
Guidelines for the Use of Function Block Diagram
in Reactor Protection Systems

Dong-Ah Lee, Junbeom Yoo
Division of Computer Science and Engineering

College of Information and Communication, Konkuk University

Seoul, Republic of Korea

Email: {ldalove, jbyoo}@konkuk.ac.kr

Jang-Soo Lee
Man-Machine Interface System team

Korea Atomic Energy Research Institute

Daejeon, Republic of Korea

Email: jslee@kaeri.re.kr

Abstract—Making software dependable is one of most im-
portant aspects in safety-critical system such as a nuclear
power plant. Dependable programming techniques to get rid
of undependable properties, such as ambiguity, wrong uses of
elements, discordance, etc., help engineers reduce the faults
in programs. This paper proposes the practice guidelines for
function block diagram (FBD) which is a programming language
for programmable logic controllers (PLC) widely used in indus-
try. The guidelines show that what cases cause undependable
properties and how the properties should be eliminated to be
dependable ones in FBD programs. The paper introduces the
application of guidelines to the trip (shutdown) logic of bistable
processor (BP) in reactor protection system (RPS) developed in
the Korea Nuclear Instrumentation and Control System R&D
Center (KNICS). The application describes that the guidelines
eliminates undependable properties in the trip logic.

I. INTRODUCTION

Dependability of software in critical systems such as nu-
clear power plants and insulin pumps is one of the most
important properties, because a failure of the systems may
result in injuries to people, damages to the environment, or
extensive economic losses [1]. Furthermore, it requires high
dependability to get permissions for operation and export
from government authorities. Such systems often use Function
Block Diagram (FBD) to develop its embedded software. For
example, POSAFE-Q Software Engineering Tool (pSET) [2]
which is developed by Korea Nuclear Instrumentation and
Control Systems R&D Center (KNICS) [3] used FBD to
develop software of reactor protection system (RPS). The
systems cannot be approved for operation by the regulation
agency (e.g., KINS [4] in Korea), if the software designed
using FBD satisfies high dependability as high as the regulation
agency demands.

FBD is one of the widely used Programmable Logic
Controllers (PLC) programming languages defined in the IEC
61131-3 standard [5]. As FBD is a graphical language, it
usually requires translation into other languages such as C,
Verilog [6], or specific machine code [7]–[9] for implementa-
tion, simulation, or verification. Although the standard defines
usage of elements, undefined or unexpected uses show up,
because development environment is much dependent upon
vendors. Software development tools, developed by domain
specific vendors, include their own rules which the standard
does not explicitly specify about the usages. These rules may
give engineers ambiguity or misunderstanding. FBD programs,

which is developed using such tools, are functionally correct;
however, it is possible that they operate incorrectly on other
environment. Furthermore, if there is a change of environment
in a domain, such as version-up of the tools, then the same
program may not operate equally.

pSET uses FBD to design software for POSAFE-Q Pro-
grammable Logic Controllers (PLCs). The designed software
is implemented using C language to load them onto the PLCs.
We found several undependable cases which analysts cannot
catch up the operation directly. Implementation programs
from the design using the FBD language which includes the
undependable cases operate correctly in the target system.
It, however, cannot be evaluated by analysts accurately; and
other environments, such as a next version of pSET or other
engineering tools, may operate the software incorrectly. These
potential incorrectness is able to lead systems to catastrophic
accidents especially in safety-critical ones.

This paper introduces practical guidelines for FBD pro-
gramming to eliminate the undependable cases which is the
undefined or unexpected use of the FBD language. We show
5 undependable cases and present how the cases should be
modified to be dependable. The undependable cases mean that
the use of the FBD language have ambiguity, wrong uses of
elements, discordance, etc. It also presents how the practical
guidelines eliminate the undependable properties in the trip
(shutdown) logics of bistable processor (BP), which is a part of
a preliminary version of Korean APR-1400 RPS developed in
the Korea Nuclear Instrumentation and Control System R&D
Center (KNICS). The case study shows enhances dependability
of the logic through elimination of the undependable cases,
which have potential incorrectness.

