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Abstract—The safety and correctness demonstration of pro-
gram translators plays a critical role in software certification
of digital I&C (Instrumentation & Control) systems in nuclear
power plants. This paper proposes a strategy for the demon-
stration of the FBDtoVerilog translator, which translates FBD
programs into Verilog programs to synthesize FPGAs. It uses
safety case to explain the strategy precisely and also implemented
several supporting tools to derive evidences efficiently. A case
study of a Korean nuclear power plant found the efficiency of
the proposed demonstration strategy and supporting tools.

I. INTRODUCTION

Program translators are widely used to develop embedded

software more efficiently and safely. When developing a

new I&C system in Korean nuclear power plants with PLCs

(Programmable Logic Controllers) [1], [2], the correctness

and safety demonstration of the FBD-to-C [3] and C-to-PLC

translators was strongly requested by regulation authorities

for approving the operation of the I&C system [4]. We

are now developing an I&C system [5] with FPGAs (Field

Programmable Logic Controller) [6] in place of PLCs, due

to the increasing maintenance cost of PLCs and the higher

performance of FPGAs.

The platform change of I&C from PLC to FPGA, however,

involves an element of risk. The software development of

PLC should shift to the hardware development of FPGA. The

new development paradigm requires not only a whole new

hardware developing process, but also abandon the accumu-

lated experience and knowledge to develop the PLC software.

In order to reduce the risk and preserve the experience and

knowledge, we did propose a hybrid development process [7]

which uses the ‘FBDtoVerilog’ translator. The ‘FBDtoVerilog’

[8] mechanically translates FBD(Function Block Diagram)

programs of the PLC-based development into Verilog pro-

grams of the FPGA-based development, while preserving

behavioral equivalence. It is also required to demonstrate its

safety and correctness sufficiently before being used in earnest.

This paper proposes a strategy for demonstrating the safety

and correctness of the program translator ‘FBDtoVerilog.’ The

conventional verification techniques [9], [10] for translators

and compilers are hard to apply because of the outrageous

cost and performance time. Instead, this paper tries to use an

indirect approach; we do not prove the translators against all

possible input cases, but only against specific inputs which

are under development for a target I&C system. The indirect

demonstration can assure that the translator works safely and

correctly at least for the FBD programs under development.

We use the safety case technique [11] to explain the pro-

posed strategy more precisely and systematically. We first set

the top goal and find necessary evidences and then connect the

evidences to the goal with logical arguments. It is important

to connect between evidences and goal with the technique

since a proof how the evidences contribute to the goal is more

important than how many the evidence we are founded. It sets

goals first and provides evidences and logical arguments which

connect the evidences to the goals. This paper also developed

several CASE tools to support the derivation of evidences, e.g.,

‘FBDtoCadenceSMV,’ ‘Scenario Generator,’ ‘FBD Simulator’

and ‘FBD-Verilog Comparator.’ A case study with an FBD

program of a Korean nuclear power plant could also find the

efficiency of the proposed indirect demonstration strategy and

supporting tools.

The paper is organized as follows: Section 2 proposes the

strategy for demonstrating the safety and correctness of the

‘FBDtoVerilog’ translator. Section 3 explains 4 supporting

tools which we developed to derive evidences of arguments

efficiently. In Section 4, we performed a case study with an

FBD program of an I&C system in a Korean nuclear power

plant. Section 5 concludes the paper and provides remarks on

future research extension.

II. THE DEMONSTRATION STRATEGY

This section explains our approach to demonstrate the safety

and correctness of the ‘FBDtoVerilog’ translator, indirectly.

The specific input is not means that an inputted program must

have restrictions in regard of language, but means that we do

not prove the translators against all possible input cases, but

only against specific inputs which are under development for

a target I&C system. We intend it for a specific input, i.e.
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Fig. 1. The top-level GSN for the safety and correctness demonstration of translators

an FBD program, not for all possible inputs. The GSN(Goal

Structure Notation) in 〈Fig.1〉 shows our goals, arguments

and required evidences clearly. We first set up the top-level

goal (G1). There are two strategies such as (S1) and (S2) to

accomplish the goal (G1). The (S1) is a direct demonstration,

which uses compiler verification techniques [9], [12], [13],

[14], and its outrageous cost made us hard to use it. The (S2),

on the other hand, is an indirect approach as explained in

(C2). It needs a specific input source program (i.e., FBD) and

a specific output target program (i.e., Verilog) as assumed by

(C3). This paper proposes to use the indirect strategy (S2).

