
Systematic Verification of Operational Flight

Program through Reverse Engineering

Dong-Ah Lee, Jong-Hoon Lee, Junbeom Yoo, and Doo-Hyun Kim

College of Information and Communication, KONKUK UNIVERSITY
New Millennium Hall, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Korea

{ldalove,kirdess,jbyoo,doohyun}@konkuk.ac.kr

Abstract. Software reverse engineering is an engineering process ana-
lyzing a system for specific purposes such as identifying interrelation-
ship between system components or reorganizing the system structure.
The HELISCOPE project aims to develop an unmanned helicopter and
its on-flight embedded computing system for navigation and real-time
transmission of motion video using wireless communication schemes. The
OFP (Operational Flight Program) in HELISCOPE project keeps only
informal and non-standardized documents and has made us difficult to
analyze and test it thoroughly. This paper introduces a verification plan
through reverse engineering to get over the difficulties, and we share an
experimentation about a small portion of the plan to the HELISCOPE
OFP.

Keywords: Operational Flight Program, Verification, Reverse
Engineering, Testing.

1 Introduction

HELISCOPE [1] project aims to develop on-flight computing system, embedded
S/W, and related services for unmanned helicopter that shall be used for disaster
response or recovery using real-time transmission of the motion video through
wireless communication scheme. OFP (Operational Flight Program) of the HE-
LISCOPE project [2] is a control program which provides real-time controls with
various sensors and actuators equipped in the helicopter.

The OFP as a safety-critical and mission-critical system should be sufficiently
verified through application of various validation and verification techniques. For
instance, formal verification technique [3] plays an important role in demonstrat-
ing safety and correctness of the system. Our previous work we used two formal
verification techniques to verify process communications and timing constraints
of the OFP [4][5]. Testing is also one of widely used technique to verify structure
or functionality of software. For applying testing techniques to a target system,
well-formed specifications such as SRS (Software Requirement Specification) or
SDD (Software Design Description) are mandatory. The OFP, however, didn’t
have sufficient specifications or documentations to apply test techniques. It had
only a few documents such as informal specifications and non-standardized doc-
uments.

T.-h. Kim et al. (Eds.): ASEA/DRBC/EL 2011, CCIS 257, pp. 285–291, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

286 D.-A. Lee et al.

We decided to do software reverse engineering against the OFP in order to
develop formal specification and structure information, which are the prerequi-
site for software testing. Reverse engineering is a process of analyzing a target
system for a specific subject to identify the system components and their inter-
relationships, and create representations of the system in another form or at a
higher level of abstraction [6]. There are two subareas that are widely referred to:
redocumentation, and design recovery. The redocumentation is the creation or
revision of a semantically equivalent representation within in the same relative
abstraction level. On the other hand, the design recovery adds domain knowl-
edge, external information and deduction or fuzzy reasoning to the observations
of the subject system.

Results of redocumentation, represented by data flows, data structures, or
control flows, make us possible to understand a whole structure and flow of
a target system. The information will be useful to perform structural testing
[7]. For example, understanding data structures and flows helps us rise test case
adequacy like coverage. We, therefore, decided to use structural testing technique
against the OFP with the results of redocumentation.

This paper introduces our plan to verify the OFP through reverse engineering
systematically, and we share an experimentation about a small portion of the
plan. The remainder of the paper is organized as follows: Section 2 introduces
background information on the target system, OFP in HELISCOPE project, and
reverse engineering briefly. Section 3 shows the plan from the reverse engineering
to the test of the OFP and Section 4 covers the experimentation. Finally we
conclude the paper and sum up some unsolved problems in Section 5.

2 Background

2.1 Operational Flight Program

OFP is developed as a subpart of the HELISCOPE project and it is based
on the well-known TMO scheme [8]. The OFP support the unmanned helicopter
navigation that is done by commands on flight mode from GCS (Ground Control
System). It operates servo motors using collected data from various sensors such
as GPS (Global Positioning System), navigation, CGS, and SWM (Helicopter
Servo Actuator Switching Module).

