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Abstract. Software reverse engineering is an engineering process ana-
lyzing a system for specific purposes such as identifying interrelation-
ship between system components or reorganizing the system structure.
The HELISCOPE project aims to develop an unmanned helicopter and
its on-flight embedded computing system for navigation and real-time
transmission of motion video using wireless communication schemes. The
OFP (Operational Flight Program) in HELISCOPE project keeps only
informal and non-standardized documents and has made us difficult to
analyze and test it thoroughly. This paper introduces a verification plan
through reverse engineering to get over the difficulties, and we share an
experimentation about a small portion of the plan to the HELISCOPE
OFP.
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1 Introduction

HELISCOPE [1] project aims to develop on-flight computing system, embedded
S/W, and related services for unmanned helicopter that shall be used for disaster
response or recovery using real-time transmission of the motion video through
wireless communication scheme. OFP (Operational Flight Program) of the HE-
LISCOPE project [2] is a control program which provides real-time controls with
various sensors and actuators equipped in the helicopter.

The OFP as a safety-critical and mission-critical system should be sufficiently
verified through application of various validation and verification techniques. For
instance, formal verification technique [3] plays an important role in demonstrat-
ing safety and correctness of the system. Our previous work we used two formal
verification techniques to verify process communications and timing constraints
of the OFP [4][5]. Testing is also one of widely used technique to verify structure
or functionality of software. For applying testing techniques to a target system,
well-formed specifications such as SRS (Software Requirement Specification) or
SDD (Software Design Description) are mandatory. The OFP, however, didn’t
have sufficient specifications or documentations to apply test techniques. It had
only a few documents such as informal specifications and non-standardized doc-
uments.
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We decided to do software reverse engineering against the OFP in order to
develop formal specification and structure information, which are the prerequi-
site for software testing. Reverse engineering is a process of analyzing a target
system for a specific subject to identify the system components and their inter-
relationships, and create representations of the system in another form or at a
higher level of abstraction [6]. There are two subareas that are widely referred to:
redocumentation, and design recovery. The redocumentation is the creation or
revision of a semantically equivalent representation within in the same relative
abstraction level. On the other hand, the design recovery adds domain knowl-
edge, external information and deduction or fuzzy reasoning to the observations
of the subject system.

Results of redocumentation, represented by data flows, data structures, or
control flows, make us possible to understand a whole structure and flow of
a target system. The information will be useful to perform structural testing
[7]. For example, understanding data structures and flows helps us rise test case
adequacy like coverage. We, therefore, decided to use structural testing technique
against the OFP with the results of redocumentation.

This paper introduces our plan to verify the OFP through reverse engineering
systematically, and we share an experimentation about a small portion of the
plan. The remainder of the paper is organized as follows: Section 2 introduces
background information on the target system, OFP in HELISCOPE project, and
reverse engineering briefly. Section 3 shows the plan from the reverse engineering
to the test of the OFP and Section 4 covers the experimentation. Finally we
conclude the paper and sum up some unsolved problems in Section 5.

2 Background

2.1 Operational Flight Program

OFP is developed as a subpart of the HELISCOPE project and it is based
on the well-known TMO scheme [8]. The OFP support the unmanned helicopter
navigation that is done by commands on flight mode from GCS (Ground Control
System). It operates servo motors using collected data from various sensors such
as GPS (Global Positioning System), navigation, CGS, and SWM (Helicopter
Servo Actuator Switching Module).

There are six threads, four readers, one controller, and one monitor, and they
run simultaneously. Fig. 1 shows an overview of the OFP working with servo
motor and sensors. The monitor thread catches a data packet from sensors and
operates one of reader threads which is supposed to collect the data. If the
monitor thread operates one of reader threads, then the reader thread reads
the data and saves the data in ODS (Object Data Storage). The controller
thread, otherwise, computes collected data to control the servo motors. The
reader threads and controller thread share ODS (Object Data Store) to forward
data collected from sensors. To avoid simultaneous use of the OSD by them,
mutual exclusion algorithm is used.
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Fig. 1. An overview of Operational Flight Program with servo motor and sensors

2.2 Reverse Engineering

Origin of reverse engineering is in the analysis of hardware — where the practice
of deciphering designs from finished products is commonplace. Reverse engi-
neering of software is also the practice of analyzing a software system, either in
whole or in part, to extract design and implementation information [9]. It can
be performed any level of abstraction or at any stage of the life cycle. There
are no changes or modifications about target system during performing reverse
engineering. This performance only crates documents or abstract information
about the target system.