(G3) and (G4) are the sub-goals for the (S2), which are

responsible for the safety and the correctness, respectively. The

following subsections expand the sub-goals (G3) and (G4) in

details.

A. The Safety Demonstration Strategy

The GSN in 〈Fig.2〉 illustrates how we can demonstrate the

safety of the translator ‘FBDtoVerilog.’ When demonstrating

the safety goal (G3), we first need to define the safety of

the translator ‘FBDtoVerilog’ clearly as suggested by (C4).

(Definition 1) below defines the safety. According to the

definition, (S3) suggests that a translated program is safe for

an input program if the translated program satisfies the safety

properties, which were already satisfied with the source pro-

gram. (A1) assumes that we use the model checking technique

[15] to support the (S3). Model checker can check whether

a program reaches a state violating safety properties through

searching all possible input sets and states exhaustively.

There are ambiguous points in practice using the model

checking with same safety property such as potential hazards

in source, new introduced failures in target one and so on.

However, it is no concerns of our scope how deal with

potential hazards in source, how the potential hazards are

translated to target, how failures in target is generated from

no failure source and so on. The purpose of the model

checking technique proves whether both programs satisfy the

same safety property or not. The potential hazards should

be handled by safety analysis in early phase and the new

introduced failures are a translator error, which is the point

we must find with model checking technique.

Definition 1. A translator is safe, if safety properties are

satisfied with the input and output programs simultaneously.

The argument (S3) can be demonstrated by three sub-

goals (G5), (G6) and (G7). Before performing model checking

upon the input and output programs against safety properties,

we have to be sure that the safety properties are reflecting

important safety features of the target input/output programs

(S4) and well formed with the formalism which the model

checking technique requires (S5). These are all about the

appropriateness of the safety properties (G5). Reviews by

domain experts and formalism experts (A2, Sn1, A3) are

required to support the (G5).

After assuring the appropriateness of the safety properties

(G5), we can proceed to the claims (G6) and (G7), which

check the safety properties against two programs - FBD pro-

grams (G10) and Verilog programs (G11). The model checking

of Verilog programs (S7) can be conducted by using the SMV

model checker [16]. It reads Verilog program as well as the

SMV input program without modification and performs the

CTL model checking [17]. On the other hand, model checking

of FBD programs needs other techniques such as translating

FBDs into equivalent SMV input programs (S6), since we

cannot use our translator ‘FBDtoVerilog’ itself recursively.

We, therefore, tried to use other’s translation technique [18]

from FBDs into SMV input programs, and implemented a

mechanical translator ‘FBDtoCadenceSMV’ (Sn2). The details

of tool will be introduced in Section 3.A. The comparison

of model checking results of FBD and Verilog programs are

defined in (G10) and (G11), and it can be performed by naive

comparison as (Sn3) and (Sn4).

B. The Correctness Demonstration Strategy

The GSN in 〈Fig.3〉 explains how we can demonstrate

the correctness of the translator. When demonstrating the

correctness goal (G4), we also need to define the correctness
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Fig. 2. The GSN for the safety demonstration (G3)

of the translator ‘FBDtoVerilog’ clearly as suggested by (C5)

as the (Definition 2) below. If a source program (i.e., FBD

program) and its translated program (i.e., Verilog program)

show the same outputs for all possible scenarios of inputs

(S7), the (G4) claims that the translator is correct. The (A6)

suggests using the co-simulation techniques [19] to check

their behavioral equivalence.

Definition 2. A translator is correct, if the behavior of a

translated program is the same with its source program for

all possible input scenarios.

The argument (S8) can be demonstrated by two sub-goals

(G12) and (G13). Before performing the co-simulation as

(G13), we need to be sure that the scenarios we use are suffi-

cient for demonstrating the behavioral equivalence as (G12).

(S9) suggests that we need to develop various scenarios as

many as possible, while (S10) focuses on the appropriateness

of the developed scenarios, i.e, whether they reflect domain-

specific features. To support these arguments, we developed a

mechanical ‘Scenario Generator’ for FBD programs. It can

generate random scenarios as well as user-defined scenar-

ios, while preserving predefined constraints such as rate-of-

changes of continuous input variables (A9) and the range

and scale of variables. The tool ‘Scenario Generator’ can

generate various scenarios while preserving domain-specific

constraints. The details of tool will be introduced in Section

3.B.

