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Abstract

This article describes NuSCR, a formal software requirements specification method for digital plant protection system in nuclear

power plants. NuSCR improves the readability and specifiability by providing graphical or tabular notations depending on the type

of operations. NuSCR specifications can be formally analyzed for completeness, consistency, and against the properties specified in

temporal logic. We introduce the syntax and semantics of NuSCR and demonstrate the effectiveness of the approach using reactor

protection system, digital protection system being developed in Korea, as a case study.
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1. Introduction

Software safety is an important property for safety

critical systems, especially those in aerospace, satellite
and nuclear power plants, whose failure could result in

danger to human life, property or environment. It is

recently becoming more important due to the increase

in the complexity and size of safety critical systems

(Leveson, 1995). Formal software requirements specifi-

cation is known as a means to increase the safety of such

systems in the early phase of software development

process. It guides the developer to specify all require-
ments explicitly without any assumptions or omissions.

In addition, formal specification can be verified using

tools such as model checker (McMillan, 1993; Holz-

mann, 1997) or theorem prover (Owre et al., 1996).

Formal specification and verification of software

requirements for instrumentation and control system for

nuclear power plant has become the subject of extensive

research as old and hardware-based analog systems are
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being replaced with software-based digital power plant

protection system (NRC, 1997). Practical Formal

Specification (PFS) project is a similar effort for aero-

space applications (MoD, 1997).
Typical characteristics of digital protection control-

lers in nuclear power plant systems are as follows. First,

numerous inputs, more than 80 for RPS which is being

developed in Korea, are calculated by the software pro-

cess controllers. To maintain the system to be safe, all the

status of reactors and peripherals, i.e. turbines, steam

generators, and other subsystems, should be kept being

observed. Second, the software operates sequentially, s.t.
receives software inputs, calculates with them, and then

emits software outputs. It repeats the sequential opera-

tion periodically at every predefined time interval. Last

of all, all the possible operations of the software process

controller can be classified into three categories. They are

function-based, state-based, and timing-based opera-

tions. Function-based operations are the functions that

gets inputs, calculates with inputs only, and then emits an
output. State-based operations are the operations that

require the history information additionally. Timing-

based operations are the ones which require timing

constraints in addition to the history information.
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NuSCR is a formal software requirements specifi-

cation language which extends Software Cost Reduc-

tion (SCR) (Heninger, 1980) notation to specify

functional requirements of safety critical software,

especially nuclear power plants systems. It is based on

Parnas’ Four-Variable Model (Parnas and Madey,
1991) and uses Function Overview Diagram (FOD) for

the overview of data flows in the same way as (Wol-

songNPP2/3/4, 1991). WolsongNPP2/3/4 (1991) is a

variant of SCR, which was proposed by Atomic Energy

of Canada Limited (AECL) and was used for the for-

mal software requirements specification for ShutDown

System 2 (SDS2) in Wolsong nuclear power plant in

Korea.
In the approach of AECL, the state-based operations

such as trip set point hysteresis are specified as functions.

In fact, the AECL approach uses function to specify all

aspects of requirements even though computation may

require state-dependent information and timing con-

straints associated with it. Therefore, specification is

sometimes awkward to specify and difficult to under-

stand.
In the NuSCR approach, on the other hand, we use

finite state machine (FSM) to specify state-dependent

operations and timed transition system (TTS), a vari-

ant of automata (Henzinger et al., 1991) to specify

timing-related requirements. NuSCR specification can

be analyzed for structural correctness using PVS using

techniques described in (Kim and Cha, 2001). Using

PVS, we can verify the structural properties such as in-
put/output completeness, consistency, and circular

dependencies in NuSCR specification. NuSCR specifi-

cations can also be verified by model checker such as the

SMV (McMillan, 1993), based on the formal semantics

of NuSCR presented in this paper. We are developing

an automatic translator that translates NuSCR specifi-

cation into SMV inputs.