The remainder of the paper is organized as follows: Section
2 explains FBD, pSET, and other dependable programming
researches briefly. Section 3 introduces the 5 undependable
cases for FBD programming and presents practical guidelines
one by one. Section 4 shows the case study about application
of the guidelines to the target software and we finally conclude
the paper at Section 5.

II. RELATED WORK

A. Function Block Diagram

FBD consists of an arbitrary number of functions and
function blocks, which is ‘wired’ together in a manner similar

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.29

142

to a circuit diagram. The international standard IEC 61131-3
defines 10 categories and we present six out of the ten in <Fig.
1>. For example, the function block ADD performs arithmetic
addition of all input values (IN1-INn) and makes a result of
the function onto the OUT variable. Others are interpreted in
a similar way.

Fig. 1. Examples of Functions and Function Blocks

B. pSET

POSAFE-Q Software Engineering Tool (pSET) [2] is a
loader software to develop a program of POSAFE-Q PLC and
is developed as a part of the KNICS project. It satisfies IEC
61131-3 standards and support GUI environment, C language
programming, monitoring/debugging functions, and simula-
tions. pSET was developed considering NUREG/CR6463
Guideline [10] because a target domain is nuclear power plant
system. <Fig. 2> shows a screen dump of the pSET.

Fig. 2. A screen dump of pSET

pSET uses FBD, Ladder Diagram (LD), Sequential Func-
tion Chart (SFC) and C Code (CC) to develop PLC programs1.
An automatic translator of pSET translates FBD programs
into ANSI-C language programs to compile them for machine
codes of PLC. The translation [7] has an important advantage

1IEC 61131-3 standard includes only FBD, LD and SFC. pSET also
supports CC to apply requirements of the nuclear fields

which users are able to easily verify the programs with
common verification or testing tools.

C. Dependable Programming

Most faults and failures in software are results of human
errors mainly. There are many studies and regulations to reduce
the human errors. [1] introduces programming structures which
may cause potential errors: floating point numbers, pointers,
dynamic memory allocation, and so on. Some of regulations
for safety-critical system prohibit these kinds of structures.
There exists programming languages, Java, which excludes
structures that can easily cause errors such as goto statement
or dynamic memory allocation. Java, however, still have some
of the structures in it.

Regulations or standards for safety-critical systems play
important role in industry. Many of them have the regulations
or standards for designing or coding. For example, IEC 61508-
3 [11] has design and coding standards which can be applied
many different fields. Many domains of safety-critical systems
also have them—DO-178B [12] for airborne systems, IEC
62304 [13] for medical device software, ISO 26262 [14] and
MISRA C/C++ [15], [16] for automotive industry, IEC 60880
[17] for nuclear power plants, and so on. There also exist tools,
such as LDRA [18] or SCADE suite [19], which can verify
whether a program satisfies specific regulations or standards.

Many researches and regulations have contributed to de-
pendable programming; they focus on text and control flow
based languages. The big part of former studies is able to
share the idea; however, they do not cover all undependable
properties in the FBD language because it is a graphical and
data flow based language. The paper covers undependable
cases which appear in FBD programs specifically.

III. PRACTICAL GUIDELINES FOR FBD PROGRAM

This section introduces 5 undependable cases in FBD
programs, and we introduce how developers prevent the cases
retaining the same behavior as previous ones.

A. Guideline 1: Execution control except EN and ENO signals

FBD is a block diagram which evaluates outputs with
inputs. It performs the evaluation based on data flow from
inputs to outputs. Inputs and outputs are connected with wires,
which may include blocks between the inputs and outputs. The
wires connect two elements of FBD:

• an input to an output

• an input to an input port of a block

• an output port of a block to an input port of a block

• an output port of a block to an output

A block may have an additional ports—Boolean “EN”
(Enable) input and “ENO” (Enable Out) output. IEC 61131-
3 standard defines rules about the execution of the operations,
when the EN and ENO ports are used. Rules consist of three
situations:

• when EN is set to FALSE (0)

143

• when EN is set to TRUE (1)

• when one of errors defined in error conditions occurs
during the execution

The ENO is set to FALSE in the first and last situations. On
the other hand, the ENO is set to TRUE when it is the second
situation. They explain which value the ENO have depending
on the situations; however, it is not clear that what values
the output ports of the block have in those cases. Therefore, a
development tool or a system for FBD decide its behavior with
their regulations. For example, all outputs are set to FALSE or
their previous value.

