Reliability Engineering and System Safety 202 (2020) 107029

journal homepage: www.elsevier.com/locate/ress o

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

ﬁ RELIABILITY
ENGINEERING

& SYSTEM
SAFETY

A practical application of NUREG/CR-6430 software safety hazard analysis

to FPGA software™

Sejin Jung®, Junbeom Yoo™", Young-Jun Lee”

Check for
updates

@ Konkuk University, Division of Computer Science and Engineering, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
" Korea Atomic Energy Research Institute, Man-Machine Interface System Team, 989-111 Deadeok-daero Yuseong-gu, Daejeon, 34057, Republic of Korea

ARTICLE INFO ABSTRACT

Keywords:
NUREG/CR-6430
Software hazard analysis
FPGA

Digital 1&C

Hazard analysis is a widely-used technique to achieve the system/software safety by analyzing hazards sys-
tematically. While programmable logic controller-based digital instrumentation and control systems have been
replaced with field programmable gate array (FPGA)-based ones, hazard analysis on FPGA software as well as
FPGA-based controllers becomes one of the prerequisites of operational approval. The NUREG/CR-6430 pro-
vides applicable processes/methods of software safety hazard analysis (e.g., guide phrases and analysis techni-

ques). Hazard analysis of FPGA software is different from typical software hazard analysis, since the FPGA is a
hardware-based platform. This paper proposes a refined process and guide phrases at the software requirement
analysis part in NUREG/CR-6430, tailored for the new target - FPGA software. We performed hazard analysis on
FPGA software for a prototype version of an FPGA-based controller in Korea to show feasibility of the refined

process and guide phrases.

1. Introduction

Digital instrumentation and control system (I&Cs) in nuclear power
plants should be analyzed and evaluated to ensure that the systems are
acceptably safe from hazards/risks/failures [2,3]. Hazard analysis is a
method for identifying potential hazardous portions of a system.
Eliminating, reducing, or avoiding the impact of identified hazards
should be appropriately followed to achieve the freedom from the ha-
zards [4]. Software, which is a part of systems, can also be a cause of
system hazards, and software hazard analysis should be performed
rigorously [5,6].

There are several standards/guidelines for software safety/hazard
analysis [4,7], and safety plan [8] for nuclear safety system software.
The NUREG/CR-6430 suggests methods (processes) for analyzing soft-
ware-affected hazards during whole software development life cycle
(SDLQ) like safety plan. It provides an analysis process for each phase of
software development, and also provides guide phrases and several
techniques that can be applied to software hazard analysis. The analysis
process consists that are identify a high-level hazard, analyze each

element of requirements with guide phrases, and so on. The details of
the NUREG/CR-6430 are explained in the next section.

Field-programmable gate array (FPGA) has received much attention
from the nuclear industry to develop digital I&C systems as an alter-
native platform of programmable logic controller (PLC). There are
several standardization efforts for using FPGA in nuclear systems
[9,10]. FPGA-based digital controllers should be evaluated/analyzed
that the systems are acceptably safe to operate, too. Since the typical
FPGA development includes two different aspects of development, such
as software and hardware, we need to apply hazard analysis hier-
archically and compositionally [10,11]. Although the NUREG/CR-6430
might provide a useful approach to perform hazard analysis against
FPGA software, we need extensions or refinement methods to analyze
FPGA software throughly. Nevertheless, there is no hazard analysis
result reported for FPGA software used in digital I&Cs. There are only a
few approaches concerning FPGA software verification, simulation
[12,13], and FPGA hardware reliability [14-16], to the best of our
knowledge.

This paper proposes a refined hazard analysis process at the

Acronyms and Abbreviations: FPGA, Field-Programmable Gate Array; PLC, Programmable Logic Controller; DFLC-N, Digital FPGA Logic Controller-Nuclear; IEC,
International Electrotechnical Commission; HDL, Hardware Description Language; EDA, Electronic Design Automation; RTL, Register-Transfer Level; P&R, Place &
Route; SDLC, Software Development Life Cycle; HAZOP, HAzard and OPerability; RPS, Reactor Protection System; PHL, Preliminary Hazard Lists; PLD,

Programmable Logic Device; BP, Bistable Processor

* This paper was originally published in Korean Nuclear Society Autumn Meeting 2016 [1].

* Corresponding author.
E-mail address: jbyoo@konkuk.ac.kr (J. Yoo).

https://doi.org/10.1016/j.ress.2020.107029

Received 7 September 2018; Received in revised form 19 April 2020; Accepted 12 May 2020

Available online 19 May 2020
0951-8320/ © 2020 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2020.107029
https://doi.org/10.1016/j.ress.2020.107029
mailto:jbyoo@konkuk.ac.kr
https://doi.org/10.1016/j.ress.2020.107029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2020.107029&domain=pdf

S. Jung, et al.

software requirements phase of the NUREG/CR-6430 that is applicable
to FPGA software. It extends the steps of “identifyng software re-
sponsible hazards” and “applying guide phrases” in the NUREG/CR-
6430 and also guide phrases to incorporate the hardware aspects of
FPGA software requirements. The proposed refined process and guide
phrases support to check for hardware aspects of software requirement
hazard analysis on the FPGA software. We performed hazard analysis
upon FPGA software in accordance with the NUREG/CR-6430 and
proposed process in a case study. We used the hazard and operability
(HAZOP) technique and one version of the FPGA software requirements
specification of a process module in the digital FPGA logic controller-
nuclear (DFLC-N) [17], which is an FPGA-based I&C controller under
development in Korea. We also discussed the applicability and feasi-
bility of the refined process presented in this paper through compara-
tive analysis of the analysis aspects and analysis results.

The remainder of this paper is organized as follows. Section 2 in-
troduces the FPGA development process and hazard analysis as a
background. Section 3 presents the refined process of the NUREG/CR-
6430 proposed in this paper, and we explain the performing hazard
analysis upon the FPGA software as a case study in Section 4. Section 5
concludes this paper and provides remarks on future research exten-
sions and directions.

2. Background
2.1. The FPGA development process

FPGA-based digital I&Cs should follow the development life cycle
described in the IEC (International Electrotechnical Commission)-
61513 standard [3]. FPGA-based systems, however, have specific fea-
tures that developing part using hardware description language (HDL)
is classified into software, while after downloading to a chip is classified
into hardware. Therefore, FPGA should be developed to comply with
both the IEC-60880 standard [18] in terms of software and IEC-60987
standard [19] in terms of hardware. < Fig. 1> depicts the V-shaped life
cycle of FPGA development explained in IEC-62566 [9], consisting of
both software and hardware aspects. The software aspect follow the
typical development life cycle [11] presented on the left side of the
figure.