The remainder of the paper is organized as follows:
Section 2 reviews SCR and the variant proposed by

AECL. Section 3 introduces the specification constructs

in NuSCR. We also compare the existing AECL ap-

proach with our proposed NuSCR to evaluate objec-

tively their strengths and weakness. In Section 4, we

represent the formal semantics of NuSCR software

requirement specifications. We then briefly introduce

NuSCR requirements specification for Reactor Protec-
tion System (RPS) as a case study, and describe the

software development environment briefly in Section 5.

Conclusion and future work direction are in Section 6.
2. Formal requirements specification approaches

Some formal requirements specification methods
such as Z (Spivey, 1988), VDM (Jones, 1986), and

Larch (Guttag and Horning, 1993) focus on specifying
the behavior of sequential systems. These approaches

use rich mathematical structures like sets, relations, and

functions to describe states and use pre-conditions and

post-conditions for state transitions. While such nota-

tions are rich in expressiveness, application experts may

find the notation to be difficult to write, read and re-
view.

SCR (Heninger, 1980) was introduced in the early

80s to specify the software requirements of real-time

embedded systems. Recently it has been extended to

incorporate both functional and non-functional (e.g.,

timing and accuracy) requirements (Parnas and Madey,

1995; Van et al., 1993). As it was designed to be used

by engineers, the SCR methods has been successfully
applied to a variety of practical systems, such as the

A-7 Operational Flight Program (Alspaugh et al.,

1992), submarine communication system (Heitmeyer

and McLean, 1983), and safety-critical component of

Darlington nuclear power plant in Canada (Van et al.,

1993).

The approach (Van et al., 1993) applied to the

Darlington nuclear power plant by AECL is the first
attempt as the formal software requirements specifica-

tion for nuclear power plants system and it was also

applied to ShutDown System 2 (SDS2) in Wolsong

nuclear power plant in Korea (WolsongNPP2/3/4,

1993). The approach extends SCR in several ways.

First, it combined the three tables of SCR (i.e., the

mode transition table, event table, and condition table)

into a table named Structured Decision Table (SDT). It
uses Function Overview Diagram (FOD), similar to

Data Flow Diagram (DFD), to graphically illustrate

the overview of the system components and depen-

dencies. Finally, it provides sophisticated functions for

describing requirements related to precision and toler-

ance on timing constraints.

While most nuclear engineers and software engineers

find the AECL notation to be easy to understand, there
were some limitations. They are: (1) SDTs can be

excessively complicated for engineers to review. AECL

guidelines require all the conditions specified in each

row of the SDT to be ‘‘atomic’’ (e.g., without using

boolean operations). Therefore, in one case of Wolsung

SDS2 specification, a SDT required 14 rows and 16

columns to fully specify functionality. However, math-

ematical formulas used in the SDTs are well-known as a
whole in nuclear engineering community, and there is no

need to separately verify the correctness of each term

used in mathematical specification. (2) Management of

time-related features such as timers are too complicated

to define and understand. They use the special timing

functions for specifying time-related requirements.

However, the definition of them is too hard to be known

by common domain engineers by intuition. It also
complicates FOD by adding additional notations for

timing constraint.



Fig. 1. Structured decision tables for f X Valid.
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3. NuSCR software requirements specification constructs

NuSCR basically uses four constructs, monitored

variable, input variable, output variable, and controlled

variable according to Parnas’ Four-Variable Model

(Parnas and Madey, 1991). In addition, to specify the
relations of Parnas’ Four-Variable Model in practical
and domain dependent manners, we introduce three

other basic constructs, function variable, history vari-

able, and timed history variable. These three constructs

can be defined as SDT, FSM, and TTS respectively.

The relationship of all constructs is represented by

FOD.

