

NuEditor – A Tool Suite for Specification and Verification of NuSCR

Jaemyung Cho, Junbeom Yoo, Sungdeok Cha

Department of Electrical Engineering and Computer Science and AITrc/SPIC/IIRTRC
Korea Advanced Institute of Science and Technology (KAIST)

373-1, Kusong-dong, Yusong-gu, Taejeon, Korea
E-mail: {jmcho, jbyoo, cha}@salmosa.kaist.ac.kr

Abstract

NuEditor is a tool suite supporting specification and
verification of software requirements written in NuSCR.
NuSCR extends SCR (Software Cost Reduction)
notation that has been used in specifying requirements
for embedded safety-critical systems such as a shutdown
system for nuclear power plant. SCR almost exclusively
depended on fine-grained tabular notations to represent
not only computation-intensive functions but also time-
or state-dependent operations. As a consequence,
requirements became excessively complex and difficult
to understand. NuSCR supports intuitive and concise
notations. For example, automata is used to capture time
or state-dependent operations, and concise tabular
notations are made possible by allowing complex but
proven-correct equations be used without having to
decompose them into a sequence of primitive operations.
NuEditor provides graphical editing environment and
supports static analysis to detect errors such as missing
or conflicting requirements. To provide high-assurance
safety analysis, NuEditor can automatically translate
NuSCR specification into SMV input so that satisfaction
of certain properties can be automatically determined
based on exhaustive examination of all possible behavior.
NuEditor has been programmed to generate
requirements as an XML document so that other
verification tools such as PVS can also be used if needed.
We have used NuEditor to specify a trip logic of
RPS(Reactor Protection System) BP(Bistable Processor)
and verify its correctness. It is a part of software-
implemented nuclear power plant shutdown system.
Domain experts found NuSCR and NuEditor to be
useful and qualified for industrial use in nuclear
engineering.

1. Introduction

Many validation and verification techniques (e.g.
inspection, fault tree analysis, simulation, model
checking, etc) have been proposed to ensure safety. In

nuclear power plant control systems, software safety
became a critical issue as traditional RLL(Relay Ladder
Logic)-based analog systems are replaced by digital
controllers [2]. KNICS project [3] in Korea is
developing DPPS(Digital Plant Protection System)
RPS(Reactor Protection System) which is classified as
being safety-critical by government regulation authority.
To maximize safety of RPS software, proven-effective
formal methods are being used. For example, SCR-style
notation was previously used to specify software
requirements for Wolnsung SDS2, a shutdown system
currently in service at a different plant in Korea. Experts
who performed critical analysis on SCR and other
formal specification languages came to the conclusion
that SCR-like notation is well-suited for specifying and
verifying requirements for RPS but that the notation in
its current form is too verbose to be effectively used.
Furthermore, availability of SCR* toolset was
unsatisfactory from the viewpoint of KNICS project
management office. Therefore, an effort was initiated to
(1) customize SCR so that characteristics unique to
nuclear engineering domain are best reflected in the
design of a specification language; and (2) develop a
tool suite, NuEditor, to integrate graphical editing
capability and formal verification environment. In
addition to performing built-in completeness and
consistency analysis on NuSCR specification, NuEditor
can generate SMV [11] input program automatically so
that one can perform model checking with minimal
intervention. It also generates XML output that is used
as input to PVS for deductive verification of structural
and functional properties [12].

To find out if NuSCR and NuEditor are useful enough
to nuclear engineers, we conducted a joint study with a
group of domain experts in which trip logic of
RPS(Reactor Protection System) BP(Bistable Processor)
was specified and verified. This paper introduces key
features of NuEditor and reports our experience from the
case study. Section 2 briefly introduces NuSCR, and
section 3 provides an overview of NuEditor features.
After reporting our experience with NuEditor from the
case study in section 4, we conclude the paper and
discuss planned extensions to NuEditor.

