
Annals of Nuclear Energy 220 (2025) 111484

0

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

CVEC: A customized VIS-based equivalence checker for verifying commercial
field-programmable gate array synthesis software in small modular reactors
Yoona Heo a, Sejin Jung b, Eui-Sub Kim a, Junbeom Yoo a ,∗

a Konkuk University, Seoul, Republic of Korea
b Chinju National University of Education, Chinju, Republic of Korea

A R T I C L E I N F O

Keywords:
COTS software dedication
Equivalence checking
Verilog
EDIF
VIS
FPGA synthesis software

 A B S T R A C T

Field-programmable gate array (FPGA) is a hardware-based platform widely used in safety-related systems.
FPGA development involves synthesis, placement and routing, with designs ultimately downloaded onto the
device. Commercial FPGA synthesis software converts register-transfer level (RTL) designs into gate-level
representations. Standards such as NUREG/CR-6421, IEEE Std 7-4.3.2, EPRI NP-5652, and EPRI TR-106439
require verification of these tools, while IEC 62566 mandates static analysis, including equivalence checking,
for nuclear power plant applications. This paper introduces CVEC, a customized VIS-based equivalence checker
that verifies the correctness of FPGA synthesis software. It performs equivalence checking between RTL designs
and gate-level designs synthesized using Synopsys Synplify Pro within the Libero IDE. When verification is
successful, it ensures that these softwares operate correctly at the synthesis level. Two case studies demonstrate
the effectiveness of CVEC in verifying the functional correctness of commercial FPGA synthesis softwares.
1. Introduction

A small modular reactor (SMR) is an advanced nuclear reactor
currently gaining attention. Several documents and studies discuss the
potential use of field-programmable gate arrays (FPGAs) in SMRs (NuS-
cale, 2020; U.S. Nuclear Regulatory Commission, 2016; Cummins and
Quinn, 2021). FPGA-based controllers are being utilized not only in
SMRs but also in the broader nuclear power plant (NPP) domain,
with several studies exploring their applications (Farias et al., 2016;
Zhang and Wu, 2024; Piggin and Sampson, 2016). Moreover, FPGA
technology is being applied in various applications, including cyber–
physical systems (CPSs) (Gautham, 2020), electric vehicles (Bukya
et al., 2024), internet of things (IoT) (Lee and Park, 2021), autonomous
vehicles (Ahn et al., 2019), grid systems (Allani et al., 2021), neural
networks (Wang et al., 2022), quantum processing (Xu et al., 2021),
and more.

As stated in IEEE Std 1012-2016 (Institute of Electrical and Electron-
ics Engineers (IEEE), 2016a), IEEE Std 7–4.3.2-2016 (Institute of Elec-
trical and Electronics Engineers (IEEE), 2016b) and IEC 60880:2006 (In-
ternational Electrotechnical Commission (IEC), 2006), digital devices
used in safety systems of NPP should be thoroughly verified and val-
idated throughout the entire software development life-cycle (SDLC).
However, an FPGA is a hardware-based platform and works with a
thoroughly different SDLC from micro-processor based platforms such
as programmable logic controller (PLC). The FPGA software is first

∗ Corresponding author.
E-mail address: jbyoo@konkuk.ac.kr (J. Yoo).

modeled with hardware description languages (HDLs) such as Ver-
ilog (Institute of Electrical and Electronics Engineers (IEEE), 2001) and
VHDL (Institute of Electrical and Electronics Engineers (IEEE), 2008),
and then subsequently synthesized into gate-level designs. Commercial
logic synthesis tools and electronic design automation (EDA) tools
(e.g. Synopsys Synplify Pro (Synopsys, 2015), etc.) automate the FPGA
logic synthesis process. Then these designs are placed and routed into
physical layouts by EDA tools.

According to NUREG/CR-6421 (U.S. Nuclear Regulatory Commis-
sion, 1996b), IEEE Std 7–4.3.2 (Institute of Electrical and Electronics
Engineers (IEEE), 2016b), Electric Power Research Institute (EPRI)
NP-5652 (Electric Power Research Institute (EPRI), 2014) and EPRI
TR-106439 (Electric Power Research Institute (EPRI), 1996), commer-
cial grade items (i.e., commercial-off-the-shelf (COTS) items) used in
nuclear safety-related application must be verified through sufficient
acceptance methods to assure their functionality. Also, in IEC 62566-
2:2020 (International Electrotechnical Commission (IEC), 2020), it is
stated that static analysis including equivalence checking is required for
the HDL-programmed devices (HPD) (e.g., FPGA) used in the nuclear
safety applications. While the logic synthesis tools can be formally
verified with compiler verification techniques (Hoare, 2003) directly,
it is hard to apply them to the products of 3rd-party developers. An
alternative solution is to do the tool verification indirectly as part of
the COTS software dedication (Yoo et al., 2015).
https://doi.org/10.1016/j.anucene.2025.111484
Received 6 January 2025; Received in revised form 23 March 2025; Accepted 12 A
306-4549/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
pril 2025
data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/anucene
https://www.elsevier.com/locate/anucene
https://orcid.org/0000-0002-4904-5635
mailto:jbyoo@konkuk.ac.kr
https://doi.org/10.1016/j.anucene.2025.111484
https://doi.org/10.1016/j.anucene.2025.111484

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
‘‘For a specific input program (e.g., Verilog program), if a synthesis tool
produces a program (e.g., Netlist) which shows the same behavior for all
possible cases, we can claim that the synthesis tool works correctly at least
for the input program.’’

There are several studies or commercial formal verification tools
which can be used for our purpose, i.e., the correctness verification
(dedication) of commercial FPGA logic synthesis tools, such as Formal-
Pro (Siemens, 0000a), Conformal Equivalence Checker (Cadence, 2017)
and Formality (Synopsys, 2019). They are, however, too case-sensitive
to be comfortable with various combinations of EDA and verification
tools, as we summarized in Yoo et al. (2015). For instance, we cannot
use FormalPro, a formal equivalence checking tool for FPGA design,
in combination with Libero IDE (Microchip, 2014), an IDE for FPGA
design, and Synopsys Synplify Pro (Synopsys, 2015) synthesizer, a logic
synthesis tool for FPGA. This was the combination of the project we
worked on. Since we cannot expect the vendors to provide a specific ex-
tension that cannot make a profit, we need to develop a new customized
solution for this combination.

This paper proposes a Customized VIS-based Equivalence Checker
(CVEC), to check behavioral equivalence of a Verilog program and
a Netlist synthesized from it under the combination of the Synopsys
Synplify Pro synthesizer in the Libero IDE EDA tool. In the FPGA indus-
try, Synopsys Synplify Pro and Libero IDE are already being integrated
and used together (Synopsys, 2009). CVEC uses verification engine,
verification interacting with synthesis (VIS) (Brayton et al., 1996), a
widely-used open-source system for formal verification, synthesis, and
simulation of finite-state systems. It reads two input programs (i.e.,
Verilog and electronic design interchange format (EDIF)) and checks
their behavioral equivalence for all possible input combinations using
VIS. This paper also proposes a set of assumptions, translation rules,
and a translator to make the VIS-based equivalence checking possible,
since VIS cannot read the Verilog and EDIF files directly.

In order to demonstrate the effectiveness and applicability of the
proposed technique, CVEC, we performed a case study with two exam-
ples of bistable processor (BP) programs in reactor protection system
(RPS), excerpted from a preliminary version of Korean nuclear power
plants. We also tried to compare the performance of CVEC with a
commercial verification tool FormalPro, although we had to change the
logic synthesis tool into Precision FPGA (Siemens, 0000b) instead.

The paper is organized as follows: Section 2 provides background in-
formation about the conventional FPGA development process, EDIF and
the VIS verification system. Section 3 surveys related researches, and
Section 4 overviews the CVEC and explains the details of its verification
process. The case studies with two RPS BPs of Korean nuclear power
plants is presented in Section 5. In conclusion, Section 6 concludes the
paper and provides remarks on future research extensions. Appendix
includes examples of translations from EDIF to BLIF-MV (Brayton,
1991).