FPGA software development is fully automated by the FPGA logic
synthesis tools and commercial electronic design automation (EDAs)
tools provided by FPGA vendors. After programming an register-
transfer level (RTL) design using HDLs, synthesis software such as
“Synopsys Synplify Pro”, “Precision RTL” and “Encounter RTL Compiler”
can be used to transform the design into a gate-level design (i.e., net-
list). The EDA tools of FPGA vendors such as “Xilinx ISE Design Suit,”
“Altera Quartus 2” and “Microsemi Libero SoC” perform place and route

Requirements \

specification
Simulation-based

verification

Behavioral
simulation

D RTL Design

Synthesis

Logic <.

simulation Gate-level Design

P&R

Postdayout _ |
simulation < Layout
Configuration &
Download

Software aspects

FPGA

Requirements
Specification

Design

Reliability Engineering and System Safety 202 (2020) 107029

(P&R) operations to place and map all netlist elements physically and
prepare a downloadable file through configuration. At each step of the
FPGA SDLC, designers often perform simulation-based verification to
confirm that each artifact satisfies its requirements specification, such
as behavioral simulation for RTL designs, logic simulation for gate-level
design, and post-layout simulation on layout design.

The FPGA software development includes both software and hard-
ware aspects as requirement analysis, design, automatic synthesis, and
P&R and software requirement specifications for the FPGA software are
defined in the form of hardware aspect modules by FPGA board units.
Hazard analysis can also be performed to analyze potential hazards at
each phase, which is pertinent to our research and will be discussed in a
subsequent section.

2.2. Software hazard analysis of the NUREG/CR-6430

The NUREG/CR-6430 “Software Safety Hazard Analysis” [4] was
proposed by united states nuclear research commission (NRC) to pro-
vide software hazard analysis guidelines for nuclear power plants. The
NUREG/CR-6430 adopts basic concepts of the software safety plan in
IEEE-1228 standard [8] and provides useful guide phrases that can help
to perform hazard analysis at each phase of development. Hazard
analysis is performed at each phase of the SDLC on different artifacts
and the hazard analysis in later phases repeadtedly uses analysis arti-
facts from earlier phases.

Software hazard analysis in the NUREG/CR-6430 consists of two
main steps. The prerequisites of the software hazard analysis, that are a
preliminary process for finding PHLs (Preliminary Hazard List), are
followed by software requirements hazard analysis, which finds soft-
ware-responsible hazards/requirements and their evaluates criticality,
as described in <Fig. 2>. Each software requirement can then be ana-
lyzed using guide phrases provided by the NUREG/CR-6430.

{ Table 1 > lists some example guide phrases that can help analysts
perform hazard analysis on development elements in the SDLC. The
guide phrases is provided by four clauses about “quality,” “aspect,”
“phase,” and “guide phrases” as shown in the <(Table 1>. The “quality”
and “aspect” refer to goal and target of the guide phrases. The “Phase”
refers to the phases of the SDLC in which analysis is applied, and “guide
phrases” clause is to help the analysis start and guide analysis. It is
worth noting that the NUREG/CR-6430 designates no specific hazard
analysis techniques, but HAZOP [20] would be best suited. The
NUREG/CR-6430 method has been used to software hazard analysis on
a PLC development process [21,22].

The NUREG/CR-6430 provides a hazard analysis process in ac-
cordance with the software safety plan in the IEEE-1228 standard and
guide phrases at each phase of SDLC. It is, however, not straightforward
to apply into FPGA software due to the hardware-related aspects of

/

System validation

\ /

System
integration

N/

Implementation

Hardware aspects

Fig. 1. Typical development life-cycle for FPGA-based platforms.

S. Jung, et al.

Prerequisites to software
hazard analysis

Reliability Engineering and System Safety 202 (2020) 107029

Prepare a PHL/PHA for the system

Carry out the hazard investigations and
evaluations of the system (evaluation
of the impact of software on hazards)

Identify risk level of the hazard (by
consequence level and probability)

[Requirements hazard analysis ‘

Identify the hazard which software is
in any way responsible

Identify the software criticality level
associated with each hazard

Assign a criticality level to each

requirements

hazard analysis

Prerequisites to i
software hazard |« Systesmel?:eSIgn
analysis pet
v v
Requirements | grs Write SRS
hazard analysis
v \4
Architectural < SAD Write SAD
hazard analysis |
v \4
Detailed design SDD Write SDD
hazard analysis
v \4
Code < Code Write code

Analyze each software requirement
using the guide phrases

Fig. 2. The software hazard analysis process on the requirements specification of the NUREG/CR-6430.

Table 1
Example guide phrases in the NUREG/CR-6430 and this work.
Quality Aspect Phase Guide Phrases Note
Functionality RA Function is not carried out as ~ NUREG/CR-6430
specified suggests.
RA Function is not initialized
properly before being executed
RA Trigger conditions are satisfied
but function fails to execute
R Function uses incorrect inputs
Accuracy Sensor RADC Stuck at all zeroes
RADC Stuck at all ones
RADC Stuck elsewhere
RADC Below minimum range
RADC Above maximum range
Accuracy Circuit RADC Stuck at all zeroes This paper
refines.
RADC Stuck at all ones
RADC Stuck elsewhere
Memory RDC Stuck at all zeroes or ones

RDC Stuck elsewhere

Security R SW are not encoded

FPGA-based reactor protection system (RPS) software. First, the process
of identifying software responsible hazards and assigning software
criticality levels to each requirement element differ slightly from the
one against the PLC-based software requirements specifications because
FPGA software requirement specifications are defined in hardware-de-
pendent FPGA module units independently of the hardware.
Specification starts by dividing the entire system into board and

component modules, rather than the functional ones as typical software
requirement specifications. This feature makes it difficult to identify
software responsible hazards lists from system-level hazards and assign
criticality levels to each software requirement elements, since almost
hazards in PHL care about system functions not board and components.
Aadditionally, using guide phrases for hazard analysis must also ac-
count for hardware-specific aspects. This paper proposes an extended
process and guide phrases that can incorporate such hardware-related
concerns efficiently.

2.3. Related work

The safety/hazard analysis of FPGA-based digital I&C systems has
been researched several approaches. The FPGA component failure
analysis proposed in [14] is used to quantify error propagation at the
design level by calculating failure rates from FPGA logical information.
Neto et al. [12] and Vismari et al. [23] proposed practical approaches
to the safety analysis of PLD (Programmable Logic Device)-based safety
systems. They uses HDL descriptions to perform safety analysis on the
PLD, especially, a code inspection, which are based on checklists from
[24], is applied to analyze software. Checklists are similar to the guide
phrases at the code-level analysis in the NUREG/CR-6430, however, it
only focuses on code-level analysis not other phases of SDLC.