(a) FOD for g_Fixed_Setpoint_Rising_Trip_with_OB

(b) SDT for function variable node f_X_Valid (c) TTS for timed history variable node th_X_Trip

Figure 1. NuSCR Specifications Example

2. NuSCR

NuSCR [4], as noted earlier, customizes SCR (Software
Cost Reduction) [5] to nuclear engineering industry.
NuSCR, based on SCR-style AECL notation [6] used in
specifying requirements for Wolsung SDS2, uses
FOD(Function Overview Diagram) to capture high-level
data flows. In addition, three basic constructs - function
variable, history variable, and timed history variable -
are defined by SDT(Structured Decision Table),
FSM(Finite State Machine), and TTS(Timed Transition
System), respectively [7]. NuSCR improves the
readability of specification and enhances expressiveness
by supporting intuitive notations. Details on formal
definition of NuSCR syntax and semantics are found in
[4].

Figure 1(a) is a FOD for
g_Fixed_Setpoint_Rising_Trip_with_OB, fixed set-point
rising trip logic in BP, where g_ denotes the group prefix.
Boxed nodes represent inputs and outputs. SDT, shown
in Figure 1(b), defines function variable f_X_Valid
appearing in the FOD. If the value of f_X is between
k_X_MIN and k_X_MAX, the output value f_X Valid is 0,
indicating normal case. Otherwise output value is 1.
NuSCR allows multiple and related terms be written
together on the same row. That is, in the AECL-notation,
one would have no option but to divide into into two
rows: (f_X >= k_X_MIN) and (f_X <= k_X_MAX).
This example is too trivial for developer to appreciate

the difference in expressiveness. However, in the
Wolsung SDS2, which was considerably simpler in
complexity than KNICS RPS, the most complex SDT
consisted of 16 rows and 12 columns because complex
equations had to be decomposed into “primitive”
fragments. Domain experts repeatedly emphasized that
mathematical equations used in trip logics, no matter
how complex they are, are well-understood and proven-
correct as a whole to domain experts and that they need
not be artificially fragmented in the specification.

Figure 1(c), TTS for th_X_Trip, illustrates how
behavior of timed-history variable node is captured. It is
interpreted as follows: “If condition f_X ≥
k_X_Trip_Setpoint is satisfied in state Normal, it enters
Waiting state. If the condition remains true for
k_Trip_Delay period while in Waiting state, system
generates the trip signal 0. If f_X_Valid, f_Module_Error,
or f_Channel_Error occur, then trip signal is
immediately produced. In the state Trip_By_Error or
Trip_By_Logic, if the trip conditions are canceled,
system returns to Normal state and the output 1 is
generated.'' The TTS expression in Cond_b
[k_Trip_Delay, k_Trip_Delay] means that the condition
must remain true for k_Trip_Delay unit times. In AECL-
style notation, behavior related to time-dependent state
transition was written in tabular notation, and domain
experts preferred automata notation to tabular notation.

Similarly, h_X_OB_Sta, shown in Figure 1(a), is a
history variable node defined as FSM. FSM is same as

TTS except that time constraints are missing. All
constructs in NuSCR, s.t. FOD, SDT, FSM, and TTS are
familiar notations to domain engineers and software
developers. NuSCR has been evaluated as being easy to
specify and understand by domain engineers [8].

3. NuEditor Features and Capabilities

Main functionalities of NuEditor are shown in Figure
2. NuEditor, developed in Java, is platform independent.
All constructs in NuSCR (e.g., FOD, SDT, FSM, and
TTS) can be graphically edited using NuEditor. Various
nodes are colored differently so that they roles are
visually apparent. NuEditor stores models in
hierarchically organized folders, as shown on the left
side of the tool window, so that requirements for large
and complex industrial systems can be conveniently
organized. Users can add annotations and comments as
needed. In addition to a specification editor, consistency
and completeness checker was included. Figure 3 (a)
shows FOD and FSM editing windows, and Figure 3 (b)
shows SDT window and XML generator window. As
shown in Figure 4, analysis on structural correctness is
automated. That is, when a group node is expanded in a
separate page, inputs and outputs declared at a higher-
level node are shown. If detailed specification of inputs
and outputs on that page neglects to use them all, error
message pops up to warn users that usage of variables is
inconsistent. Variables can also be dragged so that users
need not explicitly type variable names repeatedly.