FBD program can use the EN/ENO ports not only to enable
and disable blocks, but also to control function flow directly.
<Fig. 3> shows an undependable case using EN/ENO ports as
a control signal. C_TRUE in <Fig. 3> and later ones means
a constant variable which is set to TRUE (1). The program
probably intended to evaluate E as below:

- if (A&B) = FALSE then E := C +D

- if (A&B) = TRUE then E := C −D

Fig. 3. Undependable case A: The unsafe case using EN/ENO as control
signals

The output of AND function block controls two different
function blocks, ADD and SUB. The case A shows control
flow based programming which is unsuitable for FBD pro-
gramming, which is based on data flow. Furthermore, analysts
cannot evaluate the output E clearly, because the analyst does
not sure to what value E is set when the EN port of one of
two function blocks, ADD and SUB, is reset to FALSE (0).

To eliminate the undependable case about usage of EN and
ENO as control signals, we propose guideline 1 described in
<Fig. 4>. The SEL performs binary selection function which
evaluate E as below

- if G = FALSE then OUT := IN1 which IN1 =
A+B

- if G = TRUE then OUT := IN2 which IN2 =
A−B

There are not any elements to confuse developers or
analysts, although more function blocks and wires are in the
program than <Fig. 3>. The EN/ENO ports are not mandatory
to be in a block according to the standard. Therefore, we

Fig. 4. Elimination of undependable case A using a SEL function

strongly recommend that FBD programs does not use EN/ENO
ports to make program more dependable. We assume that all
EN and ENO signals are set to TRUE and do not indicate them
in the remained paper.

B. Guideline 2: Usage of Output Variables

FBD programs evaluate its output based on cycles which
means the program receives all inputs at once and the programs
evaluate all outputs at once. Next evaluation will be performed
at the next cycle with next value of all inputs. For example,
the output E in <Fig. 4> is set to one of values, which are
E:=C+D or E:=C-D by input A and B, once in a cycle, and
both input, C and D, of both blocks, ADD and SUB, are always
same at a cycle. The E has only one value in a cycle, therefore
the system and analysts can evaluate E at every cycle exactly.

Overwriting outputs can cause problems when a system
reacts on the outputs immediately. The output variable, C in
<Fig. 5>, which is evaluated from the top to the bottom,
indicates the undependable case of overwriting a output. The
C could have two different values, which are C:=A+B or
C:=D-E+C, in one cycle. The overwriting can make a serious
problem when the C immediately triggers a specific behavior
of the system such as shutting down power-generating nuclear
reactor.

Fig. 5. Undependable case B: The undependable case about wrong usage of
an output variable

Another important issue in <Fig. 5> is that input C of

144

ADD(b) is ambiguous whether it is a feedback of output C
of ADD(b) or extension of output C of ADD(a). A feedback
variable is the variable which is associated with a feedback
path—is said to exist in a FBD when the output of a function
block is used as the input of a function block which precedes
it in a FBD program. IEC 61131-3 standard allows explicit
and implicit loops as a feedback path both. A wire from a
output variable to an input variable indicates in the case of
an explicit loop. On the other hand, it is an implicit loop that
there is a output variable and an input variable which have the
same name in a FBD program. The input C of ADD(b) could
be one of them or both of them, because it depends on the
development environment. If there is not any overwriting, an
input variable, which has the same name as an output variable,
is implicitly a feedback.

To make the system clear, especially in the case of safety-
critical systems, the system must not have ambiguities, and
regulation should restrict language usage, which can cause
ambiguities. We suggest a strong regulation of usage about
output variables. First of all, all overwriting is denied in FBD
programs. All outputs must assigned once in a FBD program.
Next, all outputs must be explicit whether they are feedbacks
or simple outputs.