There are six threads, four readers, one controller, and one monitor, and they
run simultaneously. Fig. 1 shows an overview of the OFP working with servo
motor and sensors. The monitor thread catches a data packet from sensors and
operates one of reader threads which is supposed to collect the data. If the
monitor thread operates one of reader threads, then the reader thread reads
the data and saves the data in ODS (Object Data Storage). The controller
thread, otherwise, computes collected data to control the servo motors. The
reader threads and controller thread share ODS (Object Data Store) to forward
data collected from sensors. To avoid simultaneous use of the OSD by them,
mutual exclusion algorithm is used.

Systematic Verification of Operational Flight Program 287

Operational Flight Program

Controller

NAV Sensor

Monitor

Reader0

Reader1

Reader2

Reader3

GPS Sensor

GCS Sensor

SwMPacket

NAVPacket

GPSPacket

GCSPacket

SwM

ODS
Object Data Store

Fig. 1. An overview of Operational Flight Program with servo motor and sensors

2.2 Reverse Engineering

Origin of reverse engineering is in the analysis of hardware — where the practice
of deciphering designs from finished products is commonplace. Reverse engi-
neering of software is also the practice of analyzing a software system, either in
whole or in part, to extract design and implementation information [9]. It can
be performed any level of abstraction or at any stage of the life cycle. There
are no changes or modifications about target system during performing reverse
engineering. This performance only crates documents or abstract information
about the target system.

3 A Testing Plan for the HELISCOPE OFP

The testing plan for the HELISCOPE OFP consists of two parts: reverse en-
gineering and testing. Fig 2. describes the overall plan. Analysis on the source
codes and informal/unstructured documents is the first step of our reverse engi-
neering. It will progressively produce 4 different documents: data descriptions,
structure charts [10][11], data flow diagrams, and control flow diagrams. Data
descriptions are derived from definitions and uses of variables. The structure
charts are also derived from the data descriptions and functions defining the
relationship of data. The data flow and control flow diagrams are finally recov-
ered from the structure charts. The more we perform the redocumentation, the
more extractive the source code and informal documents become. All documents
derived in this part become a source of activities in the testing part.

There are two activities in verification part. Test cases generation generates
new test cases, while referring related documents produced from the reverse
engineering (redocumentation) process. The other one is test execution with
test cases including new test cases generated in test cases generation activity.
We estimate that test case coverage (e.g. such as statement, branch, or MC/DC

288 D.-A. Lee et al.

Target System
(OFP)

Source
Code

Verification
(Structural Testing)

Analysis

Reverse Engineering
(Redocumentation)

Refer-
ence

Test
Cases

Generate
Test

Cases

Data Description

Structure Chart

Data
Flow

Diagram

Control
Flow

Diagram Testing Test
Report

E
xe

cu
te

Add

Existing
Documents

Esti
mate

 C
ov

era
ge

& N
ot

Ade
qu

ate

Fig. 2. The OFP verification plan through reverse engineering

(Modified Condition & Decision Condition) coverages) [12] is adequate. It means
lack of test cases to cover the whole system that one of coverage which we decided
to set a test criterion is not adequate sufficiently. We, thus, should generate new
test cases until the coverage is adequate. Analysis of DFD or CFD makes flows
the system, so we can discover uncovered area to generate new test cases. Test
report include the results of the two activities.

4 Experimentation

In this section, we share our experiment with respect to the verification described
in Section 3. We performed reverse engineering with source code and documents
of OFP, and executed structural testing to its source code. To recover data
description, first of all, we analyzed functions and its relationship using Doxygen
[14] which is a documentation system. Next, we manually drew an outline of the
structure chart, referring the generated relationship of function calls and the
control flows and data flows are added on the structure chart. Fig. 31 shows the
result of recovering structure chart used notations defined by Yourdon [13].