2. Background

2.1. Development and V&V of FPGA

The development life-cycle of FPGA-based digital I&Cs basically
follows IEC 61513 (International Electrotechnical Commission (IEC),
2011). An FPGA-based system, however, has a specific feature to con-
sider further. The phase of the development life cycle involving HDL
programming is classified as software, whereas the phase that begins
after downloading it onto a chip is classified as hardware. Therefore,
FPGA development should adhere to both IEC 60880 (International
Electrotechnical Commission (IEC), 2006) for software compliance and
IEC 60987 (International Electrotechnical Commission (IEC), 2007)
for hardware compliance. ⟨Fig. 1⟩ (Jung et al., 2016) illustrates the
V-model of FPGA development life-cycle described in IEC 62566 (In-
ternational Electrotechnical Commission (IEC), 2012), integrating both
software and hardware aspects. The left-hand side of the ⟨Fig. 1⟩
2
Fig. 1. The V-shaped life-cycle of FPGA development.

represents the software aspect of a typical FPGA development life-cycle,
as guided in NUREG/CR-7006 (U.S. Nuclear Regulatory Commission,
1996a).

The FPGA software development is fully automated by synthesis
softwares (i.e., FPGA logic synthesis tools or EDA tools) of FPGA
vendors. After programming a register transistor logic (RTL) design
with HDLs, the design is transformed into a gate-level design (i.e.,
netlist) by synthesis softwares such as Synopsys Synplify Pro (Synopsys,
2015), Precision FPGA (Siemens, 0000b) and Cadence Virtuoso Digital
Implementation (Cadence, 2019).

For the verification and validation (V&V) of the FPGA development
process, designers perform simulation-based verification at each stage of
the FPGA software development life-cycle to ensure that each artifact
complies with its requirements specification. The first simulation per-
formed on RTL designs is behavioral simulation. The goal of behavioral
simulation is to ensure that all requirements are correctly and accurately
implemented into the RTL design. Since RTL designs are typically
created manually by most designers, the process is time-consuming.
After synthesis from RTL design to gate-level design, designers perform
logic simulation to confirm that all functionalities were preserved during
the synthesis. After the place & route (P&R) process, designers can
validate the layout via post-layout simulation to ensure that the layout
meets all timing requirements. Simulators such as ModelSim (Siemens,
0000c) and Questa Simulator (Siemens, 0000d) are widely used for
the simulation-based verification. Every simulation-based verification
at each step is performed individually and independently, and it is
considered as one of the key factors for efficient FPGA development.

The V&V process for the FPGA development also includes equiv-
alence checking (Burch et al., 1994). Equivalence checking is one of
the formal verification techniques, which uses formal techniques to
determine whether two versions of a design are behaviorally equiv-
alent or not. Equivalence checking can prove that two given designs
have the same functionality, i.e., it determines ‘‘whether they show
the same behavior for all possible input sequences.’’ It can ensure that
an RTL design and the gate-level design synthesized from the RTL
design always show the same behavior. This verification technique
can be performed quickly and without the need for test vectors. As
the automated synthesis by synthesis softwares becomes increasingly
sophisticated, unintended and unexpected behaviors in FPGA designs
may arise. At this point, equivalence checking can help us ensure that
the synthesis process was executed correctly. Commercial tools such as
FormalPro, Conformal Equivalence Checker, and Formality can be used
for equivalence checking; however, their applicability is limited.

2.2. EDIF

EDIF (Electronic Industries Association, 1998) is a vendor-neutral
format in which to store netlists and schematics. It was one of the

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
first attempts to establish a neutral data exchange format for the EDA
industries.

The latest version of EDIF is 4.0.0, but most FPGA vendors still use
the version 2.0.0 which was first approved as the standard ANSI/EIA-
548-1998. Nevertheless the effort for the neutral data exchange, FPGA
vendors keep modifying the EDIF format slightly and appropriately
for their own tools. The EDIFs of various FPGA vendors are now not
compatible with each other, unfortunately. This paper uses the EDIF of
Libero IDE.

2.3. VIS verification system

VIS (Brayton et al., 1996) is a verification system that integrates
formal verification, simulation and synthesis for hardware systems
modeled as finite-state machines (FSMs). The VIS system supports fair
computational tree logic (CTL) model checking (Clarke et al., 1999),
language emptiness checking, sequential equivalence checking, cycle-
based simulation, and hierarchical synthesis. It processes hardware
designs described in (Synchronous) Verilog (Chouy, 1997) or BLIF-
MV (Kukimoto, 1996) formats, using an in-house translator vl2mv to
convert Verilog designs into the BLIF-MV representation for efficient
analysis and synthesis.

In our earlier work (Yoo et al., 2009), we proposed a verification
technique that translates a function block diagram (FBD), a graph-
ical programming language defined in IEC 61131-3 (International
Electrotechnical Commission (IEC), 2013), into a semantically equiv-
alent Verilog program. We then attempted to prove the behavioral
equivalence between two successive revisions using the sequential
equivalence checking capabilities of VIS. We also developed VIS An-
alyzer (Jung et al., 2010) to provide a graphical interface designed to
help domain experts fully utilize the powerful features of VIS without
being overwhelmed by its primitive, text-based interface.

VIS has since been upgraded to newer versions, such as academic
industrial-strength verification tool (ABC) (Brayton and Mishchenko,
2010) and incremental inductive model checker (IImc) (University of
Colorado at Boulder, 2016). There are several differences between VIS
and ABC, IImc. For model checking algorithms, ABC is based on and-
inverter graphs (AIGs) and IImc is based on IC3, while VIS is based
on FSMs. Therefore, VIS can perform sequential equivalence checking
based on FSM, while the other two tools cannot. Instead, ABC per-
forms combinational equivalence checking, and IImc cannot perform
equivalence checking, since it is optimized for solving model checking
problems. Also, while VIS focuses on both synthesis and verification,
ABC focuses more on synthesis than verification, and IImc focuses more
on verification than synthesis. Many successful studies have demon-
strated the value of VIS as one of the most mature equivalence checkers
to date.

2.4. COTS software dedication and equivalence checking

As mentioned in Section 1, various standards and guidelines demand
the verification of COTS items (especially software in this paper) to
accept them in safety-related applications. In EPRI NP-5652 and EPRI
TR-106439, there are 4 methods that can be used to accept COTS items
as shown:
(1) Special Tests and Inspections
(2) Commercial Grade Survey of Supplier
(3) Source Verification
(4) Acceptable Supplier/Item Performance Record

One of the ways to verify the COTS items is using the formal
verification techniques such as equivalence checking. This can be an
example for method (1) presented in EPRI NP-5652 and EPRI TR-
106439. Also, in IEC 62566, equivalence checking is mentioned as one
of the static analysis techniques to verify HPD used in nuclear safety
applications.
3
In recent years, the verification by equivalence checking has become
widely accepted in integrated circuits (ICs) fields, in place of the
simulation-based techniques. There also exists some studies for logic
equivalence checking with formal verification techniques (Hu and Chu,
2023; Ni et al., 2023). Many international standards (RTCA, 2000; In-
ternational Electrotechnical Commission (IEC), 2000) gradually require
to use the formal verification techniques, too. There are several well-
known formal verification tools such as FormalPro (Siemens, 0000a),
Conformal Equivalence Checker (Cadence, 2017), Formality (Synopsys,
2019) and VIS (Brayton et al., 1996) which is embedded in CVEC. Times
(2001) provides further detailed information on the tools.

3. Related works

There are some research related to dedication of COTS software.
In Kim et al. (2010), authors select safety features as functional and
performance requirements for method (1). They applied functional
benchmarking test method for the COTS dedication of QNX real time
operating system (RTOS) to evaluate its sustainability for safety-related
applications in the NPP domain. The results demonstrated that QNX
RTOS has significant potential as a commercial operating system ca-
pable of meeting safety and performance requirements necessary for
deployment in digital systems within NPPs. This study also established
valuable criteria for comparing QNX RTOS with other commercial
RTOS options, providing a reliable basis for selection.

In Kim et al. (2007), authors discuss the process and results of
the COTS dedication of the PROFIBUS fieldbus message specification
(FMS) driver software. PROFIBUS FMS driver is a high-level communi-
cation module used in NPP safety systems such as POSAFE-Q. In this
research, methods 1, 2, and 4 presented in EPRI NP-5652 and TR-
106439 are applied to PROFIBUS FMS driver software. These methods
performed by telecommunication technology association (TTA) and
Hilscher Company successfully validated the PROFIBUS FMS driver
for safety-related applications. Also, a certification from PROFIBUS
national organization (PNO) confirmed the reliability of software. The
study highlights the importance of combining multiple methodologies
to ensure comprehensive validation of COTS software.