Naming convention. NuSCR uses the prefix naming
convention as follows to distinguish each construct

efficiently. Two prefixes, ‘‘g ’’ and ‘‘k ’’, are introduced
for the convenience of specification:

• m : monitored variable

• i : input variable
• f : function variable
• h : history variable
• th : timed history variable
• g : set of function variable, history variable, or timed
history variable

• k : predefined constant
• o : output variable
• c : controlled variable

System entities. System entities constructing NuSCR
software requirements specification are defined as fol-

lows:

• VSE is a set of all system entities, defined as

VSE ¼ VI [ VF [ VH [ VTH [ VO
� VI: a set of system input variables

� VF: a set of function variables
� VH: a set of history variables
� VTH: a set of timed history variables
� VO: a set of system output variables

• DSE: a set of all possible valuation domain for every r
in VSE

Condition statements. Condition statements are the

predicates on the value of all entities in VSE. The con-
dition statements in NuSCR are defined as BNF form as
follows:

Let r 2 VSE, vr 2 DSE, a; b 2 N , and � 2 f¼; 6¼; 6 ; <;
P ; >g,
simple condition :¼ r � vrjr � rjTRUEjFALSE
complex condition :¼ simple condition ^ simple
condition

j simple condition _ simple conditionj
:simple conditionjsimple condition

timed condition :¼ ½a; b�complex condition
It should be noted that timed condition is a complex

condition which as timing constraints expressed as a

duration. Timed condition is used to define timed hi-

story variables whereas complex condition is written as

an expression containing function variables and history

variables.
Assignment statements. Assignment statements mean

the valuation of entities in VSE. The assignment state-
ments in NuSCR are defined as BNF form as follows:

Let r 2 VSE; vr 2 DSE; a;b 2 N ; and � 2 fþ;�;�;�g
assignment :¼ ðr :¼ vrÞjðr :¼ rÞjðr :¼ r� rÞjðr :¼ r� vrÞ

Function variable. Function variables are used for

specifying the mathematical functional behavior of a

system. They are defined as SDTs. SDT is a kind of

Condition/Action table, which represents the actions
(assignment statements) performed if their guiding

conditions (condition statements) are satisfied. Tabular

notations such as SDTs have the merit of being familiar

to engineers and developers. Conditions in SDT are the

complex_conditions with the inputs of the function var-

iable. Actions are the assignment to the function variable

itself.

Fig. 1 is an SDT defining function variable f X Valid.
Two SDTs are equivalent in that they both specify ‘‘if

f X is smaller than k X MAX and larger than k X MIN ,
then the new value for the f X Valid is 0. Otherwise the
output value of f X Valid is 1’’.
A key difference between SDTs used in NuSCR and

AECL approaches is that the former allows conditions

associated with each row to be arbitrarily complex

boolean expression. SDTs used in NuSCR tend to be
concise and provides superior readability.

History variable. History variables are used for

specifying the state-based behavior of a system. They are

defined as FSMs. FSM consists of finite number of

states, transitions between states, and labels on each
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transition. Labels are the Conditions/Actions statements

which are same as that of SDTs. Conditions in FSM’s

transition labels are the complex_conditions with the

inputs of the history variable. Actions are the assignment

to the history variable itself. If the transition condition is

satisfied in the current state, then the action is per-
formed and the state transition occurs.

Fig. 2 is an FSM defining history variable

h X OB Sta. Input entities for this variable is f X and

f X OB Perm, and the initial state is Not OB State.
Timed history variable. Timed history variables are

used for specifying the time-related behavior of system.
Not_OB_St
ate

OB_State

f_X_OB_Perm = 1
and  f_X_OB_Ini = 1
/ h_X_OB_Sta := 1

f_X_OB_Perm = 0
/ h_X_OB_Sta := 0

Fig. 2. Finite state machine for h X OB Sta.