Figure 2. NuEditor Functionality

To support formal verification, NuEditor includes a

XML(Extensible Markup Language) generator and a
SMV input generator. The XML generator is used to
prove the structural and functional properties of NuSCR
specification using PVS [9,10]. Theorem proving[15] is
a deductive verification method. While powerful, proof
sessions are often lengthy and tedious in practice.
Fortunately, modern theorem provers like PVS provide
excellent support in proof automation and development
of proof strategies. To best utilize capabilities of tools
like PVS, NuEditor generates XML documents which
can then be used as input to other applications. XML
documents, for example, can be used in developing
design specification written in FBD(Function Block
Diagram) notations [13] as is the case in the KNICS
project [14].

The SMV input generator is used to check if
specification satisfies certain properties written in
temporal logic. Model checking[16] is a technique
enabling “push-button” verification based on exhaustive
search of possible behavior. Model checking is
becoming popular in industry because (1) it is
automated; and (2) a counterexample is generated if the
property does not hold in the specification.
Counterexample can reveal the presence of subtle flaws
in the specification or can be used to automatically
construct test cases. SMV is arguable the most widely
used model checker to date, and NuEditor can
automatically generate input to SMV model checker [11].
User simply needs to execute SMV software (e.g.,
Cardence SMV), load the specification file and property
file, and select verify all menus in the option.

(a) FOD, FSM Editing Window

(b) SDT, XML Generation Window

Figure 3. Screen shot of NuEditor

(a) FOD for g_BP (b) FOD for g_SG1_LVL_Lo_RPS

(c) FOD for g_SG1_LVL_Lo_RPS (d) Circular dependency checking
Figure 4. Consistency and Completeness Checking

4. Case Study

KNICS RPS includes RPS(Reactor Protection
System), ESF-CCS(Engineering Safety Features -
Component Control System), and ATIP(Automatic test
and Interface Processor) as major components. RPS is
designed to protect the reactor, while ESF-CCS is
intended to reduce the influence of other accidents
including loss of coolant. ATIP tests RPS and ESF-CCS
automatically. In this section, we present how NuEditor
was used in specifying requirements for BP (Bistable
Logic) logic. We performed model checking of BP
specification.

RPS BP periodically accepts inputs from 18 different
safety sensors installed in the system and performs
necessary comparison against predefined trip logics and
threshold values. For example, Figure 5 is a part of
NuSCR specification for RPS BP. In figure 5 (a), g_BP,
a group node, is decomposed in Figure 5(b). NuSCR
software requirements specification for KNICS BP is
about 400 pages, and it took 5 months by a number of
domain experts.
We present the results of model checking fixed set-point
rising trip logic with operating bypass. The logic
description written in natural language took about four

pages. Translation rules used in NuEditor are similar to
those proposed in [18, 19, 20, 21]. [18] translates SCR
specification into SMV input language, whereas [19]
translates SCR specification into language accepted by
SPIN [20] Since NuSCR, due to inclusion of FSM and
TTS in its notation, is more analogous to RSML than
SCR, our rule were mainly based on translation rules for
RSML [21]. More detailed translation methods are
described in [17].
Figure 6 shows SMV input program for th_X_Trip

shown earlier in Figure 1 (c). Since variables in SMV
must have finite discrete values, user must abstract
infinite values (e.g. f_X at line 8) as integer although f_X
actually returns a real number as its result. Constants
defined in the systems (lines 42 through 44) are
separately managed by NuEditor. Lines 35 through 39
and 51 reflect TTS specification including timer
variables, i.e. time_1 is a clock variable in TTS and line
51 is an action triggered by the variable.