Reliability analysis about FPGA-based triple modular redundancy
systems have also been proposed in several papers. Jung et al. [15]
proposed a mathematical model to estimate/predict the failure rates of
on-board processor systems, which is based on an SRAM (Static
Random-Access Memory)-based FPGA. They presented an on-board
processor system adopting triple modular redundancy and an external

S. Jung, et al.

scrubber mitigation process, and calculated system failure rates using
single-event upsets rates and information of system configurations.
Benites et al. [25] also proposed a reliability calculation process for the
SRAM-based FPGA mitigated by triple modular redundancy and
memory scrubbing. They represent experimental results of reliability
calculations with and without mitigation designs with fault injection
and heavy ion irradiation. These papers presented calculations of
failure rates and reliability levels of FPGA-based systems adopting a
triple modular redundancy designs to mitigate failures in terms of
hardware.

McNelles et al. [26,27] compared and contrasted and the results of
fault tree analysis and dynamic flowgraph methodology for FPGA-based
safety-critical systems. They performed hazard analysis on logic-level
block diagrams and focused on comparing quantitative results by dif-
ferecnes of static and dynamic approach. A probabilistic model
checking-based analysis method has been proposed for the quantitative
analysis of triple modular redundancy partitioning in the FPGA of de-
sign phases [16]. It proposes a formal model for triple modular re-
dundancy system irrespective of the partition size with capturing single
and double-cell upsets. Model checking is used to perform quantitative
analysis of the model about availability and reliability. Various papers
have proposed FPGA analysis methods based on failure rate calcuation
or reliability at the board or component level. Analysis of desing phases
has also focused on hardware-level design. Such analysis may serve as a
useful basis for prbability or risk analysis at the software implementa-
tion phases.

FPGA software analysis has also been studied in various ways, in-
cluding FPGA SDLC model [28], verification processes [29], and si-
mulation-based approaches [13,30,31]. The authors of [28] proposed
the W model, which reflects the verification of FPGA software devel-
opment during the development life-cycles. The W model covers testing
activities ranging from requirement analysis to system integration.
Verification based on simulation and testing considering develpment
phases [13,30] and the application of functional validation and system
assessment through simulating with pre-defined failure scenarios [31]
are simulation-based approaches to FPGA verification. However, such
methods only focus on the functional verification and validation of the
FPGA. Huang et al. [32] presented a systematic literature review of
studies on failure mode and effect analysis. However, very few hazard
analysis of FPGA software were contained in their review. McNelles
et al. [33] proposed a failure taxonomy for assessing the reliability of
the FPGA-based I&C systems. The structure of the taxonomy consists of
possible failure modes (failure categories), uncovering, mitigation, and
effects at the FPGA decomposition level combined with existing in-
formation regarding safety analysis results, functional safety standards,
or fault categories. It may be more helpful to classify hazard analysis
results by detection, effect, mitigation information in the taxonomy
when analyzing software requirements.

3. A refined process for hazard analysis of software requirement
specifications

This paper proposes a refined process for the hazard analysis of
FPGA software requirement specifications. It extends the hazard ana-
lysis process of the NUREG/CR-6430 to incorporate the hardware-
specific features of FPGA software. We also extend the guide phrases of
the NUREG/CR-6430 to handle the circuit and memory aspects of FPGA
software. <Fig. 3> presents the refined process for FPGA software re-
quirement hazard analysis. We compose the process into six steps and
also change the order of certain steps. FPGA software requirement
specifications are often written in components (hardware) modules
units since FPGA-based controllers consist of multiple components,
such as a set of FPGA boards. The proposed refined process is composed
by applying these characteristics of the FPGA software requirement.

The “identify the hazards which software is in any way responsible” step
in <Fig. 2> is the first step of requirement hazard analysis in the

Reliability Engineering and System Safety 202 (2020) 107029

NUREG/CR-6430. This step identifies system hazards for which soft-
ware is responsible, and assigns a criticality levels of the software re-
quirements. However, this step has some difficulties in identifying
software responsible hazards directly in the PHL as discussed in
Section 2.3. Since hazards in a PHL and related software components
are profoundly different in a hierarchical structure, FPGA software re-
quirement specifications, which are defined in a hardware-module
specific manner, are not directly connected to system hazards. Therfore,
we add an additional step “Identify hazards of software overall function
aspects” before “Identify the hazards which software is in any way re-
sponsible in PHL (with software funcionality level hazards)” to lower the
gap.

The first step, “Identify hazards of software overall function aspects,”
takes into account all hardware-specific features of FPGA software, such
as memory and signals, as shown in {Table A2)>. The next step, “Identify
the hazards which software is in any way responsible in PHL,” identifies
and connects the consequences of software hazards to system-level
hazards, which is the same as NUREG/CR-6430. While the NUREG/CR-
6430 uses this step to assign a criticality level to each software com-
ponent, the refined process connects analysis results to system ele-
ments, additionally. We recommend using these two steps hier-
archically according to the system structure.

The “Analyze each software requirement using the guide phrases” step
extends the “Connect hazards for analyzing consequences to higher level
component” step. When analyzing each software requirement element
using guide phrases, analysis should be performed according to two
conceptual ways: the functional units of a requirement and the hard-
ware components aspect on software in the <Fig. 3)>. The former refers
to using guide phrases to analyze deviations in designated requirement
element and the latter refers to using guide phrases to all elements in a
specification. For these two steps, we tailored some guide phrases of the
NUREG/CR-6430 to provide meaningful aspect for FPGA software re-
quirements. <{Table 1> shows some supplemented guide phrases and
descriptions. We incorporate some additional guide phrases for the
hazard analysis of FPGA software requirement specifications to reflect
the specific characteristics of FPGA. These revisions mainly focus on the
additional categories of “quality” and “aspect.”

The step “Connect hazards for analyzing consequences to higher level
component” progressively analyzes the hazard consequences from soft-
ware into the higher component. It is necessary to analyze the effects of
software hazards on hardware, boards, or system-level hazards either
simultaneously or pregressively. This step makes connections between
software hazards identified from the deviations using guide phrases and
software functional-aspect level hazards. The final two steps in <Fig. 3>
identify the criticality levels of software hazards and assign criticality
levels to each requirement. These two steps proceed step by step based
on results of the connections from before step.

¢ Table 2 > is a sample worksheet table suitable for the refined
process proposed in this paper. The clauses qualities and aspects are
related to the guide phrases applied and the other entries are related to
hazard analysis. The “hazard on SW concern” and “hazard on PHL”
clauses are expressions of the refined process about connecting hazards.
Im summary, this section introduced the refined process and guide
phrases to support filling gaps and performing software hazard analysis
more efficiently.

