1 What is NuSCR?

- Nuclear + SCR (Software Cost Reduction)
- Fixed form language for describing requirements
- Suitable for software technology that receives input, performs control logic and gives output
- Suitable for nuclear energy field required technology

2 Background of NuSCR

- Expansion of the ACEL (Wolsong) method
 - ACEL (Wolsong)
 - Basic structure: FOD (Function Overview Diagram)
 - Function: SDT (Structured Decision Table) function table
 - History: State node + function
 - Timing: Timing function
 - NuSCR
 - Basic structure: FOD
 - Function: 개선된 SDT function table
 - History: Automata
 - Timing: Time Annotated Automata

3 Components of NuSCR

- Input variable
- Output variable
- Function variable
- History variable
- Timed history variable
- FOD (Function Overview Diagram)

4 Variable naming rules

- Add the corresponding prefix to each variable
 - f: function variable
 - h: history variable
5 FOD (Function Overview Diagram)

- A kind of DFD (Data Flow Diagram)
- Describes the relationships between the components of NuSCR
- Display each component with a node
- Display relationships between nodes with one-way arrows
- Use group nodes when composed in classes
- Each node name follows the variable naming rule

5.1 Elements represented in FOD

- Input node, Output node
- Group node
- Function node
- History node
- Timed history node
- Data Flow or Transition
5.2 Example of FOD
6 Function Variable

- Used to describe the system’s functional behavior
- Defined with SDT (Structured Decision Table)
 - SDT is a type of Condition/Action table
 - Once the condition is satisfied, the action is performed
 - Familiar table style for the engineer

6.1 SDT (Structured Decision Table)

- Condition
 - Complex condition composed of function variable inputs
 - \(k_{\text{X_MIN}} \leq f_X \leq k_{\text{X_MAX}} \)
- Action
 - Assignments for function variables
 - \(f_{\text{X_Valid}} := 0 \)
6.2 Examples of SDT

<table>
<thead>
<tr>
<th>Conditions</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_X_MIN <= f_X <= k_X_MAX</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_X_Valid := 0</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>f_X_Valid := 1</td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

- SDT defines the function Variable f_X Valid
- Meaning
 - If f_X is greater than or equal to k_X_MIN, and less than or equal to k_X_MAX (condition),
 - Assign 0 to f_X_Valid (action)

6.3 Examples of SDT from RPS items

- Example of function variables defined through SDT

```
<table>
<thead>
<tr>
<th>Conditions</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_LO_901_LEVEL_LVL_PV_Err</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_LO_901_LEVEL_LVL_PV_Err+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_LO_901_LEVEL_LVL_PV_Err</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_LO_901_LEVEL_LVL_PV_Err</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_LO_901_LEVEL_LVL_PV_Err</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
7 History Variable

- Used to describe system’s condition based action
- Defined with a FSM (Finite State Machine)
 - Components of FSM
 - Finite number of states
 - Transitions between states

7.1 FSM (Finite State Machine)

- State
 - Express each of the system’s states
 - ie) A switch has two states: On and Off
- Transition
 - Represents the changes between states
 - Expressed with arrows
 - Each transition has a label
 - label form \(\rightarrow \) Conditions/Actions

7.2 Example of FSM

- FSM that defines the history variable h_X_OB_Sta
- Meaning
 - In the initial state NOT_OB_STATE
 - If the conditions \(f_{X_OB_Perm} = 1 \) and \(f_{X_OB_Ini} = 1 \) are satisfied (condition)
 - Assign the value 1 to h_X_OB_Sta (action)
 - Move to the OB_State (transition)
7.3 Example of FSM from RPS items

- Example of history variables defined through FSM

8 Timed History Variable

- Used to describe system’s time related actions
- Defined with TTS (Timed Transition System)
 - TTS is an extension of FSM
 - Time Annotated Automata
 - Adds a time restriction to FSM’s transition condition
 - Attaches a time restriction in the form of \([a,b]\) in front of the condition

8.1 TTS (Timed Transition System)

- State
 - Describes the systems’ different states
- Transition
 - Represents the changes between states
 - Expressed with arrows
 - Every transition has a label
 - label format → \([\text{Time}_1,\text{Time}_2]\)Conditions/Actions
 - ie) \([1,4]\)condition=0/action:=1
 - If the condition=0 is maintained for a term of 1~4 hours, assign action=1 and change state
8.2 Example of TTS

- TTS that defines a part of Timed History Variable \(\text{th}_X_\text{Trip} \)
- Meaning
 - In Waiting state
 - For \(k_\text{Trip_Delay} \) hours (Time Limit)
 - If \(f_X \geq k_\text{Trip_SetPoint} \) and \(h_X_\text{OB_Sta} = 0 \) conditions are satisfied and maintained (condition)
 - Assign \(\text{th}_X_\text{Trip} \) the value 0 (action)
 - Move to the Trip_By.Logic state (transition)

8.3 Example of TTS from RPS items

- Example of Timed History Variable defined through TTS