In Jung et al. (2016), one of our previous works, a process for
evaluating the suitability of commercial grade softwares indirectly used
for FPGA logic synthesis in FPGA development is proposed. COTS
software as the target of evaluation are identified and both the safety
category of the target system and the usage category of the COTS
software are determined. This categorization enables them to assign an
appropriate safety category to the COTS software. Based on this, they
define a list of dedication criteria for each category. Subsequently, they
refine the acceptance criteria and select suitable acceptance methods,
including specific V&V techniques. Finally, the selected acceptance
methods and techniques are applied to the target software through the
dedication process to verify compliance with the acceptance criteria.
A case study on Synopsys Synplify Pro demonstrates that the proposed
evaluation criteria and acceptance process are effective for assessing
indirect tools used in FPGA development.

4. A customized VIS-based equivalence checker

⟨Fig. 2⟩ shows an overview of the VIS-based equivalence checker
CVEC, customized for the Synopsys Synplify Pro synthesizer in the Libero
IDE EDA. There are 4 phases to perform equivalence checking in CVEC
and each of them is described in the following subsections.
(Phase I) VerilogtoV4VIS transformation
(Phase II) EDIFtoBLIF-MV transformation
(Phase III) VIS equivalence checking
(Phase IV) Post-analysis and visualization

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Fig. 2. A customized VIS-based equivalence checker: CVEC.

4.1. [Phase I] VerilogtoV4VIS transformation

In the first phase, we first provide Verilog program as the first
input for CVEC. In VIS, the Verilog HDL front-end called vl2mv trans-
lator reads most elements of Verilog, then it compiles a subset of
Verilog into BLIF-MV. While vl2mv reads Verilog, it either ignores or
rejects some Verilog elements without notification. Therefore, CVEC
transforms a typical Verilog program into a customized Verilog for
VIS (i.e., Verilog4VIS (V4VIS) (Kim et al., 2015)) program, in order
to make vl2mv read a typical Verilog programs correctly. Also, CVEC
includes a rule checker called Verilog4VIS Checker to verify whether the
assumptions and constraints for a Verilog program are satisfied, and
recommends appropriate modifications to transform Verilog program
into a Verilog4VIS program. A Verilog4VIS program can be developed
through iterative verification and refinement. We introduce below a
total of 7 assumptions and constraints for VerilogtoV4VIS transformation
that must be followed in order to ensure the correct functioning of the
VIS verification engine.

Assumptions and constraints
(1) Use the clock clk only at the statement always @(posedge clk)
(2) Do not use the time delay
(3) Do not use the non-blocking statement
(4) All reg variables should be initialized with 0
(5) Do not use the integer type variable
(6) Do not use the size of bits when defining parameter
(7) Do not use the negedge edge

The assumptions and constraints on the Verilog modeling are as
follows:

The first assumption states that the VIS interprets a Verilog program
as a discrete-time finite state machine with an implicit global clock, clk.
This alignes the Verilog program with the input format of Symbolic
Model Verifier (SMV) used in SMV (Cimatti et al., 1999) or PROMELA
language used in SPIN (SPIN, 2016). Since all behaviors within the
always statements are synchronized to a single clock, clk, VIS can
execute (or simulate) a BLIF-MV model without requiring the clk. Con-
sequently, clocks are not utilized in BLIF-MV, and all clks are ignored.
Additionally, all clock-related elements and conditions in always @(…)
statement are ignored by vl2mv. Therefore, the clk should only be used
for synchronization purposes, such as in always @(posedge clk), and not
for any other purposes.

If constraints (2) and (3) are not satisfied, vl2mv may produce a
compilation error. According to assumption (1), no time delays for
gates or wires are allowed yet, since the BLIF-MV does not contain
4
an element to implement time delays. Additionally, non-blocking state-
ments are not permitted; all statements must be written as blocking
statements.

Constraint (4) requires that all reg variables to be initialized with
0. No other value is allowed, as Libero IDE assigns a default value of
0 to the EDIF elements corresponding to the reg variables, regardless
of their initialization. However, VIS requires all reg variables to be
initialized with an appropriate value. Our solution is to initialize all reg
variables to 0, regardless of their original values. We anticipate that
this will not result in any side-effect, since all DI&C systems have a
distinguished procedure for the system boot-up, such as temporarily
ignoring all output values (i.e., shutdown alarms) during the initial
phase of boot-up.

We cannot use integer type variables in the VIS verification, since
the VIS lacks a mechanism to initialize them, as specified in constraint
(5). Our suggestion is to replace an integer variable with a reg [31:0]
variable during the initialization phase, as it functions in exactly the
same way. Constraint (6) also restricts the detailed definition of param-
eter variables (e.g., using [15:0] of bit array), as it may implicitly lead
to a loss of information. We cannot use the negedge edge as constraint
(7), since VIS only supports the posedge edge.

4.2. [Phase II] EDIFtoBLIF-MV transformation

In the second phase, we provide the second input, an EDIF pro-
gram for CVEC. Synopsys Synplify Pro in Libero IDE synthesizes an
EDIF program from the Verilog4VIS program. Then CVEC transforms
mechanically synthesized gate-level design of EDIF (i.e., Netlist) into
a BLIF-MV program. We provide a transformation process of 3 steps
and translation rules of 6 categories, which are specialized for the EDIF
format of Libero IDE. We also provide the mechanical EDIFtoBLIF-MV
translator in CVEC to implement the process and rules.

The transformation from EDIF to BLIF-MV includes a three-step
process, consisting of (II-1) Parsing, (II-2) Pre-processing and (II-3)
Translation. The first step (II-1) parses an EDIF file and stores it in an
internal data structure. All EDIF elements except auxiliary information
such as the cell information are converted into an internal data struc-
ture. The next step (II-2) performs a pre-processing such as deleting
unnecessary information in the internal data structure. For example,
as all clks in Verilog are ignored in BLIF-MV, we need to delete these
information. Also, all ports not used but defined in an EDIF should
explicitly have a default value of 0. The last step (II-3) transforms the
pre-processed internal data into a BLIF-MV format according to the
translation rules we developed.

The 3-step transformation transforms all of the information of cells
in an EDIF into an equivalent BLIF-MV format, which serves as an in-
ternal input front-end of the VIS verification system. The whole process
was also implemented into a CASE tool EDIFtoBLIF-MV, embedded in
CVEC. The details of each transformation step, except (II-1 Parsing), is
as follows.

4.2.1. (II-2) Pre-processing
After parsing an EDIF file into an internal data structure of CVEC,

we need to perform a few pre-processing. First, all informations related
to the clock clk should be deleted in accordance with the assumption
(1) in [Phase I]. As EDIF is close to hardware layout, it includes the
voltage VCC and ground GND cells, even if they are not presented in
Verilog programs. We need to explicitly assign 1 and 0 to their output
port, respectively. All unused ports (i.e., bits) should have an explicit
value by connecting them to the GND cell. If a port is not connected to
any net, the translated BLIF-MV cannot be processed by the VIS. The
processes included in this step is represented below.

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Pre-processing

(1) Delete all information (e.g., port, instance and net) related to the
clock clk
(2) Assign 1 to VCC
(3) Assign 0 to GND
(4) Assign 0 to all unused ports

4.2.2. (II-3) Translation into BLIF-MV
CVEC introduces translation rules from EDIF to BLIF-MV, and imple-

ments an automatic translation, EDIFtoBLIF-MV, which is a follow-up
study of Lee (2013). The translation rules are divided into 5 categories,
and each category is explained and described below as pseudo-code.
The examples of these translations are demonstrated in Appendix:
Examples of The Translations from EDIF to BLIF-MV.

[Rule 1] Translation of cells
Rule 1 defines a rule to express external structure of an EDIF unit,

called cell, in BLIF-MV format. Each cell in working library is translated
directly into a .model of BLIF-MV. The name of cell in EDIF would be
the name of model in BLIF-MV. In pseudo-code, it would be expressed
as in ⟨Fig. 3⟩.

Fig. 3. Translation rule for cells.