4. Case study

We conducted hazard analysis on an FPGA software requirement
specification using the refined process and guide phrases proposed in
this study. The target specification is one version of a process module in
DFLC-N [17], which is an FPGA-based I&C controller developed in
Korea. This case study introduces the feasibility and efficiency of the
proposed process and guide phrases to software hazard analysis of
FPGA software in accordance with the NUREG/CR-6430. Because of
space limitations, we only focus on the most important and relevant

S. Jung, et al.

Prerequisites to software
hazard analysis

Prepare a PHL/PHA for the system

Carry out the hazard investigations and
evaluations of the system (evaluation
of the impact of software on hazards)

Identify risk level of the hazard (by
consequence level and probability)

:| Extended step

Extended guide phrases

Quality | Aspect Phase Guide Phrases

Accuracy | Circuit RADC Stuck at all zeroes
RADC Stuck at all ones
RADC Stuck clsewhere

Memory RDC
| RDC Stuck elsewhere
Security R SW are not encoded

Stuck at all zeroes or ones

Reliability Engineering and System Safety 202 (2020) 107029

Requirements hazard analysis

Identify hazards of software

overall function aspects
Apply
Identify the hazards which software is |
in any way responsible in PHL
- with software functionality-level
hazards Apply

Analyze each software requirement
using the guide phrases
- for functional unit of requirement
- for HW component aspect on software

Connect hazards for analyzing
consequences to higher level
component

le—

Identify the software criticality level
associated with each hazard

Assign a criticality level to each
requirements & HA results

Fig. 3. A refined process for the hazard analysis of FPGA software requirement specifications.

results.

4.1. Target system software

DFLC-N is a safety-related FPGA controller for the I&Cs in nuclear
power plants (NPPs). It consists of several modules/components, such
as sub-rack, bus module, process module, and input/output module.
FPM-01 is a general process module consisting of several sub-modules
and FPGA boards, that performing core functions such as self-diagnosis,
input/output control, and application control logic. CLFPMO1 is a
control logic for controlling and monitoring FPGA modules belonging
to a FPM-01. The primary functions of a CLFPMO01 module are “reset and
clock signal generation,” “operation voltage monitoring,” “diagnosis/send/
receive of an input and output data,” and “diagnosis/send/receive of data
link/network communication data,” and “status indication.” <Fig. 4> pre-
sents a part of the structures of the CLFPMO1 of FPM-01. As shown in
the figure, CLFPMO1 logic consists of hardware-based structure, and
software is also defined by such features.

4.2. A summary of requirements hazard analysis results

< Fig. 5 > presents an analysis process with directions to corre-
sponding results from our case study. The analysis results are sum-
marized in the five tables in <Appendix A> according to a sequence of
the proposed process. {Table Al> contains hazard lists that are a
module level of the DFLC-N, which represent the reprequisites for
software hazard analysis. The hazard category, which consists of
“high,” “middle,” and “low,” priority levels, is defined by domain ex-
perts according to the consequences and probabilities of the hazards.
{Table A2) shows the results of first two steps that are the software

Table 2
An example of an analysis worksheet.

function aspects hazards and its connection for identifying software
responsible hazards. When analyzing the hazards in these steps, we
considered the characteristics of FPGA which include hardware-related
aspects such as viewing the signals of the PM software.

Finally, the results of analyzing each software requirement using
guide phrases and final steps are listed in {Table A3} and <{Table A4).
These tables list portions of the hazard analysis results for the FPGA
software requirement specifications of a CLFPM01 module. The work-
sheet in <Table 2> was used to perform analysis. Analysis was con-
ducted to check requirement elements such as item, function/purpose
and, parameter, and identify deviation/consequence by ascertaining
what happens when situation of guide phrases occur. For example,
guide phrases pertaining to a “sensor” can be combined with the
function of the “operating voltage monitoring function” in our target
software, which relates to sensor input. We express risk based on cri-
ticality levels only because calculating the failure probability of soft-
ware is difficult in the requirement phase.

As shown in (Table A3), five potential hazards were identified by
the analysis. For example, “operating voltage monitoring” function may
be affected by deviations in the sensor for the stuck condition because
the requirement specification does not specify any requirements for that
sensor. Several deviations by guide phrases related to the range concept
do not have any practical implications in terms of FPGA software.
{Table A4) lists a portion of the analysis results for the accuracy-circuit
pair, which uses the tailored guide phrases proposed in this paper. It
also shows three potential hazards and these hazars are un-happended
because the preventing function is already specified in the software
requirement specifications. Hazards caused by ambiguous definitions of
requirements also exist and software designers/developers must con-
sider such hazards carefully when the next step of the development

Software hazard analysis worksheet

No. Qualities Aspects Item Function/
Purpose

Parameter Guide Phrases Deviation Conse-

Hazard Risk Hazard on SW functionality Hazard on PHL

quence aspect

S. Jung, et al. Reliability Engineering and System Safety 202 (2020) 107029
| FPM 01
Power reset HW > User application FPGA
o
jv)
i i
iy
5
Network communication data memory ®
&
3
=}
[0}
A i Q
S
Status Monitoring/Controlling FPGA -
Indication HW 9 9
Voltage . .
monitoring HW —*{ Operation voltage monitoring |
Communication | Diagnosis/send/receive of input | w
channel HW 8
=
Y
Data link Diagnosis/send/receive of network B
connection ®
HW g
» Reset and clock signal generation @
N
CLFPM-01
Reset and
clock HW |

Fig. 4. Example structure of CLFPMO01/FPM-01 modules.

proceed. As shown in the <Table A3> and <Table A4}, an analyst can includes a number of hazards identified in the case study. The table

analyze the consequences of deviations in requirement elements in shows that identified hazards can differ according to the guide phrases.

terms of software functionality aspect hazards and module-level ha- Guide phrases provide a variety of perspective for the analysis of

zards progressively. hardware aspects. Such hazards may or may not represent significant

Table A5 provides a summary of hazard analysis results that threats to the system according to the results of later development
Prerequisites to software Requirements hazard analysis Table A2

hazard analysis

Identify hazards of software
overall function aspects
Prepare a PHL/PHA for the system Apply

Identify the hazards which software is |¢

. L in any way responsible in PHL

Carry out the hazard investigations and - with software functionality-level
evaluations of the system (evaluation hazards Apply
of the impact of software on hazards)

Analyze each software requirement
using the guide phrases

Identify risk level of the hazard (by - for functional unit of requirement

consequence level and probability) - for board component aspect on software

Connect hazards for analyzing
Table A1 consequences to higher level
component

Identify the software criticality level
associated with each hazard

Assign a criticality level to each
requirements & HA results

Table A3 A4, AS

Fig. 5. A results of the case study along the proposed analysis process.

S. Jung, et al.

Table 3
Analysis aspects with requirement points in the analysis results.

