
Transactions of the Korean Nuclear Society Spring Meeting

Taebaek, Korea, May 26-27, 2011

Verification Process of Behavioral Consistency

between Design and Implementation programs of pSET using HW-CBMC

Dong-Ah Lee*, Jong-Hoon Lee and Junbeom Yoo

Division of Computer Science and Engineering, Konkuk University

1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Korea
*
Corresponding author: ldalove@konkuk.ac.kr

1. Introduction

Controllers in safety critical systems such as nuclear

power plants often use Function Block Diagrams

(FBDs) to design embedded software. The design is

implemented using programming languages such as C to

compile it into particular target hardware. The imple-

mentation must have the same behavior with the design

and the behavior should be verified explicitly. For ex-

ample, the pSET (POSAFE-Q Software Engineering

Tool) [1] is a loader software to program POSAFE-Q

PLC (Programmable Logic Controller) and is developed

as a part of the KNICS (Korea Nuclear Instrumentation

& Control System R&D Center) [2] project. It uses

FBDs to design software of PLC, and generates ANSI-C

code to compile it into specific machine code. To verify

the equivalence between the FBDs and ANSI-C code,

mathematical proof of code generator or a verification

tools such as RETRANS [3] can help guarantee the

equivalence. Mathematical proof, however, has a weak-

ness that requires high expenditure and repetitive ful-

fillment whenever the translator is modified. On the

other hand, RETRANS reconstructs the generated

source code without consideration of the generator. It

has also a weakness that the reconstruction of generated

code needs additional analysis

This paper introduces verification process of behav-

ioral consistency between design and its implementation

of the pSET using the HW-CBMC [4]. The HW-CBMC

is a formal verification tool, verifying equivalence be-

tween hardware and software description. It requires

two inputs for checking equivalence, Verilog for hard-

ware and ANSI-C for software. In this approach, FBDs

are translated into semantically equivalent Verilog pro-

gram [5], and the HW-CBMC verifies equivalence be-

tween the Verilog program and the ANSI-C program

which is generated from the FBDs.

2. Background

2.1 Translation from FBDs into Verilog

Our approach of the verification using HW-CBMC

first translates FBDs into Verilog. The translation rules

were proposed in [5]. The rule consists of three parts,

corresponding to unit, component and system FBDs

respectively. First part describes how a unit of FBD is

translated into a function in Verilog language. It first

determines Verilog function type, and each input and its

type is declared. And then behavioral description is fol-

lowed, such as arithmetic, logic or selection operations.

Second part explains translation rules for component

FBDs. The component FBD is a logical block of inde-

pendent function blocks which a number of function

blocks are interconnected with to generate meaningful

outputs. The rules of the second part declare component

FBD's name, ports, wire type variables and reg type

variables. Every function block translated as a Verilog

function and included in the definition of module for the

component FBD, and they called if there is a function

according to its execution order to generate outputs of

the component FBD. The last part describes how a sys-

tem FBD is translated into a Verilog program. A system

FBD contains a number of component FBDs which is

translated in Verilog Modules, and their sequential in-

terconnections. Verilog modules are instantiated and

called according to their execution order with outputs

communicated.

2.2 HW-CBMC

The HW-CBMC is a formal verification tool for veri-

fying behavioral consistency between two implementa-

tions of the same design: one written in ANSI-C, and

one written in register transfer level HDL like VHDL or

Verilog. Motivation of the HW-CBMC is to reduce ad-

ditional time for debugging and testing of the HDL im-

plementation by providing automated way of establish-

ing the consistency of HDL implementation using the

ANSI-C implementation as a reference, because debug-

ging and testing cost of the ANSI-C implementation is

usually lower.

In this paper, the HW-CBMC is used for verification

of behavioral consistency between Verilog program

translated from FBDs and ANSI-C program generated

from the FBDs. The data in the Verilog modules is

available to the ANSI-C program by means of global

variables, and we can check change of two programs’

data using the function assert(condition) in C program.

3. Verification Process

Fig.1 shows verification process of behavioral con-

sistency between design written in FBD and its imple-

mentation written in ANSI-C program. The pSET trans-

lates FBDs program into ANSI-C program using code

generator. To verify equivalence between the FBDs and

ANSI-C programs, we translated the FBDs into seman-

Transactions of the Korean Nuclear Society Spring Meeting

Taebaek, Korea, May 26-27, 2011

tically equivalent Verilog program using automatic

translator named FBDtoVerilog [5]. The ANSI-C pro-

gram and translated Verilog program are two inputs of

the HW-CBMC to check equivalence between both.