[Rule 2] Translation of ports and arrays
Rule 2 defines the translation of each port in EDIF into .inputs

or .outputs of BLIF-MV. In pseudo-code, it would be expressed as in
⟨Fig. 4⟩. The input and output ports in an EDIF cell are converted into
.inputs and .outputs in BLIF-MV. If the port type of an input port is an
array, the port name becomes the base name of the .inputs in BLIF-MV;
EDIF does not have an array of the output ports. Additionally, in EDIF,
an array of the input ports has a starting index (startIndex) and
an ending index (endIndex). In BLIF-MV, the port names and their
corresponding index values within the specified range are added to the
.inputs section. On the other hand, if the port type is not an array, the
port name is simply converted into the name of .inputs or .outputs in
BLIF-MV.

Fig. 4. Translation rule for ports and arrays.

[Rule 3] Translation of property functions
Rule 3 defines two ways of translating output ports of EDIF into

BLIF-MV. In pseudo-code, it can be expressed as in ⟨Fig. 5⟩. The output
port in the cell can include a keyword property function, which defines
the function of the cell. If the cell is a sequential cell, function in an
5
EDIF is translated into .latch of BLIF-MV, and a keyword .reset has
to be defined before the .latch. This is implemented by the function
sequentialToBLIFMV(edifCell), shown from line 14 to line 28
in ⟨Fig. 5⟩. An example for the sequential D-Flip-Flop (DFF) cell is
included in ⟨Fig. A.3⟩ in Appendix.

On the other hand, if the cell is a combinational cell, the function
is expressed as a truth table using the keyword .table. The property
function in a cell defines the truth table of functionality. In the case of
combinational cells, logic operators such as + (OR), &(AND), ∧(XOR)
and !(NOT) can be used. Also, multiple logic operators can be used to
define the property function. For example, combinational cell can have
the property function (𝑠𝑡𝑟𝑖𝑛𝑔 ‘‘A & (B + C)’’), which can be expressed
as 𝐴𝐵𝐶 + & in postfix notation to be translated into BLIF-MV. The
examples for the combinational cell are demonstrated in the second
and the third example in ⟨Fig. A.3⟩.

Fig. 5. Translation rule for property functions.

[Rule 4] Translation of cells including instances
Each cell in EDIF has contents to implement its functionality. [Rule

4] defines the case where an EDIF cell includes instance inside its
contents. The psuedo-code to express Rule 4 is shown in ⟨Fig. 6⟩.
cellRefName in line 6 of the code represents the referenced cell
type in EDIF. When an instance is present within the cell, its name
and the cell it represents determine the name of .subckt in the BLIF-
MV format, as seen in line 8 of the code. From line 13 to line 20, each
connection in the instance is represented, considering the multiple input
and output ports in EDIF.

[Rule 5] Translation of cells including connections
Rule 5 connects the called cells with each other from input ports

to output ports. The pseudo-code of Rule 5 is represented in ⟨Fig. 7⟩ If
the net in EDIF contains only the joined keyword, the code from line 7
to line 18 is applied. The case of calling member cells using the renamed
keyword is represented in from line 20 to line 31 of the code.

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Fig. 6. Translation rule for cells including instances.

Fig. 7. Translation rule for cells including connections.

⟨Fig. 8⟩ depicts the EDIFtoBLIF-MV translator, implementing the
proposed transformation process from EDIF to BLIF-MV. As other
translators and compilers, it has simple GUI to read an input EDIF file
and to store the transformed output BLIF-MV file. The console at the
bottom shows the transformation process in steps, i.e., EDIF Opening
⇒ Parsing ⇒ Pre-processing ⇒ Translation ⇒ BLIF-MV Saving. It is now
embedded into CVEC.

4.3. [Phase III] VIS equivalence checking

In this phase, CVEC first transforms Verilog4VIS program into BLIF-
MV program using vl2mv translator in VIS. Then it performs VIS-based
equivalence checking upon two BLIF-MV programs, transformed from
the Verilog4VIS program and the EDIF program, respectively. Then it
automatically executes a series of VIS commands to perform sequential
equivalence checking. ⟨Fig. 9⟩ shows a set of VIS commands to perform
the sequential equivalence checking upon the Verilog4VIS and the EDIF
programs used in the case study in Section 4. CVEC automates a series
of all commands with a simple graphical user interface as depicted in
6
Fig. 8. The EDIFtoBLIF-MV translator.

⟨Fig. 10⟩. In ⟨Fig. 10⟩, VIS equivalence checking determines that the
two programs are not sequentially equivalent as ‘‘Networks are NOT
sequentially equivalent.’’. It also shows a verification result of 6 steps
(i.e., a counterexample) which simulates an inequivalent state from the
initial state step-by-step.

Fig. 9. A series of the VIS commands and a verification result from the VIS (excerpted).

Fig. 10. The CVEC’s main window.

An in-depth analysis of the counterexample allows a detailed exam-
ination of the cause of the inequivalence. The example demonstrates
that the VIS discards overflowed values during the vl2mv translation,

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
whereas the Synopsys Synplify Pro synthesizes the overflowed param-
eter values fairly well. To enhance understanding, we excerpted and
modified the verification results graphically, as VIS lacks a graphical
interface. We can notice that all repeated information is omitted and
we have to reorganize it in order to understand the error trace clearly.
The verification results are then analyzed in the following phase.

4.4. [Phase IV] Post-analysis and visualization

Lastly, CVEC processes the results of the VIS-based equivalence
checking and performs additional analyses. If the verification succeeds
(i.e., two BLIF-MV programs are equivalent), we can assure that the
synthesis process from Verilog to EDIF (i.e., Netlist) was performed
correctly for the given Verilog program. If the verification fails (i.e.,
two BLIF-MV programs are not equivalent), it indicates that there was
an issue in the synthesis process. In such cases, VIS provides a scenario
comprising a sequence of inputs and internal states/variables that
leads to the inequivalent state, i.e., a counterexample. Unfortunately,
VIS presents it on the console in a textual format, omitting repeated
or unchanged details, which makes understanding the prompt almost
impossible. However, CVEC offers post-analysis functions to reorganize
and visualize the data in various formats to enhance understanding.

⟨Fig. 10⟩ shows the CVEC GUI performing all phases on a single
window. Verilog4VIS Checker and EDIFtoBLIF-MV are embedded, al-
lowing all transformations and equivalence checking to be performed
mechanically and seamlessly with just a few button clicks. The series
of the VIS commands and analysis on the verification results shown in
⟨Fig. 9⟩ can be performed mechanically by CVEC, as illustrated.

If the verification fails, CVEC analyzes the counterexample (i.e.,
reconstructs skipped information) and visualizes it in various formats
such as flow-chart, table and text on console. The visualization helps
identifying the cause of the inequivalence between the Verilog design
and the synthesized EDIF. We are working on improving the post-
analysis and visualization to provide more convenience and useful
information to analyzers.

5. Case study

We performed a case study with two types of RPS BP software in
DI&C systems of Korean nuclear power plants, in order to demonstrate
the effectiveness and potential of the customized VIS-based equivalence
checker, CVEC. Using CVEC, the case study aimed to demonstrate
the correct functioning of the commercial FPGA logic synthesis tool
Synopsys Synplify Pro in the Libero IDE EDA environment. If CVEC
succeeds to prove the behavioral equivalence between Verilog and
EDIF, we can claim that the tools function correctly, at least for the
given input program. ⟨Fig. 11⟩ summarizes the whole process of the
case study.

The first example is an FBD program for a preliminary version
of KNICS APR-1400 RPS BP (Korea Atomic Energy Research Institute
(KAERI), 2006), while the second example is a Verilog program of
the PLD-based RPS BP (Choi and Lee, 2012). The first one is much
complicated and detailed than the second one, since it is kind of a
mock-up of commercial nuclear power plants. They both consist of 18
independent shutdown logics. The BP softwares read 18 external sensor
inputs and make a decision whether to shutdown nuclear reactors or
not, periodically. Since the BP software is one of the most safety-
critical components in DI&C of nuclear power plants, standards and
regulations (U.S. Nuclear Regulatory Commission, 1996b, 2012; Elec-
tric Power Research Institute (EPRI), 2014, 1996) strictly encourage
developers to verify its correct and safe functioning.