Reliability Engineering and System Safety 202 (2020) 107029

Requirement point Analysis aspects

The proposed process NUREG/CR-6430 HAZOP analysis
Sensor Deviation analysis Deviation analysis Cause
Input/Output Cause, Deviation analysis Cause, Deviation analysis Cause
Timing Deviation analysis Deviation analysis Cause, Deviation analysis
Function Deviation analysis Deviation analysis Deviation analysis
Circuit Deviation analysis Cause Cause
Security Deviation analysis Deviation analysis N/A
Memory Cause, Deviation analysis N/A Cause, Deviation analysis
Data bus Deviation analysis Deviation analysis Cause, Deviation analysis
Network Deviation analysis Deviation analysis Cause, Deviation analysis

phases. The proposed refined analysis process is helpful for analyzing
hazards from software to system by bridging the gaps between soft-
ware/hardware/system hazards at an identification of the clause of
“Hazard on SW PHL” and “Hazard on PM PHL.”

4.3. Discussions

The case study presented in this paper demonstrated that the pro-
posed refined process and guide phrases can be used for software ha-
zard analysis for FPGA software requirements specifications. Well-de-
fined guide phrases provide an opportunity to explore various aspects of
hazard analysis, as shown in the case study. We performed additional
analysis on the case study results as comparing them to the results of
HAZOP analysis of the same software to identify the applicability of the
proposed process. Firstly, we classified analysis aspects for each re-
quirement element in the case study results. The left and middle col-
umns in <Table 3> shows the classification results by analysis aspects
when performing requirement hazard analysis using the proposed
process and the original NUREG/CR-6430 process, respectively.

“Deviation analysis” indicates that a requirement item is used to
analyze its deviations by guide phrases directly, whereas, “Cause” in-
dicates that an requirement item causes deviations in other require-
ments. According to the table above, many requirement points, which
are related to hardware aspects, can be analyzed deviations directly. It
shows that the proposed process and guide phrases may be helpful for
analyzing deviations in FPGA software requirement specifications di-
rectly. <Table 3) also compares analysis aspects between software ha-
zard analysis results from using the proposed process, original NUREG/
CR-6430 and HAZOP analysis. The HAZOP analysis result in the table
were generated using the HAZOP technique and general guide words
[1], which have been introduced in several studies and books [34].

HAZOP analysis with general guide words focuses on the function-
ality of the software itself, therefore some requirement points, that are
directly written in the specification of a software function, are analyzed
deviations directly. Other points that are classified to only cause in the
table are related to hardware which supports the software functionality
indirectly. This results show that the perspective of hazard analysis can
be changed by changing the analysis approach and guide words/
phrases. If guide phrases contain appropriate items/contents for the
characteristics of the target system, they can be useful for analysis. The
process and guide phrases proposed in this paper may be more suitable
for the requirements hazard analysis of FPGA software, when analysts
need to analyze each software requirement directly on a hardware-
based platform.

4.4. More considerations on requirement hazard analysis of FPGA software

The step of identifying software-responsible hazards, which is in
part of the original NUREG/CR-6430 process, allows one to assign
software criticality level. However, this step cannot be directly applied
to FPGA software requirement specifications which are defined in

module units, because a gap exists between software elements and
hazards of software/hardware/system. Therefore, we instituted an ad-
ditional step to bridge this gap, but the connections which are shown in
the <Table A2> do not provide exact one-to-one matching between
hazards. According to system theory, a system is not a simple combi-
nation of components [35] and consists of a hierarchical structure with
interactions.

We believe that a more structural approach may be realized by
considering the hierarchical structure of a system. A chain of cause-
consequence, hazard propagations between different level of a system,
and traceability-based hazard identification are conceivable elements in
the hierarchy. For instance, the system generally can be divided into a
hierarchical structure such as sub-system, component, hardware, and
software. Nuclear systems also have hierarchical structures. An example
hierarchical structure of NPP is discussed below. If information re-
garding hazards in the software requirement specifications phase is
well-organized, such as the information provided in <Table A2), such
information can behelpful for analyzing software hazards efficiently.
Traceability between system hierarchy structures is also a conceivable
method for supporting preliminary hazard analysis.

e SW - SRS, SDD, Code

e PLC, FPGA

® Bistable Processor

e RPS/Plant Protection System
o NPP system

Although the requirement hazard analysis of FPGA software has
several differences in terms of analysis aspects, it is not completely
different from the hazard analysis of common software. Deriving con-
sequences, effects, and hazards from deviations by guide phrases is si-
milar substances, for example, the hazards caused by sensor deviations
are the same as software failures caused by misreading value. However,
software hazard analysis of later development phases should account
for the hardware-based development of FPGA. For example, FPGA de-
velopment proceeds to design, implementation, synthesis, and P&R
hazard analysis of after the implementation is entirely different from
existing hazard analysis method. There may be need to another ap-
proach of hazard analysis for FPGA software. Various studies on relia-
bility analysis for FPGA may be useful for the hazard analysis of such
later development phases.

5. Conclusions and future work

This paper proposes a refined process and guide phrases for the
hazard analysis of FPGA software requirement specifications. The pro-
posed process extends the hazard analysis process of the NUREG/CR-
6430 to incorporate the hardware features of FPGA software. The
proposed process consists of six steps for requirement hazard analysis
and extended guide phrases to handle the circuit and memory aspects of
FPGA software. We performed a practical application of the proposed

S. Jung, et al. Reliability Engineering and System Safety 202 (2020) 107029
Table A1
Hazard lists of processor module of the DFLC-N.
No. Preliminary hazard list Hazard category
(H/M/L)
1. power a. loss of power H
b. loss of current H
c. over-voltage H
2. Physical effects of a. Conflagration H
internal/external
b. Physical impact (e.g. H
earthquake)
c.Radioactivity H
3. Calculation error a. Application error H
b. Memory error - stuck H
c. Response time error H
d. Monitoring function error H
e. Transmit capacity error H
f. Invalid LED operation M
g. Network failure H
4. Operator a. Operation error/missed M
bypass by operator
Table A2
Software responsible hazards in PHL from software functionality-level hazards.
No. Hazards of software concerns PHL with concerns Hazard category (H/M/L)
1 PM software cannot send qualified information of its f. Invalid LED operation 4. Operator d. Monitoring function error M
status
2 PM software transmit incorrect signal a. Application error d. Monitoring function error f. Invalid LED operation c. H
Response time error
3 PM software transmit signal when the signal is not a. Application error c. Response time error d. Monitoring function error H
occurred
4 PM software cannot transmit signal when the signal is a. Application error c. Response time error d. Monitoring function error H
occurred
5 PM software transmit invalid length signal a. Application error c. Response time error H
6 PM software transmit incorrect data a. Application error H

process in a case study on a prototype version of an FPGA-based con-
troller operating in Korea. This paper also discussed results of the ha-
zard analysis about comparing analysis aspects and hierarchical struc-
ture of the system. The proposed process and guide phrases are efficient
for analyzing the hazards of FPGA software requirement specifications.
It may also be applied to FPGA software in other domains when soft-
ware requirement specifications are developed using an appropriate
development process. If the extension of guide phrases is considered for
other PLDs, the proposed process may be a useful approach to hazard
analysis. We are now planning to develop software hazard guidelines,
such as templates for generalizable hazard analysis. In the future, we
also plan to complement our integrated development process by in-
coporating asoftware hazard analysis process[36] and an integrated
safety analysis process.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to

influence the work reported in this paper.