(a) FOD for g_BP (b) FOD for g_LOG_PWR

Figure 5. FOD for RPS g_BP

Figure 6. Generated SMV input program for th_X_Trip in Figure 1 (c)

The following properties were verified using SMV:

① System is free from deadlock.
② Conflicting transitions are never enabled

simultaneously.
③ If module error, channel error, or input value error

occur, trip signal is generated immediately.

④ Trip signal is generated if the processing value rises
above the predefined set-point, and the condition lasts
for some predefined time.

⑤ If trip conditions aren't satisfied, then trip signal shall
never be fired.

⑥ Trip signal is never fired during operating bypass.

Properties, written in CTL formula, are as follows. It
must be noted that there are no automated support built
in NuEditor in specifying properties. Users are expected

to be familiar with basics of temporal logic and its
operators.

① Deadlock-freeness

SPEC AG EX 1
② Non-determinism

SPEC AG! (FROM-WAITING-TO-TRIP_BY_LOGIC-taken
 & FROM-WAITING-TO-NORMAL-taken)
SPEC AG! (FROM-WAITING-TO-TRIP_BY_LOGIC-taken
 & FROM-WAITING-TO-TRIP_BY_ERROR-taken)
SPEC AG! (FROM-WAITING-TO-NORMAL-taken
 & FROM-WAITING-TO-TRIP_BY_ERROR-taken)
SPEC AG! (FROM-WAITING-TO-NORMAL-taken
 & FROM-WAITING-TO-TRIP_BY_ERROR-taken)
SPEC AG! (FROM-TRIP_BY_LOGIC-TO-TRIP_BY_ERROR-
taken & FROM-TRIP_BY_LOGIC-TO-NORMAL-taken)
SPEC AG! (FROM-NORMAL-TO-TRIP_BY_ERROR-taken
 & FROM-NORMAL-TO-WAITING-taken)

③ Trip occurred by error
SPEC AG ((f_Channel_Error = 1 | f_Module_Error = 1)

 AF th_X_Trip = 0)
④ Trip occurred by logic

SPEC AG(((f_X > k_X_Trip_Setpoint) & (time_1 > 4))
 AF th_X_Trip = 0)

⑤ Normal status
SPEC AG((!(f_Channel_Error = 1 | f_Module_Error = 1 |
f_X_Valid = 1) & (f_X <= k_X_Trip_Setpoint)) AF
th_X_trip = 1)

⑥ Trip in operating bypass
SPEC AG((h_X_OB_Sta = 1 & ! (f_Channel_Error = 1 |
f_Module_Error = 1 | f_X_Valid = 1) & AF AX th_X_Trip = 1)

 AF AX th_X_Trip = 1)

Figure 7 shows how SMV-based model checking
results look like. Results marked TRUE indicate that the
property is satisfied in all possible system spaces. In this
case study, all properties are proved to be true using
SMV model checker, so we can confirm that RPS model
satisfies properties (1) through (6).

Figure 7. Verification result of th_X_Trip

5. Conclusions and Future Work

In this paper, we presented key features of NuEditor,
an integrated tool suite to perform both specification and
verification of requirements specification written in
NuSCR. The NuEditor includes a graphical editor,
consistency and completeness checker, XML output
generator, and SMV input generator. NuEditor provides

graphical and user-friendly interface and relieves
engineers from tedious and uninteresting work. It allows
them to work on more creative tasks. Automated
consistency checks save considerable time of developers
and reviewers. It also increases confidence that
specification is correct by allowing engineers to enjoy
benefit of formal methods. NuEditor tool was well liked
by nuclear engineers, and addition of simulation and
backward analysis capabilities would further improve its
usefulness in real applications like KNICS.

Acknowledgement

This research was partially supported by the Advanced
Information Technology Research Center(AITrc),
Software Process Improvement Center(SPIC), and the
Internet Intrusion Response Technology Research
Center(IIRTRC).