DFD (Data Flow Diagram) supports that we generate test cases, so we recov-
ered DFD referring to the structure chart. Outlines of the DFD are derived from
the structure chart, and detail data flows are referred from actual source code.
We should derive the DFD starts from higher level which is level 0 expressing a
outline of data flow roughly, because we only could refer the recovered structure
of the target system. The deeper level of DFD is the more detailed analysis is
progressed. Fig. 42 shows the DFD from level 0 to level 2. The whole of the
1 Assumed names of all modules are substituted for original ones in source code for

security reasons.
2 Assumed names of all processes and flow labels under level 1 are substituted for

original ones of source code for security reasons.

Systematic Verification of Operational Flight Program 289

Main

Create

Controller Reader0 Reader1 Reader2 Reader3Monitor

M11

M10

M12

DM1

M5M4M2 M3

da
ta

da
ta

se
m

da
ta

se
m

DM0

M8

data

M1M0

M6

M14

data

data

M7

da
ta

da
ta M15

M9

data

data

da
ta

M13

data

data

da
ta

data

data

datadata
data

data

da
tada
ta

da
ta

data

data

da
ta da

ta data

data

sem sem

sem

data

LM0

LM1

Fig. 3. Recovered structure chart of the Operational Flight Program

OFP
1

SWM

NAV sensor

GPS sensor

ADT

SWM

DFD Level 0

Reader
1.1

Control
1.2

SWM Packet
NAV Packet

GPS Packet

ADT Pack
et

SWM Packet

DFD Level 1 : OFP 1

DP1
1.1.3

DP0
1.1.2

DP2
1.1.4

DP3
1.1.5

DP5
1.1.7

Value1
Data1

DP4
1.1.6Value0

Data0

DP8
1.1.10

Value3

Data
4

DP6
1.1.8

DP7
1.1.9

Value4

Value2

Data2

Data3

SWM Packet

NAV Packet

GPS Packet

ADT Packet

DFD Level 2 : Reader 1.1

Object Data Store

Object Data Store

CP0
1.2.1

DP0
1.2.2

DP3
1.2.5

DP1
1.2.3

DP5
1.2.7

DP7
1.2.9

DP9
1.2.11

DP10
1.2.12

Tr
ig

ge
r

Tr
igg

er

Trigger

Trigger

Trigger

Tr
igg

er

E
na

bl
e

ODS

DP2
1.2.4

DP6
1.2.8

DP8
1.2.10

DP4
1.2.6

Trigger

Trigger

Trigger

Trig
ger

ODS

Con
tro

lD
ata

DP11
1.2.13

DP12
1.2.14

DP13
1.2.15

DP16
1.2.18

param

param

param

DP15
1.2.17

SWM Packet
temp

param

DP14
1.2.16

param

param

param

temp

DFD Level 2 : Control 1.2

Object Data Store

param

D
isa

bl
e ADT Packet

ADT
ADT Packet

Fig. 4. Recovered data flow diagram of the Operational Flight Program

DFD consists of 5 levels and the last level, level 4, is made up of state transition
diagram.

We focused on modules which affect control of unmanned helicopter without
communicating sensors through serial ports. Testing environment within a PC,
therefore, is sufficient without a embedded system environment in use. We set
QNX Software Development Platform 6.5.0[15] as an operating system in virtual

290 D.-A. Lee et al.

environment. The QNX is one of RTOS (Real-Time Operating System) which
the OFP use. To check statement coverage, we used a test coverage program
named gcov [16].

We, first of all, selected data referring related documents which are data de-
scriptions and DFD. Next we generated initial test cases about the data and
executed the test. Estimation of statement coverage was not adequate at first.
We, therefore, executed test case generation and testing activities over 10 times,
and could get adequate test cases coverage. Table 1 shows the result of the test-
ing. Unfortunately, some of target modules don’t have 100 % statement coverage,
because they include a few unused codes or codes to access serial ports. Those
statements, however, is not our consideration which we set before start the test,
so we could make decision that the test cases are adequate.