CRediT authorship contribution statement

Sejin Jung: Methodology, Validation, Visualization, Writing - ori-
ginal draft, Writing - review & editing. Junbeom Yoo:
Conceptualization, Methodology, Validation, Writing - original draft,
Writing - review & editing. Young-Jun Lee: Resources, Validation,
Writing - review & editing.

Acknowledgements

This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (NRF-2017R1D1A1B03030065) and Next-
Generation Information Computing Development Program through the
National Research Foundation (NRF) of Korea funded by the Ministry of
Science, ICT (NRF-2017M3C4A7066479).

Appendix A. Hazard Analysis Results of FPGA Software Requiremetns Specification for DFLC-N

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ress.2020.107029

https://doi.org/10.1016/j.ress.2020.107029

d System Safety 202 (2020) 107029

ngineering an

Reliability E

S. Jung, et al.

BlEp IOSUSS JO 9zIs
BJEP JIq-9UO B SPUIS IOSUSS 9d£y 8uoim saa1eda1 ejep 10 2dfy
- - - - asnedaq ‘9onoeld UT M0 JOU S0P)] UondUNy SULIOIIUOIN eyep Suoipm 6
anfea
JO1I9 Uk 9A19931 10 9304 Sunerado
Pe Ul JSIXa Jou saop Aefdsip oY) JO anJeA 2)eIS AUR 9ATO0RI JOSUSS SurIojIUOW UT 1991100U] 91
“p “JE ‘1 I 91 10J an[eA els JOU S0P UONdUNJ SULIOJTUO]Y SINDJO I[NeJ [edISAYJ SITUN [edISAYd 8
JUSLIND 3Y) JO dJels JOSUDS JY) WOIJ dN[eA
pe JUIaIIp smoys Aefdsip 10119 9Y) SIAIIIDI Buoim nq
“y“re 1 W a8eyjoa Sunerado ayy, onfea a1els aisoddo ue Suraedey uomnounj SuLrojiuoly ‘98ueI UTIIM L
wnurxeu
2A0QR 3} JO anfea 98uer
BIEP 11q-9UO B SPUIS IOSUSS 9e)S A} SIATIIAI WNWIXeur
- - - - asnedaq ‘9dnoeld Ul INdd0 JOU S0P Y] uopdUNj SULIOIIUOIN aroqy 9
wnuIrxeur
A0qe 9] JO anfea a3uer
BIEP J1q-9UO B SPUIS JOSUSS 9)e)S A} SIATIIAI WINTITuTur
- - - - asnedaq ‘@dndeld Ul INdd0 JOU S0P Y] uonduUnj SuLIOIUOIN mopg [
JUSLIND 3Y) JO dJels [Ney Je-yoms
PE JURISHIP smoys Aefdsip $91BI9UIS I0SUIS WIOIJ QI9YMIS[d
“p “TE ‘1 I a3eyjoa 3unerado ayy, anfea ajels asoddo ue Suiareday BIBD PIAIRIAI [V yomg €
uonerado JOSUSS 3} WOIJ
a1} Jo a3ejj0A AEIS PaA1ada1 Jou ST 93e3joa Junerado
119 S9AI2IDI S[NPOW Y] JO 9JBIS IOLID ‘SINUIIUOD J[NeJ STy} QU0 1e-oMmIs
P'e VDA USYM SNJBA USYAA "9IBIS JUDLIND 3] JO sSa[pIedal $9)eIouad I0suas woly sauo
“p “Je 1 N 91eIs [euriou ayy Aerdsiq T [[e SOATed3I UOTIdUNJ SULIOIUO BIEP PIAIRIDI [V 1re e ypms 4
‘uonduny
on[eA S3[IAD U} YIIM SSNUNUOD dN[BA 0I9Z Buuojyiuowr Sunioyiuow a3eyjoa Sunerado
[eusiou sey a8ejjoa UM 119 0) dels Ay} d3ueyd ued 0I19Z Je-yonis 98ejj0A 0] onfeA J3els By} SuUIpuUSs pue dIBMPIEY UOLdUNJ
PE Bunerado usaym anfea II puy ‘dJeIS JUSLIND Y] JO SS9[pIe3al $9)BISUIS I0SUIS WOIJ $9019Z 3unerado a[npour yHd4q a3 jo adeyjoa Juriojiuouwr 23e)joA
“p “TE ‘1 N 91eIs Jolmd Ay Aedsiq 0 [[® $9A190a1 uonodUNj ULIONUOIA BIEP PAAIRIDI [V ITe Je yonms PIMS 2°€°T°6 unesado oy SurrojtuoN BuneradQ g’ I0SUSS AdBINDDY 1
THd Nd THd MS
uo pIezeH UO pIezeH STy piezeyq souanbasuo) UONeIA(SIselyd 9pmo I9jourereq asodmg,/uonoung uR)] spadsy seniend ‘oN

‘I0suas mnoqe 1ONdATIO Jo muﬁ@EQbS—uOu 9IBM}JOS YDA JO Synsal w_wxﬁmﬁm oy} jo 11ed A