Cond_a :  f_X >= k_X_Trip_Setpoint
Cond_b : [ k_Trip_Delay, k_Trip_Delay ]  (f_X >= k_X
Cond_c :  f_X < k_X_Trip_Setpoint - k_X_Trip_Hys
Cond_d :  f_X_Valid  = 1  or f_Module_Error = 1  or 

Waiting No

Cond_a
and not cond_d

not cond_a
and  not cond_d

Cond_d
/ th_X_Trip := 0

Cond_b and not Cond_d
/ th_X_Trip := 0

not C
/ th_X

Fig. 3. Timed transition s
They are defined as a kind of TTS (Henzinger et al.,

1991). TTS is an FSM extended with the timing con-

strains ½a; b� in transition conditions. ½a; b� means the
time duration between time a and b.
Fig. 3 is a TTS defining timed history variable

th X Trip. Input entities for this variable are f X and
h X OB STA, and the initial state is NORMAL. The

detailed interpretation of such definition is as follows:

‘‘If f X >¼ k X Trip Setpoint, written as a macro

named cond_a, and the condition defined in the macro

cond_d is false, the system moves to the waiting state.

(Other requirements are omitted.)’’ The TTS expression

in Cond b, ½k Trip Delay; k Trip Delay� means that the
condition has to remain true for k Trip Delay units.
Fig. 4 captures semantically equivalent notation

using the AECL approach. The complete definition of

timing functions are explained in (Van et al., 1993;

WolsongNPP2/3/4, 1993). As depicted in above figures,

in NuSCR, timing constraints are defined as TTS based

on the transition of state as time passes. On the other

hand, in the AECL approach, they enumerate each

condition and mark whether they are effective or not.
Timing functions, s.t. t trip and t Wait, are something
_Trip_Setpoint and h_X_OB_Sta = 0)

f_Channel_Error = 1

rmal

Trip_By
_Logic

Cond_c and not Cond_d
/ th_X_Trip := 1

Cond_d
/ th_X_Trip := 0

ond_d
_Trip := 1

Trip_By
_Error

Cond_d
/ th_X_Trip := 0

ystem for th X Trip.



Fig. 4. AECL SDT table for f X Trip and timing function t Trip.
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special to define and use, and also complicate the FOD.

Timed-history variable, which is defined as one TTS

node, makes FOD more concise to understand. Expe-

rience from the nuclear domain engineers in KNICS

project in Korea (KNICS, 2001) says that the specifi-
cation with NuSCR is more convenient and under-

standable.

Function overview diagram. Function overview dia-

gram (FOD) is a kind of DFD, which describes the

relationship between constructs in VSE in NuSCR soft-

ware requirements specification. Each construct in VSE is
represented by specific node, and the relationship be-
f_X

f_Module_Error

f_Channel_Error

f_X_OB_Ini

f_X_Valid
1

f_X_OB_P
erm

2

h_

: Input or output node

: function node

: history node

: timed-history

: data flow

Fig. 5. Function overview dia
tween them is represented by unidirectional arrows.

FOD is composed hierarchically and in this case the

group nodes are used. Each node follows the naming

convention mentioned earlier.

Fig. 5 is a FOD for g LOG PWR which is the logic
for fixed set-point rising trip with operating bypass

in RPS of digital plant protection system. Nodes

f X Valid, h X OB Sta, and th X Trip are defined in

(Figs. 1–3) respectively. NuSCR distinguishes these

timing and state variable related features using pre-

fix naming convention (s.t. th ) and the shape of

nodes.
th_X_Pretrip
4

th_X_Pretrip

th_X_Trip
5

th_X_Trip

X_OB_Sta
3

h_X_OB_Sta

f_X_OB_Perm

 node

gram for g LOG PWR.
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4. Semantics for NuSCR

To specify the meaning of software system written in

NuSCR, we need to define an state valuation function r
(Tennent, 1976). If S is the set of all possible ‘‘states’’ of
variables in VSE, r defines a correspondence between
every variable and the value that is its current contents.

