. Y. Lee, I. Chun and W. -T. Kim, "DEV&DESS-based cyber-physical systems modeling language with
uncrtainty consideration," Proceedings of the 2013 Spring Simulation Multiconference Poster Session,
2013.