€V 9IqeL

d System Safety 202 (2020) 107029

ngineering an

Reliability E

s)nsax
u1sap papusjurun

sjuowaImbax

sjuswaImbaz
snondiqure Aq uonouny

payroads

[PuuERyd

(osre
6°6 ‘8°6) IUR[[IOAINS

¢ “Ie £q aate0a1/)TwIsUuRn) snonSiquie Aq pajeIaudd st)1 0} pauniojrad jou dre SB N0 parLed yIomiau £q S9ATIDI PUEB JATID31/)TWISURT)
“p'g “e'g k4 H reudis papuajuru USISIP 9IEMIJOS PIpUAUIUN dremijos Ji pauaddey jeym jou sTuondUNy LT UMS T'H'6'6 /Nusuen) ereq eyep ndino/nduy £'6 8
uonen)Is 3 aMmpow yHdd uonouny payoads *2ads
JuaAd1d 0) IsIX0 UONOUNJ Ul SILIOUIAW 0] UdNILIM)1 0} paunojrad jou dre Se JNO paLLIed uonerado SIUDWI syuswRImbal ur 01°6
- - - QoUR[[IOAINS AIOWDIA Ik S)NSaI 1991100 3], dIemijos Ji pauaddey jeym 10U ST UOIOUN uonoung Jo uomdUNJ Yoeg ~ €6 JO SIUSW[D Yoey 8
p€ }o0[2 £q 31991100UT
“o¢ “eg v e H 03 sadueyd 924> ndinQ 6
poriad 02 1991100Ul uonouny payads uonouny
£q 519151331 pue Arowawr S0P 31 0] paurroyiad jou a1e SB JNO paLLIed reusis reusis uonerauad reudrs
®'g ‘9 H ur SoNssT 10110 SuTwIl], 9[94D 1991100Ul sa)eIUaS 1] remjos Ji pauaddey Jeym jou ST uonPUN YPOo[d SuneIsusn }oo[d Sunersuan 3002 pue 1953y 1'6 8
PaINdAXa
1S1Xd 1sI 3ureq a10Jaq
Apeaire syuowaimbar 19151321 ‘uondo ‘Arowewr pazifentur jou st uonounj Apedoid pazijentur uonerado SJUSWID[syuswaImbaz
- - - uoneZI[ENIU] PIZI[ENIUTUN (IIM UOTINIIXT yoea J1 pauaddey 1eym J0U ST UOTdUNY uonoung Jo uonduNy yoeg ur SJUSWIA Jo [V Afyeuondung L
anfea SuUoIm saaes
UoNeNIIS 9SAY) SMPOW UOTIUNJ UT AIOWISU
JuaAa1d 03 ISTXe UOMdUNJ PaIRYS JIUN [RUOTIdUNY
- - - QOUB[[I9AINS AIOWD 0) payoeal ST anfea SUoIpm ONIS dIe SAN[RA dUIOS 9I9YMas[d YOS 9
anfea 3uoim saAes
UoNeN)Is 9SAY) AMPOW UOTIUNJ UT AIOWW
JuaAa1d 03 ISIXe UONdUNJ PaIRYS JIUN [RUONIUNY
- - - QOUB[[I9AINS AIOWDA 0] paydeal ST anfeA SUOIAA U0 0] YINIS AIe SaN[eA [V SO [[& J' 3ong S
anfea 3uoim saaes
uonen)Is 9SAY) A[MNPOW UONIUNJ UT AIOWW uonouny
JuaAd1d 03 IsIX0 UOndUNY PaIeYS “JIUN [RUONOUNY B3 I0J SIMDILD wa)I syusWRIMbax sjuawaImbax
- - - QoUR[[TOAINS ATOWDIA 0) payDeaI ST an[eA SUOIAY OI9Z 01 YINIS dIe SAN[BA [[YV SI0ISZ [[k Ik YomS Bunemoe) 9y jo uonduny Yoy 9} Jo suorPUNy BYIQ I
9]B1S JUSLIND WOIJ uonounj a1emijos qdT Pim
JUDIJJIP dNJeA 21e)s 9y} NI Jo Aels Y} surroj1ad yaIym SIMIID 1M1 wR)sAs 9y Jo ajels uonouny
e'g 9 H sossoxdxe uomdunj q@T SMOYs QT UoIssardxe a1e1s uf SIND0 J[NeJ Yoms 2IYMAIS[d oM Sunydy q@1 Iusxmd ay) Suimoys uorssaidxa a1els 11°6 €
p€ 002 £q 1931100UT
g “eg R H 01 se8ueyd a24d> ndino 4
porrad Y02 1991100U] uonouNy I1eMIJOS uonouny
Aq 519151331 pue Arowawr reusis yoop sur1ojrad YoIyMm SIMDID reuss reuss uonerauad reudrs
e'g ‘9 H ur sansst oo Surwi], porad 1991100Ul SuneISULD ul SIN220 I[NeJ Yoms 919UyMas[d YomIS o2 Suneisusn Y0P Sunerousn SO0 puB J9S9Y ['6 IMIIID AdRINIDY 1
THd Nd THd MS
uo pIezeH UO pIezeHq YSTY prezeq 9ouenbasuon uoneaq saseIyd apmo Io)ourered asodmg/uonoung wo)] spadsy seniend ON

10

S. Jung, et al.

“JINDIId Noqe TONJATD JO siusuaImbal aremijos yod jo synsax sisffeue oy jo 1red v
¥V |1qeL

S. Jung, et al.

Table A5
A number of hazards from hazard analysis of the case study.

Reliability Engineering and System Safety 202 (2020) 107029

No. Software contributable hazards in PHL Number of hazard Aspect category of guide phrases
1 PM software cannot send qualified information of its status 8 Sensor, circuit, calculator, and functionality
2 PM software transmit incorrect signal 4 Functionality, timing
3 PM software transmit signal when the signal is not occurred 9 Circuit, input & output, calculator, timing, functionality
4 PM software cannot transmit signal when the signal is occurred 9 Circuit, input & output, calculator, timing, functionality
5 PM software transmit invalid length signal 1 Timing
6 PM software transmit incorrect data 6 Circuit, input & output, calculator, timing, functionality
References [19] Nuclear power plants - Instrumentation and control important to safety - Hardware
design requirements for computer-based systems (IEC 60987). Tech. Rep..
. Ivsis of sof . International Electrotechnical Commission (IEC); 2007.
(1] Jung ?’ K{m E-S, Yoo J, Keum JY, Lee J-S. Hazard analysis olso tware requ1r§ments [20] Hazard and operability studies (HAZOP studies) - application guide (IEC 61882).
specification for process module of FPGA-based controllers in NPP. Transactions of Tech. Rep.. International Electrotechnical Commission (IEC); 2016,
the .Korean nuclear SOC}ety autumn meeting, Gyeongju, Korea. 2016. [21] Park G-Y, Lee J-S, Cheon S-W, Kwon K-C, Jee E, Koh KY. Safety analysis of safety-
[2] Design O_f Insltmmer,‘tatwn and conm"l systems for nuclear power plant. Tech. Rep.. critical software for nuclear digital protection system. International Conference on
International Atomic En.ergy Agency', 2016. i computer safety, reliability, and security September 18-21, Germany. 2007. p.
[3] Nuclear power plants - instrumentation and control important to safety - general 148-61
requ1r9:m‘ents for s.ystems (IEC 61513). Tech. Rep.. International Electrotechnical [22] KAERI. Safety analysis report of reactor protection system software requirements
Commission (IEC); 2011. i . specification (KNICS-RPS-SVR122). Tech. Rep.. Korea Atomic Energy Research
[4] Software safety hazard analysis (NUREG/CR-6430). Tech. Rep.. United States Institute: 2007. Rev.01
Nuclear Regulatory COn‘lIIllSSl'On (NRC); 1995. [23] Vismari LF, Camargo JB, de Almeida JR, da Silva Neto AV, Gimenes RAV, Cugnasca
(5] Levesnn ch‘ Software safety in embedded computer systems. Commun ACM PS. A practical analytical approach to increase confidence in software safety ar-
1991;34(2):34-46.))) guments. IEEE Syst J 2017;11(4):2072-83.
[6] McDermid J. Software hazard and safety analysis. International symposium on [24] et. al. ML. est Practice VHDL coding standards for DO-254 Programs. Tech. Rep..
formal techniques in real-time and fault-tolerant systems. Springer; 2002. p. 23-34. D0-254 User Groups; 2010
[7] Software reliability and safety in nuclear reactor protection systems (NUREG/CR- [25] Benites LA, Benevenuti F, Oliveira ABD, Kastensmidt FL, Added N, Aguiar VA, et al.
6101). Tech. Rep.. United States Nuclear Regulatory Commission (NRQ; 1993. Reliability calculation with respect to functional failures induced by radiation in
[8] IEEE Standard for Software Safety Plans (IEEE 1228). Tech. Rep.. Institute of tmr arm cortex-m0 soft-core embedded into SRAM-based fpga. IEEE Trans Nucl Sci
Electrical and Electronics Engineers (IEEE); 1994. 2019:66(7):1433-40
[9] Nuclear power plants - instrumentation and control important to safety - develop- [26] McNelles P, Zeng ZC, Renganathan G, Lamarre G, AKL Y, Lu L. A comparison of fault
ment'of HDL-programmed integrated c1rcu'1ts for systems peFformmg ctelte'gory A trees and the dynamic flowgraph methodology for the analysis of fpga-based safety
functions (IEC 62566). Tech. Rep.. International Electrotechnical Commission (IEC); systems part 1: reactor trip logic loop reliability analysis. Reliabil Eng Syst Saf
2012.) o) 2016;153:135-50.