<Fig. 6> and <Fig. 7> describe a replacement of <Fig.
5> to eliminate the ambiguity. <Fig. 6>, using Connector &
Continuation, substitutes for the case that input C of ADD(b)
is an extension of C of ADD(a) in <Fig. 5>. Connectors and
continuations are elements which extend wires without storage
of data or association with data elements defined in IEC 61131-
3 standard. <Fig. 7>, using a prefix ‘feedback ’ to feedback
variable, substitutes for the case that input C of ADD(b) is a
feedback variable of output C of ADD(b) in <Fig. 5>.

<Fig. 6> evaluates C as below:

- C := (D - E) + (A + B)

Fig. 6. Elimination of undependable case B using connectors & continuations

<Fig. 7> evaluates C and feedback_C as below

- C := A + B

- feedback_C := feedback_C + (D - E)

C. Guideline 3: Consensus of the Data Type

IEC 61131-3 standard said that functions or operations can
be overloaded, which means it is able to operate on various
types of input data within a generic type designator. <Fig. 8>
shows that the function ADD is overloaded within two different
data type; 1) INTEGER; and 2) BOOLEAN. Developers or

Fig. 7. Elimination of undependable case B using a prefix ‘feedback ’ to
feedback variable

analysts can evaluate the output, C, without confusion, because
they might think that the function simply operates addition
of two numbers. The target system, however, may not allow
automatic type casting, which convert an expression of a given
type into an another type.

Fig. 8. Undependable case C: The undependable case not to correspond data
types

There are type conversion blocks in IEC 61131-3 standard
as described in <Fig. 9>, and it recommends that when all
the formal input parameters of a standard function defined in
the standard are of the same common type then all the actual
parameters should be of the same type. This paper imposes a
strict restriction on the consensus of the data type in FBD
programs. All the standard blocks, which are able to have
any number as inputs, must have a _[datatype] suffix
to get rid of overloading. All the formal parameters and all
the actual parameters, in addition, have to be the same type,
if necessary, with use of the type conversion blocks. <Fig.
10> shows application the two restrictions to <Fig. 8>. All
functions and function blocks in the former examples, <Fig.
5-7>, also should have suffixes ‘_[datatype]’ in the same
way.

Fig. 9. The representative of type conversion functions

Fig. 10. Elimination of undependable case C using a type conversion function
and a _INT suffix at a function ADD

D. Guideline 4: Initialization of Feedback Variables

Variables can be initialized by one of the mechanisms
below:

145

• the default initial value(s) of the underlying elemen-
tary data types as defined in IEC 61131-3;

• NULL, if the variable is a reference;

• or the user-defined value(s) of the variable; this value
is optionally specified in the variable declaration.

Explicit initiation of variables are not mandatory while
initiation of feedback variables is essential. Feedback variables
also can be initialized in the one of the mechanisms. When
a system start operation, every input variables of its program
receive data from other functions or function blocks, programs,
or external devices (i.e., sensors, measuring instruments, etc.).
The feedback variables, however, are not a variable which
receives data from external though it is also used as an
input variable. If developer does not define its initial value
with its exact meaning, then the system may not operate as
developer’s intention. To prevent the undependable operation,
feedback variables must have not only initial value but also
clear meaning of the value.

E. Guideline 5: Explicit Order of Evaluation

IEC 61131-3 standard said that the order in which networks
and their elements are evaluated follows the rules below:

• No element of a network shall be evaluated until the
states of all of its inputs have been evaluated;

• the evaluation of a network element shall not be
complete until the states of all of its outputs have been
evaluated;

• the evaluation of a network is not complete until the
outputs of all of its elements have been evaluated, even
if the network contains one of the execution control
elements—jump elements with label;

• or the order in which networks are evaluated shall
conform to the provisions for the FBD language—
the evaluation of a network shall be complete before
starting the evaluation of another network which uses
one or more of the outputs of the preceding evaluated
network.

The order is not necessarily the same as the order, in which
they are labeled or displayed, and it even does not have
to be explicit. In <Fig. 11>, there are two function blocks
which is labeled with its evaluation order above each function
blocks. The labels seem as though the program will operate
in ascending order, GE_INT is the first and ADD_INT is
the second. On the contrary to this, <Fig. 11> operates in
the opposite order, ADD_INT is the first and GE_INT is the
second according to order the third rule.