Therefore it is convenient to model r by function with
domain VSE and co-domain DSE:

r : S ¼ VSE ! DSE

Then for any variable V in VSE, r½V � is the contents of V
in current state. The notation r½d=V � is used to update a
state. It means the state r0 such that r0½V � ¼ d and for all
V 0 6¼ V in VSE, r0½V 0� ¼ r½V 0�. That is, r0 is the same

function as r except at the argument V which is mapped
into d.
The behavior of software system specified by NuSCR

can be defined based on the behavior of FOD, which is a

function from system input I to system output O. FOD
is also based on the behavior of three basic variable

nodes in FOD, which are the functions as follows:

Function variable node. Function variable in NuSCR

is represented by a function variable node in FOD. It is
defined by SDT. Let IFV be the set of input values from
other nodes in FOD into the function variable node it-

self. Let OFV be the set of output values from this node.

They can be mapped into the set of variables, VFI and
VFO respectively. Then comple_conditions in SDT are the
predicate on VFI, and actions are the assignments on VFO
which is the function variable itself. Therefore, a func-

tion variable node can be defined as a function fFV with
input values IFV to output values OFV as follows.

fFV : IFV ! OFV

SDT is defined as a set of a pair ðp; aÞ, where
p 2 Predicate and a 2 Action. Predicte is a set of boolean
predicates on VFI, which is the conjunction of com-

plex_conditions in SDT condition statements. p is a

boolean condition. Action is a set of assignments to VFO
which is just the function variable itself.

SDT : a set of pair ðp; aÞ

• p 2 Predicate and a 2 Action
• if p½IFV=VFI�r ¼ TRUE then aðrÞ ¼ r½OFV=VFO� ¼

r0½VFO�
Conditions
Cond1 T - T
Cond2 F T -
Cond3 - F T

Actions
Assign1 X
Assign2 X
Assign3 X

Fig. 6. Structured decision table for a function variable.
For example, SDT in Fig. 6 can be defined as follows:

SDT ¼ fðCond1 ¼ T ^ Cond2 ¼ F ;Assign1Þ;
ðCond2 ¼ T ^ Cond3 ¼ F ;Assign2Þ;
ðCond1 ¼ T ^ Cond3 ¼ T ;Assign3Þg

History variable node. History variable in NuSCR is

represented by a history variable node in FOD. It is

defined by FSM which is composed of states, transitions

between states, and labels on transitions. Let IHV be the
set of input values from other nodes in FOD into the

history variable node. Let OHV be the set of output

values from this node. They can be mapped into the set

of variables, VHI and VHO respectively. Then com-

plex_conditions in FSM’s transition labels are the pred-

icate on VHI and actions are assignments on VHV which is
the history variable itself. Therefore, a history variable

node can be defined as a function fHV from input values

IHV to output values OHV as follows:

fHV : IHV ! OHV

FSM can be defined as a relation described below:

FSM ¼ hSH; s0;C;A;Ri

• SH: a set of all states in history variable node
• s0: initial state in SH
• C: a set of complex_conditions
• A: a set of assignments
• R:

� a transition relation SH � C � A� SH
� 9rðs; c; a; s0Þ 2 R and 9current state 2 CSH, such
that if current state ¼ s and c½IHV=VHI�r ¼
TRUE, then aðrÞ ¼ r½OHV=VHO� ¼ r0½VHO� and

current state0 ¼ s0

current_state in the definition above means the variable

in CSH, which indicates the current state of the history
node. It will be used in the definition of the overall

NuSCR system. History variable in (Fig. 7) can be de-

fined as a relation as follows:

FSM ¼ hSH; s0;C;A;Ri
SH ¼ fS1; S2; S3g
s0 ¼ S1
S1 S2 S3

Cond 1 / Assign 1

Cond
2
 / Assign

2

Cond
3
 / Assign

3

Cond 4  / Assign 4

Fig. 7. Finite state machine for history variable node.