[10] Application of field programmable gate arrays in mstrum-entatlon arfd control sys- [27] McNelles P, Renganathan G, Zeng ZC, Chirila M, Lu L. A comparison of fault trees
tems of Tluclear power plants. Tech. Rep.. IAEA (International Atomic Energy and the dynamic flowgraph methodology for the analysis of fpga-based safety
Agency); 2016.) o . X systems part 2: theoretical investigations. Reliabil Eng Syst Saf 2019;183:60-83.

[11] NUREG/CR-7006 : review guidelines for field-programmable gate arrays in nuclear [28] Li W, Hao Z. FPGA software testing process management. 2015 IEEE international
power plant safety systems. Tech. Rep.. U.S. Nuclear Regulatory Commision (NRC); conference on grey systems and intelligent services (GSIS). IEEE; 2015. p. 600-3.
319%'1. . . . de Almeid [29] Maerani R, Mayaka JK, Jung JC. Software verification process and methodology for

[12] daSilva Neto 'AV, Vlsma,“ LF, Gimenes R{\V’ Sesso DB’, e Al meida JR, Cugnasca PS, the development of FPGA-based engineered safety features system. Nucl Eng Des
et al. A practical analytical approach to increase confidence in PLD-Based systems 2018:330:325-31
safety analysis. IEEE Sy%t J 2017;12(4):3473-84. L [30] Ahmed I, Jung J, Heo G. Design verification enhancement of field programmable

[13] Zheng P’ Wang Y, Xueyi Z. The meth0d§ of FPGA softwar(? Verlﬁc.atlorf. 2011 IEEE gate array-based safety-critical I&C system of nuclear power plant. Nucl Eng Des
international conference on computer science and automation engineering. 3. 2011. 2017:317:232-41
p- 8,6_,9' X X . [31] Lu J-J, Hsu T-C, Chou H-P. System assessment of an FPGA-based RPS for ABWR

[14] Karimi MM, Anzagira A, Taylor W, Nelson J, Osareh A. Component failure analysis nuclear power plant. Prog Nucl Energy 2015;85:44-55
(CFA): a new method for implemented FPGA design failure analysis. SoutheastCon [32] Huang J, You J-X, Liu H-C, Song M-S. Failuré mode and effect analysis improve-
2018, IEEE. _IEEE; 201_8'.13' 1-8. X ment: asystematic literature review and future research agenda. Reliabil Eng Syst

[15] Jung S, Choi JP. Predicting system failure rates of SRAM-based FPGA on-board Saf 2020:199
processors in space radiation environments. Reliabil Eng Syst Saf 2019;183:374-86. [33] McNelles P, Zeng ZC, Renganathan G, Chirila M, Lu L. Failure mode taxonomy for

[16] Hf)que KA, Mohamed OA, Savaljle.‘ Y'_ Dependability modeling and 01'pt1r.nlzat10n of assessing the reliability of field programmable gate array based instrumentation
triple modular redundancy partitioning for SRAM-based FPGAs. Reliabil Eng Syst and control systems. Ann Nucl Energy 2017;108:198-228
Saf 2019;.18.2:107_19‘ X [34] Ericson CA. Hazard analysis techniques for system safety. John Wiley & Sons; 2015.

[17] KAERI. Digital FPGA Logic Controller - Nuclear(NTIP-FLC-SRS201). Tech. Rep.. [35] Leveson NG. Safeware: system safety and computers. Addison Wesley; 1995.
Korea Atomic Energy Research Institute; 2016. In Korean [36] Kim E-S, Lee D-A, Jung S, Yoo J, Choi J-G, Lee J-S. NuDE 2.0: a formal method-

[18]

Nuclear power plants - Instrumentation and control systems important to safety -
Software aspects for computer-based systems performing category A functions (IEC
60880). Tech. Rep.. International Electrotechnical Commission (IEC); 2006.

11

based software development, verification and safety analysis environment for di-
gital I&Cs in NPPs. J Comput Sci Eng 2017;11(1):9-23.

http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0001
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0002
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0002
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0003
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0004
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0005
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0006
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0007
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0008
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0009
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0010
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0011
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0012
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0013
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0014
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0015
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0016
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0017
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0018
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0019
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0020
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0021
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0022
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0023
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0024
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0025
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0026
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0027
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0028
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0029
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0030
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0031
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0032
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0033
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0034
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0035
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0036
http://refhub.elsevier.com/S0951-8320(20)30530-5/sbref0036

	A practical application of NUREG/CR-6430 software safety hazard analysis to FPGA software
	Introduction
	Background
	The FPGA development process
	Software hazard analysis of the NUREG/CR-6430
	Related work

	A refined process for hazard analysis of software requirement specifications
	Case study
	Target system software
	A summary of requirements hazard analysis results
	Discussions
	More considerations on requirement hazard analysis of FPGA software

	Conclusions and future work
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Hazard Analysis Results of FPGA Software Requiremetns Specification for DFLC-N
	Supplementary material
	References