Fig. 11. Undependable case E: The undependable case of mislabeling order
of the evaluation

The labeling like as <Fig. 11> is not a violation of the
rules in the standard. It says the labeling is not necessary to be
the same order in actual operations. Nevertheless, developers
should avoid the mislabeling not to make analysis difficult and
confused. One of two solutions are possible to eliminate the
mislabeling:

1) programming without labeling order;

2) programming with labeling order in the same order of
evaluation.

<Fig. 12> shows the elimination of the mislabeling in <Fig.
11> and correct labeling.

Fig. 12. Elimination of undependable case E labeling order in the same order
of evaluation

IV. CASE STUDY

We applied the proposed practical guidelines about FBD
programming to one of 18 shutdown logics, FIX RISING, in
the Bistable Processor (BP) program, which is a preliminary
version of the Advanced Power Reactor’s (ARP-1400) reactor
protection system (RPS). The logic is developed using pSET
[2]. Following subsection describes how the FIX RISING
logic operates and what elements are undependable. Next
subsection describes a dependable version of FIX RISING
logic applying the guidelines.

A. FIX RISING logic

<Fig. 13> shows a part of original FIX RISING logic.
The logic consists of two logics which evaluate trip signal
(TRIP) and its pre-one (PTRIP). We only show a part of the
logic related with the TRIP in the paper. There are three input
variables, three output variables, and 13 functions and function
blocks. TRIP_LOGIC is set to TRUE (1) when PV_OUT is
higher than TSP over MAXCNT times in a row. It counts how
many times PV_OUT is higher to TRIP_CNT. TSP is reset to
TSP minus HYS when TRIP_LOGIC is set to TRUE until it
returns FALSE (0).

The input variables—PV_OUT, MAXCNT, and HYS—
are clear. All input variables have the same data type of
corresponding functions. There are, however, ambiguity on
the output variables—TRIP_CNT, TSP, and TRIP_LOGIC.
PTRIP_CNT is in the upper right corner by SEL_DINT and
in the middle of left by GE DINT. The second PTRIP_CNT
which is used as one input of GE_DINT is not certain whether
it is a feedback variable or a extension of first one. Other
outputs also have ambiguity in the same way.

The program may overwrite output values on two output
variables, TRIP_LOGIC and TSP, twice in a cycle, because
each of them has connections with two functions as an output.
They may have two different values in a cycle, and they
possibly cause unpredictable problems.

146

Fig. 13. A part of the original FIX RISING logic related with the trip signal (TRIP)

The function blocks are not labels which express the order
of evaluation. FBD programs developed using pSET are top-
down programs which means that it evaluates the output from
the top to the bottom. Although analysts can analyze the order
of evaluation as the top-down program and the provisions for
the FBD language in IEC 61131-3 standard, explicit order is
useful for the analysis.

B. Application of the guidelines to the FBD program,
FIX RISING

We applied the 5 practical guidelines about FBD program-
ming to <Fig. 13> to eliminate undependable elements. First,
we labeled functions and function blocks with a number in
parentheses (Guideline E). GE_DINT in <Fig. 14> is labeled
(1) above. The labeling starts from left to right because the
evaluation of the FBD program is completed before starting
the evaluation of another network which uses one or more of
the outputs of the preceding evaluated network. In addition, the
evaluation order starts from the top because it is the top-down
program developed using pSET.

Next, to eliminate ambiguity of usage of output variables,
we used connector & continuation and a prefix feedback_
to the variables (Guideline B). To apply the guideline B, we
should know how pSET handles the output variables. pSET
handles an output variables as followings:

• If a output variable is of the first time to use it as an
input of function blocks in the order of evaluation, the
output variable is a feedback variable.

• If a output variable is not of the first time, the output
variable is an extension of a output variable which is
the most recently used one as an output.

We classified the usage of output variables according the
features and applied the guideline as describe in <Fig. 14>.