S1 S2 S3

[a,b] Cond 1 / Assign 1

[0,a] Cond
2

/ Assign 2

[0,a] Cond
3

/ Assign
3

Cond 4  / Assign 4

Fig. 8. Timed transition system for a timed history variable node.
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C ¼ fCond1;Cond2;Cond3;Cond4g
A ¼ fAssign1;Assign2;Assign3;Assign4g
R ¼ fðS1;Cond1;Assign1; S2Þ;

ðS2;Cond3;Assign3;S1Þ; ðS2;Cond2;Assign2;S3Þ;
ðS3;Cond4;Assign4;S1Þg

Timed history variable node. Timed history variable in

NuSCR is represented by a timed history variable node

in FOD. It is defined by TTS which is a FSM extended

with timing constrains ½a; b� in transition labels. a and b
means the minimum and maximum delay in the transi-
tion respectively. Let ITHV be the set of input values

from other nodes in FOD into the timed history variable

node. Let OTHV be the set of output values from this

node. They can be mapped into the set of variables, VTHI
and VTHO respectively. Then timed_conditions are the

predicate on VTHI and timing constrains ½a; b�, and ac-
tions are the assignment on VTHV which is the history
variable itself. Therefore, a timed history variable node
can be defined as a function fTHV from input values ITHV
to output values OTHV as follows:

fTHV : ITHV ! OTHV

TTS can be defined as a relation described below:

TTS ¼ hSTH; s0;C;A;Ri

• STH: a set of states in timed history variable node �lc,
where lc is a local clock in LC

• s0: initial state in STH
• C: a set of timed_conditions or complex_conditions
• A: a set of assignments
• R:

� a transition relation STH � C � A� STH
� 9rðs; c; a; s0Þ 2 R and 9current state 2 CSTH, such
that if current state ¼ s and c½ITHV=VTHI�r ¼
TRUE, then aðrÞ ¼ r½OTHV=VTHO� ¼ r0½VTHO� and
current state0 ¼ s0

current_state is a variable in CSTH, which indicates
the current state and the current local time. The

behavior of transition relations in TTS is a little dif-

ferent from that of FSM because of the timing con-

straints. For example, the transition from state S1 to S2
in Fig. 8 has the transition labeled with ‘‘½a; b�Cond1=
Assign1’’. The minimum delay a means that when the
control of timed history node has resided at the loca-
tion S1 for at least a time units during which the guard
Cond1 has been continuously true, then the transition
from S1 to S2 may occur. The maximum delay b means
that whenever the state of history variable has resided

at S1 for b time units during which the guard Cond1 has
been continuously true, then the transition from S1 to
S2 has to occur. The behavior of this transition can be
described as follows. ‘‘lc :¼ lcþ 1’’ means the local
time progress and ‘‘lc :¼ 0’’ means the local clock ini-

tialization.

if current state ¼ ðS1 ^ lc < aÞ
then next state :¼ ðcurrent state; lc :¼ lcþ 1Þ

else if current state ¼ ðS1 ^ a6 lc < bÞ
then next state :¼ ðS2; lc :¼ 0Þ or next state :¼
ðcurrent state; lc :¼ lcþ 1Þ

else if current state ¼ ðS1 ^ lc ¼ bÞ
then next state :¼ ðS2; lc :¼ 0Þ

For example, timed history variable in (Fig. 8) can be

defined as a relation as follows:

TTS ¼ hSTH; s0;C;A;Ri
STH ¼ fðS1; lcÞ; ðS2; lcÞ; ðS3; lcÞg
s0 ¼ ðS1; 0Þ
C ¼ f½a; b�Cond1; ½0; a�Cond2; ½0; a�Cond3;Cond4g
A ¼ fAssign1;Assign2;Assign3;Assign4g
R ¼ fððS1; ða; bÞÞ;Cond1;Assign1; S2Þ;

ððS2; ½0; a�Þ;Cond3;Assign3; S1Þ;
ððS2; ½0; a�ÞCond2;Assign2; S3Þ;
ððS3;�Þ;Cond4;Assign4; S1Þg