References

[1] N. G. Leveson, “SAFEWARE, System Safety and

Computer,” Addison Wesley, 1995.
[2] “Digital Instrumentation and Control Systems in Nuclear

Power Plants: safety and reliability issues”, U.S. NRC,
National Academy Press, 1997.

[3] KNICS(Korea Nuclear Instrumentation and Control System
Research and Development Center), Available: http://
www.knics.re.kr

[4] J. Yoo, T. Kim, S. Cha, J. Lee, and H. S. Son, “A Formal
Software Requirements Specification Method for Digital
Nuclear Plants Protection Systems,” Journal of Systems
and Software, accepted.

[5] K. L. Heninger, “Specifying software requirements for
complex systems: New techniques and their application,”
IEEE Trans. Software Engineering, vol. SE-6, no. 1, pp.
2-13, 1980.

[6] A. J. Schouwen Van, D. Panas, and J. Madey,
“Documentation of Requirements for Computer Systems,”
in proc. IEEE International Symposium on Requirements
Engineering, pp. 198-207, 1993.

[7] T. A. Henzinger, Z Manna, and A. Pnueli, “Timed
Transition Systems,” in proc. REX Workshop, pp.226-251,
1991.

[8] J. Yoo, Y. Oh, S. Cha, and C. Kim, “Toward the Formal
Software Requirements Specification for Digital Reactor
Protection Systems,” IEEE trans. Nuclear Science,
submitted.

[9] T. Kim and S. Cha, “Automatic Structural Analysis of
SCR-style Software Requirements Specifications using
PVS,” Journal of Software Testing, Verification, and
Reliability, vol. 11, no. 3, pp. 143-163, 2001.

[10] T. Kim, D. Stringer-Calvert, and S. Cha, "Formal
Verification of Functional Properties of an SCR-style
Software Requirements Specification using PVS,"
Reliability Engineering and System Safety, submitted.

[11] K. L. McMillan, “Symbolic Model Checking”, Kluwer
Academic Publishers, 1993.

[12] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas,
“A tutorial introduction to PVS,” Workshop on Industrial-

Strength Formal Specification Techniques (WIFT ’95), pp.
1-112, 1995.

[13] R. W. Lewis, “Programming Industrial Control Systems
Using IEC 1131-3,” The Institution of Electrical
Engineers, London, United Kingdom, 1995.

[14] J. Cho, Y. Oh, J. Yoo, and S. Cha, “KAIST Software
Development Framework for Nuclear-Domain,” 29th KISS
conference, spring, 2002.

[15] D. V. Dalen, “Logic and Structure,” Springer-Verlag, 3th
edition, 1993.

[16] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic
verification of finite-state concurrent machine using
temporal logic specifications,” ACM Trans. Programming
Language and systems, vol. 8, no. 2, pp. 244-263, 1986.

[17] J. Cho, "NuEditor : An Environment for NuSCR
Specification and Verification," MS. Thesis. Korea
Advanced Institute of Science and Technology(KAIST),
373-1, Kusong-dong, Yusong-gu, Taejon, Korea, Feb.
2002.

[18] J. M. Atlee and M. A. Buckley, “A logic-model semantics
for SCR software requirements,” In Proc International
Symposium on Software Testing and Analysis, pp. 280-
292, January 1996.

[19] B. Ramesh and C. L. Heitmeyer, “Model Checking
Complete Requirements Specifications Using
Abstraction,” Automated Software Engineering, vol. 6, no.
1, pp. 37-68, January 1999.

[20] G. J. Holzmann, P. Godefroid, and D. Pirottin, “Coverage
Preserving Reduction Strategies for Reachabily Analysis,”
In proc. IFIP/WG6.1 Symposium, Protocol Specification,
Testing, and Verification(PSTV92), pp. 349-364, 1992.

[21] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno,
D. Notkin, and J. D. Reese, “Model checking large
software specification,” IEEE Transaction on Software
Engineering, vol.24, no.7, 1998.