Automatically translated Verilog program, however, is

not exactly suitable for the HW-CBMC. The following

subsection describes how to make the Verilog program

suitable for the HW-CBMC.

FBD

Program
(Design)

Code

Generator

ANSI-C

Program
(Implementation)

Automatic

Translator

Equivalence

Checking
(HW-CBMC)

Input1

Input2
Verilog

Program

Fig. 1. Verification Process of Behavioral Consistency be-

tween FBDs and ANSI-C Programs of the pSET using the

HW-CBMC

3.1 Modification of Verilog

One feature of the automatically translated Verilog

program is modules have an output which has same

name with the name of its module. The HW-CBMC,

however, cannot access the output variable to check its

change. We should modify the name of module’s output

described in Fig. 2. Another feature is that the translator

translates a function block into a function. We also

should modify functions into modules, because the HW-

CBMC does not allow function calls. Fig. 2 also shows

difference between a function and a module named

Equal. The arguments of a module depend on its func-

tion.

Translated Verilog program Modified Verilog program

module module1

(clk, IN, module1);

…

output main_module;

…

function Equal;

…

endfunction

…

endmodule

module module1

(clk, IN, module1_out);

…

output main_module_out;

…

endmodule

module Equal(in1,in2,out);

…

endmodule

Fig. 2. Modification of automatically generated Verilog pro-

gram

3.2 Verification using HW-CBMC

The ANSI-C program should have statements provid-

ed by the HW-CBMC to verify equivalence with Veri-

log program. For example, a function set_input() is in-

serted to synchronize the inputs of ANSI-C and Verilog

program, and a function next_timeframe() makes transi-

tion of Verilog program once. A function as-

sert(conditions) checks conditions which is normally

used for checking consistency about variables of Veri-

log and ANSI-C program.

If the result of verification between modified Verilog

program and ANSI-C program with additional state-

ments is successful, then the result means that we veri-

fied equivalence between FBDs and ANSI-C programs

indirectly. On the other side, if the result is fail, then it

means FBDs and ANSI-C program operate differently

and we can trace the fail condition through analysis of

the counterexample which is generated by the HW-

CBMC.

4. Conclusion

In this paper, we have introduced verification process

of behavioral consistency between design written in

FBDs and its implementation written in ANSI-C, which

the pSET uses both to develop PLC software. We are

planning to modify the translation rules from FBDs to

Verilog in order to be appropriate to the HW-CBMC.

We are also planning to verify equivalence between

Verilog program which is automatically translated under

the modified rules from FBDs and ANSI-C program

which is automatically generated from the FBDs.

ACKNOWLEDGEMENT

This research was supported by the MKE(The Ministry of

Knowledge Economy), Korea, under the ITRC(Information

Technology Research Center) support program supervised by

the NIPA(National IT Industry Promotion Agency (NIPA-

2011-(C1090-1131-0008) and (NIPA-2010-C1090-1031-0003).

This research was supported by Basic Science Research Pro-

gram through the National Research Foundation of Ko-

rea(NRF) funded by the Ministry of Education, Science and

Technology(2010-0002566). This work was supported by the

IT R&D Program of MKE/KEIT [10035708, "The Develop-

ment of CPS(Cyber-Physical Systems) Core Technologies for

High Confidential Autonomic Control Software"]

REFERENCES

[1] Sengjae Cho, Kyungmo Koo, Byungyong You, Tae-Wook

Kim, Taeyoon Shim, Jin S. Lee, Development of the loader

software for PLC programming. In: Proceedings of Confer-

ence of the Institute of Electronics Engineerers of Korea, Vol.

30, No.1, pp. 595-960, 2007

[2] Korea Nuclear Instrumentation & Control System R&D

Center, http://www.knics.re.kr/

[3] RETRANS, Institue for Safety Technology (ISTec),

http://www.istec.grs.de/en/produkte/leittechnik/retrans.html?p

e_id=54

[4] Edmund Clarke, Daniel Kroening: Hardware verification

using ANSI-C programs as a reference. In: Proceedings of the

2003 Asia and South Pacific Design Automation Conference,

pp. 308-311, 2003

[5] Eunkyoung Jee, Seungjae Jeon, Sungdeok Cha, Kwang-

yong Koh, Junbeom Yoo, Geeyong Park and Poonghyun

Seong, FBDVerifier: Interactive and Visual Analysis of Coun-

terexample in Formal Verification of Function Block Diagram.

In: Journal of Research and Practice in Information Technolo-

gy, Vol.42, No.3, pp.255-272, 2010

	분과별 논제 및 발표자

	PNO0: - 933 -
	PNO1: - 934 -