Table 1. Result of structural testing

Module Name Number of Test Cases Statement Coverage

Module 0 11 99.47 %
Module 1 1 100.00 %
Module 2 17 100.00 %
Module 3 4 100.00 %
Module 4 3 93.33 %
Module 5 4 86.26 %

5 Conclusion

This paper introduced a systematic verification plan and parts of practical use
of OFP in HELISCOPE project through reverse engineering. We identified that
results of performing reverse engineering, derived from source code and informal
documents, are useful information to analyze structure and execute structural
testing about the target system. Our experimentation did not cover widely used
coverages such as branch or MC/DC, so we plan to perform testing with different
coverage criterias.

Functional testing is good to verify functionality, and it is available through
design recovery technique mentioned above. The technique, however, needs very
close collaboration with developers of the target system, because the design
includes additional domain knowledge, external information, etc. We also plan
the collaboration with the developer of the OFP, and expect that those additional
verification techniques make the OFP more reliable.

Acknowledgments. This research was supported by the MKE(The Ministry
of Knowledge Economy), Korea, under the ITRC(Information Technology Re-
search Center) support program supervised by the NIPA(National IT Industry
Promotion Agency) (NIPA-2011-C1090-1131-0003)

Systematic Verification of Operational Flight Program 291

References

1. Kim, D.H., Nodir, K., Chang, C.H., Kim, J.G.: HELISCOPE Project: Research
Goal and Survey on Related Technologies. In: The Proceeding of 12th IEEE In-
ternational Symposium on Object /Component / Service-Oriented Real-Time Dis-
tributed Computing (ISORC), Tokyo, pp. 112–118 (2009)

2. Kim, S.-G., et al.: Design and Implementation of an Operational Flight Program for
an Unmanned Helicopter FCC Based on the TMO Scheme. In: Lee, S., Narasimhan,
P. (eds.) SEUS 2009. LNCS, vol. 5860, pp. 1–11. Springer, Heidelberg (2009)

3. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P.: Systems and Software Verification: Model-Checking Techniques and
Tools. Springer, Heidelberg (2001)

4. Lee, D.-A., Yoo, J., Kim, D.: Formal Verification of Process Communications in
Operational Flight Program for a Small-Scale Unmanned Helicopter. In: The 6th
International Conference on Intelligent Unmanned Systems (ICIUS 2010), Bali,
Indonesia, pp. 91–96 (2010)

5. Lee, D.-A., Sung, S., Yoo, J., Kim, D.-H.: Formal Modeling and Verification of
Operational Flight Program in a Small-Scale Unmanned Helicopter. Journal of
Aerospace Engineering (accepted, 2011)

6. Chikofsky, E.J., Cross, J.H.: II: Reverse engineering and design recovery: a taxon-
omy. IEEE Software 7(1), 13–17 (1990)

7. Pezze, M., Young, M.: Software testing and analysis: process, principles, and tech-
niques. Wiley (2008)

8. Kim, K.H., Kopetz, H.: A Real-Time Object Model RTO.k and an Experimental
Investigation of Its Potentials. In: 18th IEEE Computer Software & Applications
Conference, Los Alamitos, pp. 392–402 (1994)

9. Stavroulakis, P., Stamp, M.: Handbook of Information and Communication Secu-
rity. Springer, Heidelberg (2010)

10. Martin, J., McClure, C.: Diagramming Techniques for Analysts and Programmers.
Prentice-Hall, Englewood Cliffs (1985)

11. Yourdon, E.: Constantine, Structured Design. Prentice-Hall, Englewood (1979)
12. Zhu, H., Hall, P., May, J.: Software Unit Test Coverage and Adequacy. ACM Com-

puting Surveys 29, 366–427 (1997)
13. Yourdon, E.: Modern structured analysis. Yourdon Press (1989)
14. Doxygen, http://www.stack.nl/~dimitri/doxygen/index.html
15. QNX Software Systems, http://www.qnx.com
16. gcov—a Test Coverage Program,

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

http://www.stack.nl/~dimitri/doxygen/index.html
http://www.qnx.com
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

	Systematic Verification of Operational Flight Program through Reverse Engineering
	Introduction
	Background
	Operational Flight Program
	Reverse Engineering

	A Testing Plan for the HELISCOPE OFP
	Experimentation
	Conclusion
	References