The sub-goal (G13) claims that the two programs (FBD

and Verilog) should show the same behavior for all developed

scenarios by the (G12). It can be satisfied by two arguments

(S10) and (S11). The (S11) suggests using existing simulation

tools for FBD and Verilog programs. While a commercial tool

ModelSim [20] can simulate the input scenarios efficiently as

(Sn9), it was hard to find an appropriate simulator for FBDs,

which can read the developed scenarios and generate outputs

efficiently. It is due to the custom that PLC vendors (e.g., [21]

and [22]) provide vendor-specific tools for FBD programming

and simulation. We, therefore, developed an ‘FBD Simulator,’

which can read FBD programs in XML format of the PLCopen

TC6 standard [23] and simulate them with input scenarios of

‘Scenario Generator’ as (Sn7). The details of the tool will be

explained in Section 3.C.

The (S12) requires comparing the simulation results of

the two input programs, FBD and Verilog, simultaneously

for all scenarios. The input scenarios are developed by the

tool ‘Scenario Generator,’ while the execution of two input

programs are simulated by the tools, ‘FBD Simulator’ and
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Fig. 3. The GSN for the correctness demonstration (G4)

ModelSim. We developed a mechanical comparator ‘FBD-

Verilog Comparator’ which compares the simulation outputs

from the two tools, as explained in (Sn10). The Comparator

is described in Section 3.D.

III. THE DEVELOPMENT OF SUPPORTING TOOLS

A. FBDtoCadenceSMV

The ‘FBDtoCadenceSMV’ translator translates an FBD

program of the format of the PLCopen TC6 [23] into a

behaviorally-equivalent SMV input program, which is an input

front-end of the Cadence SMV model checker [16]. It is in-

tended for the goal (G9) and extended the translation algorithm

proposed by [18] in order to handle SEL and TOF function

blocks, which were not handled by the original research. In

accordance with the translation algorithm, the tool needs to

set the maximum execution cycle to avoid the state explosion

problem [17].

We are now planning to define the translation rules more

formally and generally on the basis of [18] in order to deal

with all categories of function blocks, which the IEC 61131-

3 defined. As an alternative, we are also planning to develop

our own translation rules and translator like our research about

‘FBDtoVerilog’ [24], [8].

B. Scenario Generator

The ‘Scenario Generator’ depicted in 〈Fig.4. (a)〉 generates

various scenarios for executing FBD and Verilog programs

simultaneously. It is intended for the goal (G14). It first

takes several constraints on input values, e.g., initial values,

rate of change and maximum/minimum values. The tool then

randomly generates a number of scenarios within predefined

constraints on input values. The generated scenarios consist

of two sets for FBD and Verilog programs respectively. The

‘FBD Simulator’ in Section 3.C executes an FBD according

to the scenarios, while the ModelSim simulator [20] reads

and executes the scenarios for Verilog. We are now planning

to extend it with more elaborate and systematic generation

strategy, based on theories such as structural coverage criteria

[25], [26] for co-simulation.

C. FBD Simulator

〈Fig.4. (b)〉 show ‘FBD Simulator’ which we developed for

the goals (G13) and (G16). While conventional/commercial

tools such as the ModelSim can simulate Verilog programs

efficiently, FBD programs are not easy to execute or simulate

with scenarios of others. It is due to the fact that PLC software

engineering tools provided by PLC vendors support for the

FBD programming and simulation, working on their own tools
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Fig. 4. Co-Simulation Framework

and PLC hardware. It first reads a set of FBD scenarios, which

are generated from ‘Scenario Generator.’ After simulation is

done, it writes the simulation results into a text file. The ‘FBD-

Verilog Comparator’ introduced at the next subsection reads

the text file and judges their equivalence.

D. FBD-Verilog Comparator

〈Fig.4. (d)〉 show ‘FBD-Verilog Comparator’ which we

developed for the goal (G19). It compares the execution

results of two programs (i.e., FBD and Verilog) with the

same input scenarios. If all simulation results are equivalent, it

produces ‘True,’ otherwise it produces counter example with

graphical chart. The graphical chart make user to know how

two programs reach to the different state with tracing the flow

of variables.

IV. CASE STUDY

We performed a case study with an FBD program of

the KNICS APR-1400 RPS BP system [27] in order to

demonstrate the correctness and safety of the ‘FBDtoVerilog’

translator, indirectly. The BP reads 18 sensor values from a

nuclear reactor and decides to generate trip/pre-trip signals

out to shutdown the reactor immediately, if any value is out

of safe range. This case study used two examples of the 18

logics, such as FIX-RISING and FIX-FALLING. The case

study is aiming for demonstrating the safety and correctness

of the ‘FBDtoVerilog’ translator at least for the two logics.