Function fTHV generates an output (OTHV) whenever
it gets inputs (ITHV) from other nodes in FOD. If no
conditions are satisfied, then the value of OTHV in the
previous scan cycle is preserved. However, although it

gets no inputs ITHV, the transition condition can be
satisfied as the local time proceeds. In nuclear power

plants system, however, this situation can be avoided. It

is because system scan cycle time d is always much more
smaller than the time a or b in timing constraint ½a; b�
(i.e., d is 50 ms and delay time a is 150 ms). Of course,
we need to adjust that a or b are the multiple of d.
Function overview diagram. FOD in NuSCR describes

the relationship between constructs in VSE. Let IFOD be
the set of input values from out of FOD (i.e., environ-

ment or other FODs) into the FOD. Let OFOD be the set
of output values from FOD. They can be mapped into

the set of variables, VFODI and VFODO respectively. Also as
all nodes in FOD have partial orders according to their

execution order and all nodes are defined as functions,

fFOD can be represented as a function composition of all
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nodes in FOD according to the partial orders on their

precedence. Therefore, FOD can be defined as a function

fFOD from input values IFOD to output values OFOD.

fFOD ¼ fn � � � � � f2 � f1

fFOD : IFOD ! OFOD

FOD can be defined as a tuple as follows:

FOD ¼ hN ; T i

• N
� a set of all nodes in FOD

� all nodes in VF and VH and VTH are defined as func-
tions

� VFODI in VI is a set of input variable nodes in FOD,
which mapped as r½IFOD=VFODI� ¼ r0½VFODI�

� VFODO in VO is a set of output variable nodes in
FOD, which mapped as r½OFOD=VFODO� ¼r0½VFODO�

• T
� a set of transition ðn1; n2Þ between all nodes n1, n2
in N

� 8t ¼ ðn1; n2Þ 2 T , n1 has a precedence on n2

For example, FOD in (Fig. 9) can be defined as fol-
lows:

FOD ¼ hN ; T i
N ¼ fI 1; I 2; I 3; I 4; f A; f B; h C; th D; th E;
O 1;O 2;O 3;O 4g

T ¼ ffI 1; th Eg; fI 2; th Eg; fI 3; h Cg; fI 4; f Ag;
fI 4; th Eg; fI 4; f Bg; fI 4; th Dg; ff A; th Eg;
ff B; h Cg; fh C; th Eg; fth E;O 1g; fh C;O 2g;
ff C;O Cg; fth D;O 4gg
fFOD ¼ fth D � fth E � fh C � ff B

� ff A ðother sequences are also possibleÞ
NuSCR Software System. NuSCR software system is

defined as a tuple NSS ¼ hS; S0;R; di in which
I_4

I_1

I_2

I_3

f_A

f_B

Fig. 9. Function overview
• S: a set of system states, which is defined as

r½VSE � CSH � CSTH�
• S0: initial state in S
• R: a set of transition relation S � I ! S0 � O, where I
and O are system’s input and output values respec-

tively
• d: system scan cycle time in which the system get the

changed valuation function r periodically

NuSCR software system NSS uses the definitions of
all three basic constructs and FOD. NSS gets inputs I
from the out of system (i.e., environment), calculates

with them, and then emits outputs O to the outside. In

each time that NSS emits outputs, NSS changes its
internal system states according to the behavior of NSS.

The states of NSS is defined as r½VSE � CSH � CSTH�,
where CSH and CSTH mean the set of current state of

history variable node and timed history variable node

respectively. It means the current contents of all vari-

ables used in NSS. The behavior of NSS is defined based

on a function fFOD defined above. That is, between

system states, there exists transition relation s.t. R, and it
corresponds to O ¼ fFODðIÞ. NSS also operates period-
ically with system scan cycle time d. With every time
interval d, it gets the changed valuation function r for
the inputs and outputs of NSS. This periodic behavior

of NSS is an essential part for digital plant protection

system in nuclear power plants, which requires the strict

scan cycle time.
5. Case study: RPS example

In this section, we introduce NuSCR software
requirements specification for Reactor Protection Sys-

tem (RPS), which is presently at developing in KINCS

(KNICS, 2001), Korea.