Application of the guidelines changes three output vari-
ables, and they are used 6 times as input variables as feedback
variables. Black arrows in <Fig. 14> means the changes from
output variables to feedback variables with prefix feedback_
pointed by black arrows. Three uses of outputs are changed

147

Legend

GE_REAL

IN1

IN2

OUT

AND_BOOL

IN1

IN2

OUTPV_OUT

feedback_TSP feedback_TRIP_LOGIC

SEL_DINT

IN1

IN2

OUTG

0

AND_DINT

IN1

IN2

OUTfeedback_TRIP_CNT

1

>TRIP_CNT_CON>

GE_DINT

IN1

IN2

OUT>TRIP_CNT_CON>

MAXCNT

SEL_BOOL

IN1

IN2

OUTG

feedback_TRIP_LOGIC

SUB_DINT

IN1

IN2

OUTfeedback_TSP

HYS

>TRIP_LOGIC_CON>

SEL_DINT

IN1

IN2

OUTG >TSP_CON>

TRUE

feedback_TSP

LT_DINT

IN1

IN2

OUT

AND_BOOL

IN1

IN2

OUTPV_OUT

>TSP_CON> >TRIP_LOGIC_CON>

SEL_BOOL

IN1

IN2

OUTG

>TRIP_LOGIC_CON>

AND_DINT

IN1

IN2

OUT>TSP_CON>

HYS

feedback_TRIP_LOGIC

SEL_DINT

IN1

IN2

OUTG feedback_TSP

FALSE

>TSP_CON>

feedback_TRIP_CNT

(2)

(3)

(4)

(5) (6)

(7)

(8)

(9) (10) (11)

(12)

(13)

: Elimination of undependable
case B with a prefix ‘feedback_’

: Elimination of undependable
case B using connector &
continuation

(1)

Fig. 14. FIX RISING program applied guidelines

to three connectors and its extensions are changed to con-
tinuations pointed by white arrows. The outputs used as
extensions must be substituted with the pairs of connectors
and continuation as many as they used.

Name of variables could have an important meaning in
safety-critical systems. In the case, a prefix or a suffix may
give another meaning to developers or analysts. It is possible
that a program has two output variables for purposes—one is
only for a feedback variable, and another is only for an external
output variable—which have the same value as described in
<Fig. 15>.

A white arrow points a continuation, and a black arrow
points a feedback variable. The two elements had the same
name as PTRIP_LOGIC. To avoid ambiguity, application of
guideline B changes the two elements. If it is necessary to use
the original name, PTRIP_LOGIC, developers just can add a
simple output variable presented in <Fig. 15>.

Fig. 15. Maintenance of a name of a specific output variable

C. Comparison between original FIX RISING and modified
FIX RISING

Table I shows comparison of elements in the original
FIX RISING logic and modified FIX RISING logic—<Fig.
13> and <Fig. 14>. Although modified one has more ele-
ments, feedbacks and connectors & continuations, the program

148

has no ambiguity which means all FBD programming tools
which follows IEC 61131-3 standard are readable in the same
way.

TABLE I. COMPARISON OF ELEMENTS IN THE ORIGINAL

FIX RISING AND THE MODIFIED FIX RISING

Original FIX RISING Safe FIX RISING

Blocks 13 13
Input 3 3
Output (Feedback) 3(0) 3(3)
Conn. & Cont. 0 3

The original FIX RISING is functionally correct in pSET.
To confirm the functional equivalence between the origi-
nal one and modified one, we analyzed its implementation
program which is written in C language2. The orders of
evaluation are same before and after. Noticeable changes by
the guidelines are the assignment statements of the feedback
variables. pSET generates temporal variables to deliver the
output value to another function block—from SEL_DINT(4)
to GE_DINT(5)—, because of use of connectors and con-
tinuations to eliminate the confusion about the extension or
feedbacks. The program does not overwrite the output variable
anymore during a cycle. Therefore, there are no risks about
temporal output values. We identified that delivery of the value
between two function blocks is functionally equivalent.