[Case study I] begins with an FBD program, as the implemen-
tation platform for the KNICS APR-1400 RPS BP is a programmable
logic controller (PLC). We first had to transform the FBD program into a
7
Fig. 11. An overview of the case study with two examples.

behaviorally-equivalent Verilog program. FBDtoVerilog v2.1 embedded
in FBD Editor (Lee et al., 2014) reads the FBD program and mechan-
ically translates it into a behaviorally-equivalent Verilog program. On
the other hand, [Case study II] starts from a Verilog program, and
we do not need such transformation.

5.1. [Case study I] KNICS APR-1400 RPS BP

It uses 5 shutdown logics of the KNICS APR-1400 RPS BP, e.g., fixed
set-point rising/falling trip, variable set-point rising/falling trip and manual
reset trip. They can represent the whole 18 shutdown logics in BP. The
maximum size of all variables in the BP is 16 bits. ⟨Table 1⟩ summarizes
important features of the input Verilog program and the synthesized
EDIF.

The table also presents the verification result and the time taken
by the VIS verification system. In case of the simple logics such as
fixed set-point rising/falling logics, the VIS could perform the equivalence
checking in reasonable time, e.g., 198.22 and 30.11 s, respectively.
The transformations time is not considered here. On the other hand,
for more complex logics, such as variable set-point rising/falling trip, the
maximum size of all variables is 9 bits. The VIS successfully completed
the equivalence checking for these logics in 5613 s (about 90 min).
For all 5 logics, the VIS proved that the Verilog and the subsequently
synthesized EDIF are equivalent for all cases.

We also performed a comparison analysis with the commercial
equivalence checker FormalPro. As Formal Pro cannot work for the
Synopsys Synplify Pro, we had to use Precision FPGA. Although the
comparison is not entirely precise, we expect that it is generally ac-
ceptable. FormalPro produced the same result as CVEC for all logic
cases. ⟨Fig. 12⟩ indicates that the commercial tool is faster than the
proposed technique in several orders of magnitude. As shown in ⟨Fig.
12⟩ and ⟨Table 1⟩, the CVEC verification performance decreases sharply
as the number of reg and latch increase. As CVEC uses the VIS ver-
ification engine, it is not straightforward to improve the verification
performance (i.e., time) dramatically, but we are planning to improve
the verification performance of CVEC, including development of an
equivalence checking engine from scratch.

In summary, CVEC could judge that ‘‘The FPGA logic synthesis tool
worked correctly for the Verilog programs of 5 trip logics in KNICS APR-
1400 RPS BP.’’ Further consideration to improve the verification per-
formance will be addressed in Section 4.3.

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Table 1
A summary information of the case study I.

5.2. [Case study II] The RPS trip logics based on PLD technology

In this case study, CVEC uses the Verilog programs developed for
an experimental RPS (Choi and Lee, 2012), based on Programmable
Logic Device (PLD) technology such as FPGA. The target is a system
8
Fig. 12. The comparison of verification time in seconds (CVEC with VIS vs. FormalPro)
for fixed set-point rising trip logic.

with 18 trip logics as commercial RPS BPs, but it is an experimental
system consisting of fundamental functionalities. ⟨Table 2⟩ summarizes
important features of all inputs and outputs and verification results
of 18 trip logics. All logics were verified through CVEC, and the
comparison with Formal Pro was also performed.

CVEC found two non-equivalent cases for Lo_SG1_ESF_FSF and
Lo_SG2_ESF_FSF trip logics, whereas FormalPro with Precision FPGA
judged that they were equivalent. An in-depth analysis found the reason
that the VIS (actually vl2mv in the VIS) has an error at interpreting pa-
rameters in Verilog. If a conditional statement includes an arithmetic
operation of parameters, such as + or -, the VIS restricts the size of
the result of the arithmetic operation into the maximum size of the
parameters, without notification.

For example, the Verilog program in ⟨Fig. 13⟩ reads an input in
[3:0] and checks ‘‘if(in > a+b)’’. The parameter a and b are defined
with 3 of 2 bits (i.e, b11). The condition statement is then equivalent to
‘‘if(in > 6)’’. However, the vl2mv translator interprets the statement as
‘‘if(in > 2)’’ since the maximum size of two parameters is 2 bits and the
maximum size of the + operation is also regarded as 2 bits. 6 (b1010)
is truncated into 2 (b10).

The figure also shows the simulation trace of the Verilog program
with the VIS and the subsequently synthesized EDIF with ModelSim.
In the VIS simulation of the Verilog program, out gets changed into 1
when the input in becomes greater than 2 not 6. The value of out (i.e.,
the calculation result) can be recognized at the next simulation step
in the VIS. On the other hands, ModelSim shows that the out is only
changed into 1 when in is greater than 6, as intended by the Verilog
program.

Fig. 13. A Verilog program demonstrating the reason of the non-equivalence.
In summary, CVEC checked 18 trip logics of Verilog program for an

experimental RPS logics in Korea, and found 2 cases of non-equivalence
between the Verilog programs and subsequently synthesized EDIFs.

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Table 2
A summary information of the case study II.

An in-depth analysis, however, found that the two non-equivalence
resulted from incorrect operation of the VIS (actually the vl2mv trans-
lator), and a simple remedy such as replacing ‘‘a + b’’ with 6 could
resolve the non-equivalence. Therefore, CVEC could judge that ‘‘The
FPGA logic synthesis tool functioned correctly for the Verilog programs of 18
trip logics in an experimental RPS BP.’’ The verification performance was
reasonably acceptable for the PLD-based 18 trips logics of RPS BP, since
the system do not include implementation details such as operation
bypass, periodic tests or heart bits.

5.3. Further consideration on the verification performance

The proposed technique CVEC uses the verification engine of the
VIS to prove the behavioral (i.e., sequential not combinational) equiv-
alence between RTL designs in Verilog and Netlists in EDIF. VIS is an
open-source, widely-used tool that has been successfully utilized and
validated by many researchers in public. Those success stories clearly
demonstrate the value of VIS as one of the mature equivalence checker
among various tools in HWMCC (Hardware Model Checking Competi-
tion) (Johannes Kepler University Linz, 2015), even though the tool is
since been upgraded to newer versions (ABC (Brayton and Mishchenko,
2010) and IImc (University of Colorado at Boulder, 2016)).

There are several commercial formal verification tools which can
be used for our purpose – ‘‘Correctness verification of commercial FPGA
logic synthesis tools.’’ FormalPro (Siemens, 0000a), Conformal Equiva-
lence Checker (Cadence, 2017) and Formality (Synopsys, 2019) are
the candidates. However, they require additional information such
as register/variable matching or libraries from synthesis tools. Which
9
means, we cannot use the tools without vendor’s support. For instance,
we cannot use FormalPro for Libero IDE with Synopsys Synplify Pro
synthesizer, which was the combination of the project we were working
on.

Since CVEC is based on the VIS verification engine, it is tightly
coupled with the input front-end BLIF-MV as well as the sequential
equivalence checking engine of the VIS. As sequential equivalence
checking has inherent limitations on the size of targets and verification
speed (Brand, 2003), commercial tools often use combinational equiv-
alence checking hierarchically through decoupling sequential logics
into combinational ones (Rahim et al., 2012). They also use additional
information such as Formal Verification Interface (FVI), Tcl script,
Synopsys setup Verification File (SVF) and various libraries to make
the strategy possible. CVEC, on the other hand, requires no additional
information. It only needs transformation of a Verilog program into a
Verilog4VIS program, which is the results from the limitation due to the
in-house translator vl2mv in the VIS.

We are planning to improve the verification performance of CVEC
in two ways. First, we plan to explore the use of combinational equiv-
alence checking instead of sequential one, following the approach
commonly adopted by typical commercial equivalence checkers. The
decision to use the VIS verification engines or to develop a new solution
from scratch should be made after conducting an in-depth analysis.
Secondly, the input front-end BLIF-MV can be replaced with AIGER (Jo-
hannes Kepler University Linz, 2011), which can handle various input
formats successfully. AIGER is a format, library, and set of utilities
for And-Inverter Graphs (AIGs), providing a convenient and compact
representation for circuits. It is known to describe combinational and
sequential circuits efficiently.