3 A Testing Plan for the HELISCOPE OFP

The testing plan for the HELISCOPE OFP consists of two parts: reverse en-
gineering and testing. Fig 2. describes the overall plan. Analysis on the source
codes and informal/unstructured documents is the first step of our reverse engi-
neering. It will progressively produce 4 different documents: data descriptions,
structure charts [10][11], data flow diagrams, and control flow diagrams. Data
descriptions are derived from definitions and uses of variables. The structure
charts are also derived from the data descriptions and functions defining the
relationship of data. The data flow and control flow diagrams are finally recov-
ered from the structure charts. The more we perform the redocumentation, the
more extractive the source code and informal documents become. All documents
derived in this part become a source of activities in the testing part.

There are two activities in verification part. Test cases generation generates
new test cases, while referring related documents produced from the reverse
engineering (redocumentation) process. The other one is test execution with
test cases including new test cases generated in test cases generation activity.
We estimate that test case coverage (e.g. such as statement, branch, or MC/DC
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Fig. 2. The OFP verification plan through reverse engineering

(Modified Condition & Decision Condition) coverages) [12] is adequate. It means
lack of test cases to cover the whole system that one of coverage which we decided
to set a test criterion is not adequate sufficiently. We, thus, should generate new
test cases until the coverage is adequate. Analysis of DFD or CFD makes flows
the system, so we can discover uncovered area to generate new test cases. Test
report include the results of the two activities.

4 Experimentation

In this section, we share our experiment with respect to the verification described
in Section 3. We performed reverse engineering with source code and documents
of OFP, and executed structural testing to its source code. To recover data
description, first of all, we analyzed functions and its relationship using Doxygen
[14] which is a documentation system. Next, we manually drew an outline of the
structure chart, referring the generated relationship of function calls and the
control flows and data flows are added on the structure chart. Fig. 31 shows the
result of recovering structure chart used notations defined by Yourdon [13].

DFD (Data Flow Diagram) supports that we generate test cases, so we recov-
ered DFD referring to the structure chart. Outlines of the DFD are derived from
the structure chart, and detail data flows are referred from actual source code.
We should derive the DFD starts from higher level which is level 0 expressing a
outline of data flow roughly, because we only could refer the recovered structure
of the target system. The deeper level of DFD is the more detailed analysis is
progressed. Fig. 42 shows the DFD from level 0 to level 2. The whole of the
1 Assumed names of all modules are substituted for original ones in source code for

security reasons.
2 Assumed names of all processes and flow labels under level 1 are substituted for

original ones of source code for security reasons.
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Fig. 3. Recovered structure chart of the Operational Flight Program
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Fig. 4. Recovered data flow diagram of the Operational Flight Program

DFD consists of 5 levels and the last level, level 4, is made up of state transition
diagram.

We focused on modules which affect control of unmanned helicopter without
communicating sensors through serial ports. Testing environment within a PC,
therefore, is sufficient without a embedded system environment in use. We set
QNX Software Development Platform 6.5.0[15] as an operating system in virtual
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environment. The QNX is one of RTOS (Real-Time Operating System) which
the OFP use. To check statement coverage, we used a test coverage program
named gcov [16].

We, first of all, selected data referring related documents which are data de-
scriptions and DFD. Next we generated initial test cases about the data and
executed the test. Estimation of statement coverage was not adequate at first.
We, therefore, executed test case generation and testing activities over 10 times,
and could get adequate test cases coverage. Table 1 shows the result of the test-
ing. Unfortunately, some of target modules don’t have 100 % statement coverage,
because they include a few unused codes or codes to access serial ports. Those
statements, however, is not our consideration which we set before start the test,
so we could make decision that the test cases are adequate.

Table 1. Result of structural testing

Module Name Number of Test Cases Statement Coverage

Module 0 11 99.47 %
Module 1 1 100.00 %
Module 2 17 100.00 %
Module 3 4 100.00 %
Module 4 3 93.33 %
Module 5 4 86.26 %

5 Conclusion

This paper introduced a systematic verification plan and parts of practical use
of OFP in HELISCOPE project through reverse engineering. We identified that
results of performing reverse engineering, derived from source code and informal
documents, are useful information to analyze structure and execute structural
testing about the target system. Our experimentation did not cover widely used
coverages such as branch or MC/DC, so we plan to perform testing with different
coverage criterias.

Functional testing is good to verify functionality, and it is available through
design recovery technique mentioned above. The technique, however, needs very
close collaboration with developers of the target system, because the design
includes additional domain knowledge, external information, etc. We also plan
the collaboration with the developer of the OFP, and expect that those additional
verification techniques make the OFP more reliable.
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