V. CONCLUSION AND FUTURE WORK

The paper introduces 5 undependable cases of FBD pro-
gramming, and described that how they cause problems. To
eliminate the undependable cases, we suggested the 5 guide-
lines about FBD programming. The proposed guidelines help
analysts and developers evaluate the program without ambigu-
ity or uncertainty such as meaning and usage of variables,
order of evaluation, initialization, and etc. Furthermore, all
FBD programming tools which follow IEC 61131-3 standard
can handle the FBD program within the guidelines in the same
way. When we applied the guidelines on a FBD program of
the KNICS project, it changed several elements which have
difficulty to be analyzed without specific knowledge of pSET.
The results of the case study convincingly demonstrated the
effectiveness of the proposed guidelines. We are now planning
to develop more guidelines and an automatic tool which
inspects FBD programs whether they follow the guidelines
or not. The tool will obey PLCopen (de facto standard) [20]
not to be dependent on specific vendors. We expect that the
guidelines and tool help engineers implement more dependable
programs.

ACKNOWLEDGMENT

This research was partially supported by a grant from
the Korea Ministry of Strategy, under the development of
the integrated framework of I&C conformity assessment,
sustainable monitoring, and emergency response for nuclear
facilities, and also partially supported by a grant from the
Korea Atomic Energy Research Institute, the development of
the core software technologies of the integrated development
environment for FPGA-based controllers.

2The C programs are automatically generated by a translator in the pSET.
We omitted the programs in the paper because of the lack of space.

REFERENCES

[1] I. Sommerville, Software engineering 8th edition: Chapter 20, ser.
International computer science series. Addison-Wesley, 2007.

[2] S. Cho, K. Koo, B. You, T.-W. Kim, T. Shim, and J. S. Lee, “Develop-
ment of the loader software for plc programming,” in Proceedings of
Conference of the Institute of Electronics Engineers of Korea, vol. 30,
no. 1, 2007, pp. 595–960.

[3] KNICS (Korea Nuclear Instrumentation and Control System R&D
Center), http://www.knics.re.kr/english/eindex.html.

[4] KINS (Korea Institute of Nuclear Safety), http://www.kins.re.kr.

[5] IEC 61131-3 International standard for programmable controllers -
Part 3: Programming languages, International Electrotechnical Com-
mission, 1993.

[6] IEEE Std 1364-2001: IEEE Standard Verilog Hardware Description
Language, Institute of Electrical and Electronics Engineers, 2001.

[7] D. Yoon, S. Hwang, K. Choi, and K. Park, Implementation of C Code
Generation Compiler Algorithm for IEC61131-3 Standard Language,
POSCON ICT, Nov 2005, http://rnd.poscon.co.kr/cyber/19-2.pdf.

[8] J. Yoo, S. Cha, and E. Jee, “Verification of plc programs written in
fbd with vis,” Nuclear Engineering and Technology, vol. 41, no. 1, pp.
79–90, Feb 2009.

[9] J. Yoo, J.-H. Lee, S. Jeong, and S. D. Cha, “Fbdtoverilog: A vendor-
independent translation from fbds into verilog programs,” in SEKE,
2011, pp. 48–51.

[10] NUREG/CR-6463: Review guidelines on Software Languages for Use in
Nuclear Power Plant Safety Systems, United States Nuclear Regulatory
Commission, 1996.

[11] Functional safety of electrical/electronic/programmable electronic
safety-related systems: Part 3. Software requirements (IEC 61508-3),
International Electrotechnical Commission, 1997.

[12] Software Considerations in Airborne Systems and Equipment Certifi-
cation, RTCA/DO-178, Radio Technical Commission for Aeronautics,
1992.

[13] The international standard IEC 62304 ? medical device software ? soft-
ware life cycle processes, International Electrotechnical Commission,
2006.

[14] Road vehicles – Functional safety: Part 6. Product development at
the software level, ISO, International Organization for Standardization,
2010.

[15] Guidelines for the Use of the C Language in Critical Systems, The
Motor Industry Software Reliability Association, Oct 2004.

[16] Guidelines for the Use of the C++ Language in Critical Systems, The
Motor Industry Software Reliability Association, Jun 2008.

[17] Nuclear power plants – Instrumentation and control systems important
to safety – Software aspects for computer-based systems performing
category A functions, International Electrotechnical Commission, 2006.

[18] Liverpool Data Research Associates (LDRA) Testbed,
http://www.ldra.com/misrac.asp.

[19] “Safety-critical application development environment (scade) suite,”
http://www.esterel-technologies.com/products/scade-suite/.

[20] PLCopen, http://www.plcopen.org/.

149