6. Conclusion and future work

This paper proposes a customized VIS-based equivalence checker
CVEC which can contribute to the correctness demonstration of the
combination – the Synopsys Synplify Pro synthesizer in the Libero IDE
EDA. CVEC can formally check the behavioral equivalence between a
Verilog HDL and a Netlist (i.e., EDIF) synthesized in this environment.
It uses the VIS verification system as a verification engine, and also
provides two model transformations and a rule checker. It also pro-
vides a graphical interface to perform all transformations mechanically
and analyze verification results visually and efficiently. If the formal
verification with CVEC succeeds, then we can claim that the logic
synthesis from Verilog into EDIF worked correctly at least for the given
Verilog program. Therefore, CVEC can verify the functional correctness
of FPGA synthesis tools through equivalence checking, which is one of
the ways to dedicate COTS items used in safety-related applications.

In order to demonstrate the effectiveness and applicability of the
proposed technique, we performed a case study with two examples of
RPS BP (Bistable Processor) programs excerpted from Korean nuclear
power plants. We also tried to compare the performance of CVEC with a
commercial verification tool FormalPro, although we had to change the
logic synthesis tool into Precision FPGA. The comparison indicates that
the commercial tool is faster than the proposed technique in many or-
ders of magnitude. It is not straightforward to improve the verification
performance dramatically, since CVEC uses the VIS verification engine
and the input front-end if VIS, vl2mv. We are planning to strategically
adopt combinational equivalence checking, similar to other commercial
tools, and are also considering replacing BLIF-MV with AIGER. We also
have a plan to develop a dedication of different commercial grade
FPGAs, focusing on addressing different types of FPGAs in the SMR
design to mitigate the common cause failure (CCF) problem.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Acknowledgments

This work was supported by the Nuclear Safety Research Pro-
gram through the Regulatory Research Management Agency for SMRS
(RMAS) and the Nuclear Safety and Security Commission (NSSC) of the
Republic of Korea (No. RS-2024-00509643).

Appendix. Examples of the translations from EDIF to BLIF-MV

In this appendix, the examples of the translations according to EDIF
to BLIF-MV translation rules, Rule 1 to Rule 5, presented in Sec-
tion 4.2.2 are demonstrated. There are total of 11 examples, especially
more than one example for Rule 2, Rule 3, and Rule 5, considering
various cases dealth with in the same rule.

[Case 1] Cells

⟨Fig. A.1⟩ demonstrates an example of translation of cells according
to Rule 1. When the name of cell in EDIF is example_cell, then
the name of the model in BLIF-MV is also example_cell. This cell
would be the cell inside working library, example_library.

Fig. A.1. Example of translation of cells.

[Case 2] Ports and arrays

⟨Fig. A.2⟩ depicts 4 examples of translations according to Rule 2.
When there are only input and output ports in EDIF file, these input and
output ports can simply be translated into .inputs and .outputs
in BLIF-MV, as shown in the first example. Also, there are 3 examples
of using the keyword array inside the port. However, we do not have
an example for array of the output ports, since such expression is not
used in EDIF.

There is an array for input port, with index of 4, in the second
example. If there is only one index, the starting index i automatically
becomes 0, and the ending index becomes (i - 1). So in the second
example, input ports named input in array with index of 4 would
become .inputs input[0] input[1] input[2] input[3] in
BLIF-MV.

In the third example, there is downto keyword in the array, with
the starting index of 3 and the ending index of 0. In this case, input
ports named input would become .inputs input[3] input[2]
input[1] input[0], since the keyword downto shows the index
would be in descending order.

The last example, includes the case of to keyword used in the array,
which gives an index in ascending order. It might seem the same as
the second example, but we can designate the starting index and the
ending index from 1 to 4, as shown in the last example of ⟨Fig. A.2⟩.
The case of using the downto keyword also works the same.

[Case 3] Property functions

⟨Fig. A.3⟩ shows 3 examples of using the keyword property function
in the cell. If the function is a sequential logic, there would exist an
expression property isSequential ‘‘TRUE’’ in EDIF. Then this
function is simply expressed with .reset and .latch keywords in
BLIF-MV.

In the first example in ⟨Fig. A.3⟩, there is a function ‘‘DFF’’,
which means D-Flip-Flop. In this cell, the input ports are D, CLK and
RST, and the output port is Q. The RST port works as reset input signal,
10
Fig. A.2. Examples of translation of ports and arrays.

while CLK port works as clock input signal and D port means data input
signal. Using the given input and output ports, it can be expressed as
.reset RST Q 0 and .latch D Q DFF in BLIF-MV. .reset RST
Q 0 means that when RST signal is activated, Q has to be reset into
initial value 0. .latch D Q DFF means that according to data input
D, DFF is activated and the result is saved in output Q. The reason for
omitting the input port CLK is due to the first step of pre-processing
before translation into BLIF-MV, as stated in Section 4.2.1.

On the other hand, if there is no expression of isSequential
"TRUE", then the function would be combinational logic, i.e., the cell is
a combinational cell. If the cell is a combinational cell, then the ⟨truth
table of functionality⟩ must be represented.

In the second example of ⟨Fig. A.3⟩ uses AND2 gate, which means
there are 2 operands with AND operator. After the keyword .table,
the name of input ports (i.e., A B) are listed and then output port (i.e.,
X) is placed after them. The truth table is represented in translation
result in the right-hand side of the table, under the .default 0 line.
In here, an example of AND gate using operand A and B is expressed.

In the last example of ⟨Fig. A.3⟩, multiple operators are used. There
is a function of A & (B + C). In this case, an expression of .table A
B C X is used. A postfix notation, which would express the function A &
(B + C) in ABC+&, is used internally during the translation from EDIF
to BLIF-MV. Then the truth table is represented after the .default 0
line, same as the second example.

[Case 4] Cells including instances

⟨Fig. A.4⟩ demonstrates an example of Rule 4. When there is an
instance in the cell, it would be translated into .subckt in BLIF-MV.
In the example, there are input ports A and B, and output port X. Also
there is instance U1 in the contents, and cellRef AND2 is in the viewRef
inside the instance U1. These are translated as .subckt AND2 U1 A
= U1_A B = U1_B X = U1_X by following Rule 4.

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Fig. A.3. Examples of translation of property functions.

Fig. A.4. Example of translation of cells including instances.

[Case 5] cells including connections

⟨Fig. A.5⟩ shows examples following Rule 5. When a keyword joined
only exists in the net, and keywords portRef and instanceRef are used,
it would be also translated into .table in BLIF-MV.

In the first example, there is a net N1, portRefs input1 and out-
put1, and instanceRefs inst1 and inst2. When it is translated into
BLIF-MV format, it would be expressed as .table inst1 input1
inst2 output1, and in the next sentence, the name of instanceRef
of input instance (i.e., inst1) has to be placed after ‘‘- =’’.

The second example deals with the case where the keyword rename
is used. In this case, net is renamed and there can exist members inside
it. In the second example, there is a net renamed as original[1],
and there are members memberA and memberB, and order for each
of them is 1 and 2. The renamed name of the net becomes origi-
nal1 in BLIF-MV, and the name of members become memberA1 and
memberB2.

Data availability

Data will be made available on request.
11
Fig. A.5. Examples of translation of cells including connections.

References

Ahn, D.-r., Shin, S.-g., Baek, Y.-s., Lee, H.-k., Park, K.-h., Choi, I.-s., 2019. A study
on simulation based fault injection test scenario and safety measure time of
autonomous vehicle using STPA. J. Korea Inst. Intell. Transp. Syst. 18 (2), 129–143.

Allani, M.Y., Riahi, J., Vergura, S., Mami, A., 2021. FPGA-based controller for a hybrid
grid-connected PV/wind/battery power system with AC load. Energies 14 (8),
2108.

Brand, D., 2003. Verification of large synthesized designs. In: The Best of ICCAD.
Springer, pp. 65–72.

Brayton, R.K., 1991. Blif-mv: an interchange format for design verification and
synthesis. Tech. Rep., University of California.

Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A.,
Cheng, S.-T., Edwards, S.A., Khatri, S.P., Kukimoto, Y., Pardo, A., Qadeer, S.,
Ranjan, R.K., Sarwary, S., Shiple, T.R., Swamy, G., Villa, T., 1996. VIS : A system
for verification and synthesis. In: The Eighth International Conference on Computer
Aided Verification. CAV ’96, pp. 428–432.