KNICS RPS. Plant Protection System (PPS), which is

presently being developed at KNICS in Korea, is com-

posed of Reactor Protection System (RPS), Engineering
th_D O_4

th_E O_1

h_C O_2

O_3

diagram example.



Fig. 10. FOD for g BP .

Fig. 11. A screen-dump of NuEditor.
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Safety Features-Component Control System (ESF-

CCS), and Automatic test and Interface Processor

(ATIP). RPS plays the role of protecting reactor, and

ESF-CCS is used for reducing the influence of other

accidents, i.e. Loss of Coolant Accident (LOCA). ATIP

tests RPS and ESF-CCS automatically. In this section,
we present the NuSCR formal software requirement

specification for BP (Bistable Logic), which is the most

important parts in RPS.

NuSCR specification for BP. Each BP gets 18 safety

sensors input periodically, and performs the necessary

comparison logic calculation according to each input to

determine the safety state of the reactor. Each input is

calculated independently as its trip calculation logic. Fig.
10 is a part of NuSCR specification for RPS BP(g BP ).
This figure is a screen dump of NuEditor, which is the

specification and analysis assistant tool for NuSCR. In

Fig. 10, the quadrangle shaped nodes in the left mean the

input variables for g BP , and the right ones are the
output from g BP . The left part in NuEditor represents
the hierarchy of FOD, which is at specifying level, and

the editing window is located at the right.
g LOG PWR, which is the second nodes in the 18

independent modules consisting BP depicted in Fig. 10,

is a fixed set-point rising trip with operating bypass

logic. It means that the trip set-point is fixed and trip

occurs if the input value falls above the set-point. The

FOD of this trip logic module is depicted in Fig. 4 in

Section 3. The full names of each variable are simplified

to the concise ones for convenience.
NuSCR Specification Supporting Tool. To be useful in

developing practical systems, we provide a robust and

well-engineered tool, NuEditor, for specifying the

NuSCR specification. In NuEditor, simple properties

s.t. completeness and consistency checking can be sup-

ported. Also it produces the adequate PVS inputs to

verify the structural properties such as input/output

completeness, consistency, and circular dependencies in
NuSCR specification. It is based on our technique in

(Kim and Cha, 2001). We are now developing an

automatic translating procedure from NuSCR specifi-

cation into SMV inputs to verify further sophisticated

properties. Fig. 11 represents the NuEditor, we are

developing. With this tool, we have finished to specify

the whole system of Reactor Protection System (RPS),

which is a core control process of nuclear power plant
system, as a part of KNICS project in Korea.
6. Conclusion and future work

Software safety is an important property for safety

critical systems and formal requirements specification is

known as a means to the safety in the early phase of
software development process. Nowadays, in the area of

nuclear power plant systems, the formal specification of
software requirements is an urgent problem that needs

to be solved right away with the replacement of existing

analog systems by digital systems composed of software

process controllers.

In this paper, we introduce NuSCR, a formal software

requirements specification method for digital protection
system in nuclear power plants. NuSCR improves the

readability and specifying ability by supplying different

notations on the basis of the typical operation categories.

The characteristics of the software process controller in

nuclear power plants, s.t. periodic sequential processing

and classifiable operations, makes this possible. We

introduce the syntax and formal semantics of NuSCR to

apply the recognized formal verification techniques to
NuSCR specifications.

An RPS system in digital nuclear power plants pro-

tection system, which is presently at developing in Korea

is used as a case study to illustrate usefulness of our

method. We also introduce the supporting tool, NuEd-

itor, to be useful in developing practical systems. With

this tool, we specified the whole system of RPS, which is

a core control process of nuclear power plant system, as
a part of KNICS (KNICS, 2001) project in Korea. We

are also developing an automatic translating procedure

from NuSCR specification into SMV inputs to verify

further sophisticated properties.
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