It performed the safety and correctness demonstration in

accordance with the strategy in Section 2.

A. The Safety Demonstration (G3)

We performed the Cadence SMV model checking upon the

two input/output of the ‘FBDtoVerilog’ translator - the FBD

and Verilog programs, to prove whether they all satisfy the

same safety properties. We developed 28 safety properties

with assistant from domain exports and referable papers [27],

[28], [29] (Sn1). They are all concerning about only the

safety of the target system. The below are the example of

the safety properties and corresponding CTL formulae to be

checked with the SMV model checker.

“If PV_OUT (An input sensor value) is more than the TSP

(Trip Set-Point) for a predefined time, then the trip signal

should be fired (TRIP_LOGIC = 1) immediately."

: AG((PV_OUT > TSP) & (TRIP_CNT >= (MAXCNT - 1))

→ AX(TRIP_LOGIC = 1))

The ‘FBDtoCadenceSMV’ translated the FBD program into

a behaviorally-equivalent SMV program(Sn2). We performed

the SMV model checking upon the SMV programs against

the 14 safety properties(Sn3). We could check that all 14

safety properties are satisfied. On the other hand, the model

checking of Verilog programs is straightforward, since the

model checker can read Verilog programs without modification

(Sn4). The FBDs of two logics (i.e., FIXED-RISING and

FIXED-FALLING) and the Verilog programs translated by the

‘FBDtoVerilog’ translator were satisfied with the whole safety

properties. Therefore, we can assure that the ‘FBDtoVerilog’

translator translated the FBD programs into the Verilog pro-

grams, safely (G3).

B. The Correctness Demonstration (G4)

We also performed the co-simulation of the FBD and

Verilog programs to demonstrate the correctness of the ‘FB-

DtoVerilog’ translator (G4). We used the CASE tools which

we developed to support the co-simulation, as introduced in

the Section 3. The ‘Scenario Generator’ first generated 2,000

random scenarios mechanically (Sn5), complying with the

predefined constraints (Sn6), as shown in 〈Table I〉.
The ‘FBD-Verilog Comparator’ then executed the ‘FBD

Simulator‘ (Sn7, Sn8) and the ModelSim (Sn9) simultaneously

with the set of scenarios, and judged that they all showed the
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TABLE I
THE CO-SIMULATION RESULTS

Name
Scenarios

Initial Rate
Cycles

of Logic Values of Change

FIX-
10,000

27,000 - 28,000 10 - 100
100

RISING (Stepwise: 100) (Stepwise: 10)

FIX-
10,000

12,000 - 13,000 10 - 100
100

FALLING (Stepwise: 100) (Stepwise: 10)

same outputs for all sequences of inputs (Sn10). Therefore,

we can assure that the ‘FBDtoVerilog’ translator translated the

FBDs into the Verilog programs, correctly (G4).

It is worth to note that the correctness demonstration is

valid under the 2,000 random scenarios. We are now trying to

increase the confidence and thoroughness of the co-simulation

scenarios thorough appropriate structural coverage criteria

[25], [26] for co-simulation.

V. CONCLUSION AND FUTURE WORK

This paper proposed an indirect strategy for demonstrating

the safety and correctness of the ‘FBDtoVerilog’ translator.

We used the safety case technique and GSN to explain the

proposed strategy more precisely and systematically. We also

developed several CASE tools to support for deriving evi-

dences, such as ‘FBDtoCadenceSMV,’ ‘Scenario Generator,’

‘FBD Simulator’ and ‘FBD-Verilog Comparator.’ We then

performed a case study with an FBD program of the KNICS

APR-1400 RPS BP in order to demonstrate the safety and

correctness of the ‘FBDtoVerilog,’ indirectly, according to the

demonstration strategy proposed. We expect that the result

is reasonable and sufficient to demonstrate the safety and

correctness of the translator.

We are now trying to increase the confidence and thorough-

ness of the ‘Scenario Generator’ on the basis of structural

coverage criteria. We are also planning to improve the strategy

through applying it to other translators which we developed,

such as ‘FBDtoC’ and ‘NuSCRtoFBD.’ We expect to extend

the proposed techniques into a safety and correctness demon-

stration framework for general translators and compilers.
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