Brayton, R., Mishchenko, A., 2010. ABC: An academic industrial-strength verification
tool. In: Computer Aided Verification. Springer, pp. 24–40.

Bukya, M., Padma, B., Kumar, R., Mathur, A., Prasad, N., 2024. FPGA-based VFF-RLS
algorithm for battery insulation detection in electric vehicles. World Electr. Veh.
J. 15 (4), 129.

Burch, J.R., Clarke, E.M., Long, D.E., McMillan, K.L., Dill, D.L., 1994. Symbolic model
checking for sequential circuit verification. Comput.- Aided Des. Integr. Circuits
Syst. IEEE Trans. on 13 (4), 401–424.

Cadence, Conformal Equivalence Checker, https://www.cadence.com/en_US/home/
tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-
checker.html.

Cadence, Cadence Virtuoso Digital Implementation, https://www.cadence.
com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-
floorplanning/virtuoso-digital-implementation.html.

Choi, J., Lee, D., 2012. Development of RPS trip logic based on PLD technology. Nucl.
Eng. Technol. 44 (6), 697–708.

Chouy, C.-T., 1997. Synchronous verilog: A proposal.
Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M., 1999. Nusmv: A new symbolic model

verifier. In: 11th International Conference on Computer Aided Verification. CAV
’99, pp. 495–499.

Clarke, E.M., Grumberg, O., Peled, D.A., 1999. Model Checking. MIT Press.
Cummins, D., Quinn, E.T., 2021. Instrumentation and control technologies for small

modular reactors (SMRs). In: Handbook of Small Modular Nuclear Reactors.
Elsevier, pp. 117–145.

Electric Power Research Institute (EPRI), 1996. Guideline on evaluation and acceptance
of commercial grade digital equipment for nuclear safety applications (EPRI
TR-106439).

Electric Power Research Institute (EPRI), 2014. Plant engineering: Guideline for the
acceptance of commercial-grade items in nuclear safety-related applications (EPRI
NP-5652). Revision 1 to EPRI NP-5652 and TR-102260.

Electronic Industries Association, 1998. Electronic design interchange format (EDIF).
EIA-548, Version 2.0.0.

Farias, M.S., Martins, R.H., Teixeira, P.I., Carvalho, P., 2016. FPGA-based I&C systems
in nuclear plants. Chem. Eng. Trans. 52.

Gautham, S.M., 2020. Multilevel runtime verification for safety and security critical
cyber physical systems from a model based engineering perspective.

Hoare, T., 2003. The verifying compiler: A grand challenge for computing research. J.
ACM 50 (1), 63–69.

Hu, K., Chu, Z., 2023. An efficient circuit-based SAT solver and its application in logic
equivalence checking. Microelectron. J. 142, 106005.

http://refhub.elsevier.com/S0306-4549(25)00301-9/sb1
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb1
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb1
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb1
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb1
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb2
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb2
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb2
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb2
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb2
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb3
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb3
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb3
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb4
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb4
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb4
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb5
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb6
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb6
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb6
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb7
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb7
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb7
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb7
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb7
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb8
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb8
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb8
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb8
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb8
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking/conformal-equivalence-checker.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/virtuoso-digital-implementation.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/virtuoso-digital-implementation.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/virtuoso-digital-implementation.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/virtuoso-digital-implementation.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/soc-implementation-and-floorplanning/virtuoso-digital-implementation.html
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb11
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb11
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb11
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb12
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb13
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb13
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb13
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb13
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb13
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb14
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb15
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb15
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb15
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb15
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb15
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb16
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb16
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb16
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb16
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb16
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb17
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb17
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb17
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb17
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb17
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb18
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb18
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb18
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb19
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb19
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb19
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb20
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb20
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb20
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb21
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb21
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb21
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb22
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb22
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb22

Y. Heo et al. Annals of Nuclear Energy 220 (2025) 111484
Institute of Electrical and Electronics Engineers (IEEE), 2001. IEEE std 1364-2005:
Verilog - hardware description language.

Institute of Electrical and Electronics Engineers (IEEE), 2008. IEEE std 1076-2019:
VHDL language reference manual.

Institute of Electrical and Electronics Engineers (IEEE), 2016a. IEEE Std 1012-2016:
IEEE Standard for System, Software, and Hardware Verification and Validation.
Tech. Rep..

Institute of Electrical and Electronics Engineers (IEEE), 2016b. IEEE Std 7-4.3.2-2016:
IEEE Standard Criteria for Programmable Digital Devices in Safety Systems of
Nuclear Power Generating Stations. Tech. Rep..

International Electrotechnical Commission (IEC), 2000. IEC 61508, functional safety of
electrical, electronic and programmable electronic (e/e/PE) safety-related systems.

International Electrotechnical Commission (IEC), 2006. Nuclear Power Plants – In-
strumentation and Control Systems Important to Safety - Software Aspects for
Computer-Based Systems Performing Category a Functions (IEC 60880). Tech. Rep..

International Electrotechnical Commission (IEC), 2007. Nuclear power plants – in-
strumentation and control important to safety - hardware design requirements
for computer-based systems (iec 60987). Tech. Rep., International Electrotechnical
Commission (IEC).

International Electrotechnical Commission (IEC), 2011. Nuclear power plants – instru-
mentation and control important to safety - general requirements for systems (iec
61513). Tech. Rep., International Electrotechnical Commission (IEC).

International Electrotechnical Commission (IEC), 2012. Nuclear Power Plants – Instru-
mentation and Control Important to Safety - Development of HDL-Programmed
Integrated Circuits for Systems Performing Category a Functions (IEC 62566). Tech.
Rep., International Electrotechnical Commission (IEC).

International Electrotechnical Commission (IEC), 2013. IEC 61131-3:2013 Pro-
grammable controllers - Part 3: Programming Languages. Tech. Rep., IEC.

International Electrotechnical Commission (IEC), 2020. Nuclear Power Plants – Instru-
mentation and Control Important to Safety – Development of HDL-Programmed
Integrated Circuits – Part 2: HDL-Programmed Integrated Circuits for Systems
Performing Category B or C Functions (IEC 62566-2). Tech. Rep..

Johannes Kepler University Linz, AIGER, http://fmv.jku.at/aiger/.
Johannes Kepler University Linz, Hardware Model Checking Competition’ 15, http:

//fmv.jku.at/hwmcc15/index.html.
Jung, S., Kim, E.-S., Yoo, J., Kim, J.-Y., Choi, J.G., 2016. An evaluation and acceptance

of COTS software for FPGA-based controllers in NPPs. Ann. Nucl. Energy 94,
338–349.

Jung, S., Yoo, J., Cha, S., 2010. VIS analyzer : A visual assistant for VIS verification
and analysis. In: The 13th IEEE Computer Society Symposium Dealing with
the Rapidly Expanding Field of Object/Component/Service-Oriented Real-Time
Distributed Computing (ORC) Technology, ISORC 2010 Symposium.

Kim, E.-S., Jung, S., Kim, J., Yoo, J., Chang, C.-H., 2015. Verilog4VIS-EC: A manipulated
verilog format for VIS equivalence checking. In: KIISE 2015 Winter Conference. pp.
461–463.

Kim, J.Y., Lee, Y.J., Cha, K.H., Cheon, S.W., Lee, J.S., Kwon, K.C., 2007. Experience
on the COTS software dedication of the PROFIBUS FMS-driver. In: Transactions of
the Korean Nuclear Society Spring Meeting Jeju, Korea, May. pp. 10–11.

Kim, J.Y., Lee, Y.J., Cheon, S.W., Lee, J.S., Kwon, K.C., 2010. A commercial-off-the-
shelf (COTS) dedication of a QNX real time operating system (RTOS). In: 2010 2nd
International Conference on Reliability, Safety and Hazard-Risk-Based Technologies
and Physics-of-Failure Methods. ICRESH, IEEE, pp. 123–126.

Korea Atomic Energy Research Institute (KAERI), 2006. Software Design Specification
for Reactor Protection System KNICS-RPS-SD231-01. Tech. Rep., Rev.02.

Kukimoto, Y., 1996. Blif-mv. The VIS Group, University California, Berkely.
Lee, J.-H., 2013. Automatic Translation for Equivalence Checking between Verilog and

EDIF Netlist with VIS Master’s thesis. Konkuk University.
12
Lee, D.-A., Kim, E.-S., Seo, Y.-J., Yoo, J., 2014. Fbdeditor: An FBD design program
for developing nuclear digital i&c systems. In: Korea Conference on Software
Engineering. KCSE 2014, in: 315–318 (Ed.)in Korean.

Lee, D., Park, D., 2021. Hardware and software co-design platform for energy-efficient
FPGA accelerator design. J. Korea Inst. Inf. Commun. Eng. 25 (1), 20–26.

Microchip, Libero IDE, https://www.microchip.com/en-us/products/fpgas-and-plds/
fpga-and-soc-design-tools/fpga/libero-ide.

Ni, L., Yang, Z., Zhang, J., Feng, C., Liu, J., Luo, G., Li, H., Xie, B., Li, X., 2023.
MEC: An open-source fine-grained mapping equivalence checking tool for FPGA.
In: 2023 International Symposium of Electronics Design Automation. ISEDA, IEEE,
pp. 131–136.

NuScale, 2020. NuScale Standard Plant Design Certification Application Chapter 7
Instrumentation and Controls. Tech. Rep., NUSCALE.

Piggin, R., Sampson, C., 2016. Security and safety of FPGAS in nuclear safety systems:
benefits and challenges. In: 11th International Conference on System Safety and
Cyber-Security (SSCS 2016). IET, pp. 1–6.

Rahim, S., Rouzeyre, B., Torres, L., 2012. A flip-flop matching engine to verify
sequential optimizations. Comput. Inform. 23 (5–6), 437–460.

RTCA, 2000. DO-254: Design assurance guidance for airborne electronic hardware.
Siemens, FormalPro, https://eda.sw.siemens.com/en-US/ic/formalpro-equivalence-

checking/.
Siemens, Precision FPGA, https://eda.sw.siemens.com/en-US/ic/precision/.
Siemens, ModelSim, https://eda.sw.siemens.com/en-US/ic/modelsim/.
Siemens, Questa Simulator, https://eda.sw.siemens.com/en-US/ic/questa/simulation/

advanced-simulator/.
SPIN, http://spinroot.com/.
Synopsys, Synopsys and Actel Renew OEM Relationship for FPGA Design Software,

https://news.synopsys.com/home?item=123057.
Synopsys, Synopsys Synplify Pro, http://www.synopsys.com/.
Synopsys, Formality, http://www.synopsys.com/.
Times, E., 2001. Survey compares formal verification tools. http://www.eetimes.com/

document.asp?doc_id=1216123.
University of Colorado at Boulder, IImc, https://github.com/mgudemann/iimc.
U.S. Nuclear Regulatory Commission, 1996a. NUREG/CR-7006 : Review Guidelines for

Field-Programmable Gate Arrays in Nuclear Power Plant Safety Systems. Tech. Rep.,
U.S. Nuclear Regulatory Commision (NRC).

U.S. Nuclear Regulatory Commission, 1996b. A proposed acceptance process for
commercial off-the-shelf (COTS) software in reactor applications (NUREG/CR-6421,
UCRL-ID-112526).

U.S. Nuclear Regulatory Commission, 2012. Reporting of defects and noncompliance
(10 CFR 21).

U.S. Nuclear Regulatory Commission, 2016. Instrumentation and Controls - Introduction
and Overview of Review Process. Tech. Rep., U.S. Nuclear Regulatory Commission.

Wang, J., Li, M., Jiang, W., Huang, Y., Lin, R., 2022. A design of FPGA-based neural
network PID controller for motion control system. Sensors 22 (3), 889.

Xu, Y., Huang, G., Balewski, J., Naik, R., Morvan, A., Mitchell, B., Nowrouzi, K.,
Santiago, D.I., Siddiqi, I., 2021. QubiC: An open-source FPGA-based control and
measurement system for superconducting quantum information processors. IEEE
Trans. Quantum Eng. 2, 1–11.

Yoo, J., Cha, S., Jee, E., 2009. Verification of PLC programs written in FBD with VIS.
Nucl. Eng. Technol. 41 (1), 79–90.

Yoo, J., Kim, E.-S., Jung, S., 2015. Verification techniques for COTS dedication of
commercial FPGA tools. In: The 10th International Symposium on Embedded
Technology. ISET 2015, pp. 150–151.

Zhang, D., Wu, W., 2024. Radiation environment-constrained FPGA reinforcement
technology and reliability research utilizing error control coding. IEEE Access.

http://refhub.elsevier.com/S0306-4549(25)00301-9/sb23
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb23
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb23
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb24
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb24
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb24
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb25
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb25
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb25
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb25
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb25
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb26
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb26
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb26
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb26
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb26
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb27
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb27
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb27
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb28
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb28
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb28
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb28
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb28
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb29
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb29
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb29
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb29
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb29
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb29
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb29
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb30
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb30
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb30
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb30
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb30
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb31
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb31
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb31
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb31
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb31
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb31
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb31
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb32
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb32
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb32
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb33
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb33
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb33
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb33
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb33
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb33
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb33
http://fmv.jku.at/aiger/
http://fmv.jku.at/hwmcc15/index.html
http://fmv.jku.at/hwmcc15/index.html
http://fmv.jku.at/hwmcc15/index.html
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb36
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb36
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb36
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb36
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb36
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb37
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb37
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb37
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb37
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb37
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb37
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb37
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb38
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb38
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb38
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb38
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb38
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb39
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb39
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb39
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb39
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb39
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb40
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb40
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb40
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb40
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb40
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb40
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb40
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb41
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb41
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb41
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb42
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb43
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb43
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb43
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb44
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb44
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb44
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb44
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb44
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb45
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb45
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb45
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-ide
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-ide
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-ide
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb47
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb47
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb47
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb47
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb47
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb47
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb47
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb48
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb48
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb48
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb49
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb49
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb49
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb49
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb49
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb50
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb50
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb50
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb51
https://eda.sw.siemens.com/en-US/ic/formalpro-equivalence-checking/
https://eda.sw.siemens.com/en-US/ic/formalpro-equivalence-checking/
https://eda.sw.siemens.com/en-US/ic/formalpro-equivalence-checking/
https://eda.sw.siemens.com/en-US/ic/precision/
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
http://spinroot.com/
https://news.synopsys.com/home?item=123057
http://www.synopsys.com/
http://www.synopsys.com/
http://www.eetimes.com/document.asp?doc_id=1216123
http://www.eetimes.com/document.asp?doc_id=1216123
http://www.eetimes.com/document.asp?doc_id=1216123
https://github.com/mgudemann/iimc
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb62
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb62
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb62
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb62
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb62
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb63
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb63
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb63
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb63
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb63
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb64
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb64
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb64
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb65
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb65
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb65
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb66
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb66
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb66
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb67
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb67
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb67
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb67
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb67
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb67
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb67
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb68
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb68
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb68
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb69
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb69
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb69
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb69
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb69
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb70
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb70
http://refhub.elsevier.com/S0306-4549(25)00301-9/sb70

	CVEC: A customized VIS-based equivalence checker for verifying commercial field-programmable gate array synthesis software in small modular reactors
	Introduction
	Background
	Development and V&V of FPGA
	EDIF
	VIS Verification System
	COTS Software Dedication and Equivalence Checking

	Related Works
	A Customized VIS-based Equivalence Checker
	[Phase I] VerilogtoV4VIS transformation
	[Phase II] EDIFtoBLIF-MV transformation
	(II-2) Pre-processing
	(II-3) Translation into BLIF-MV
	[Rule 1] Translation of Cells
	[Rule 2] Translation of Ports and Arrays
	[Rule 3] Translation of Property Functions
	[Rule 4] Translation of Cells including Instances
	[Rule 5] Translation of Cells including Connections

	[Phase III] VIS equivalence checking
	[Phase IV] Post-analysis and visualization

	Case Study
	[Case study I] KNICS APR-1400 RPS BP
	[Case study II] The RPS trip logics based on PLD technology
	Further Consideration on the Verification Performance

	Conclusion and Future Work
	Declaration of competing interest
	Acknowledgments
	Appendix. Examples of The Translations from EDIF to BLIF-MV
	[Case 1] Cells
	[Case 2] Ports and Arrays
	[Case 3] Property Functions
	[Case 4] Cells including Instances
	[Case 5] Cells including Connections

	Data availability
	References

