
Synthesis of FBD-based PLC design from NuSCR formal specification

Junbeom Yooa,*, Sungdeok Chaa, Chang Hwoi Kimb, Duck Yong Songc

aDepartment of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST)

and AITrc/SPIC/IIRTRC, 373-1, Kusong-dong, Yusong-gu, Taejon, South Korea
bI&C-HMI team, Korea Atomic Energy Research Institute (KAERI), 150, Deokjin-dong, Yusong-gu, Taejon, South Korea

cNuclear Research Division, Atomic Creative Technology Ltd, 1688-5, Sinil-dong, Daedeok-gu, Taejon, South Korea

Received 15 August 2003; accepted 21 May 2004
Abstract

NuSCR is a formal specification language to document requirements for real-time embedded software with nuclear engineering

applications in mind. Domain experts actively participated in selecting how to best represent various aspects. It uses tabular notations to

specify required computations and automata to document state- or time-dependent behavior. As programmable logic controllers (PLCs)

are widely used to implement real-time embedded software, synthesis of PLC code from a formal specification is desirable if

transformation rules can be rigorously defined. In addition to improved productivity, results of safety analysis performed on requirements

remain valid. In this paper, we demonstrate how NuSCR specification can be translated into semantically equivalent function block

diagram (FBD) code. The process, except the initial phase where user provides information on missing or implicit details, is automated.

Since executable code can be automatically generated using CASE tools from FBD, much of software development is automated.

Proposed technique is currently being used in developing reactor protection system (RPS) for nuclear power plants in Korea, and

experience to date has been positive. We demonstrate the proposed approach using the fixed set-point rising trip which is one of the

most complex trip logics included in the RPS.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Formal requirements specification; Design specification; PLC; FBD; Nuclear power plant controller
1. Introduction

Software safety became an important issue for embedded

control systems as traditional relay-based analog systems

are being replaced by software. When developing safety-

critical software such as emergency shutdown system for

nuclear power plants, regulation authorities require safety

demonstrations throughout life-cycle phases. Requirement

engineering is well-known to play critical roles to software

quality, and formal specification techniques are often used

to facilitate unambiguous documentation and rigorous
0951-8320/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ress.2004.05.005

* Corresponding author. Address: Division of Computer Science, EECS

Department and Advanced Information Technology Research Institute

(AITrc), Korea Advanced Institute of Science and Technology (KAIST),

373-1 Kusong-dong, Yusong-gu, Taejon 305-701, South Korea.

E-mail addresses: jbyoo@salmosa.kaist.ac.kr (J. Yoo),

cha@salmosa.kaist.ac.kr (S. Cha), chkim2@kaeri.re.kr (C.H. Kim),

dysong@act.actbest.com (D.Y. Song).
analysis of requirements. As active participation of domain

experts is essential when performing safety analysis, several

domain-specific specification languages have been devel-

oped. NuSCR, based on SCR [6] notation, is a specification

language designed to serve nuclear engineering industry.

While adopting notations familiar to domain experts such as

function overview diagrams (FODs) and structured decision

tables (SDTs), state- and time-dependent functionalities are

visually specified in automata notation. As domain experts

who are also familiar with research on formal methods

actively participated when deciding how to best capture

various requirements, nuclear engineers find NuSCR easy to

use and intuitive [2]. In fact, when used to document

requirements for bistable processor (BP) logic as a part of

the KNICS1 project, several errors such as ambiguities in
Reliability Engineering and System Safety 87 (2005) 287–294
www.elsevier.com/locate/ress
1 Goal of the KNICS project is to develop a suite of instrumentation and

control software for use in next generation Korean nuclear power plants.

http://www.elsevier.com/locate/ress


Fig. 1. FOD for g_Fixed_Setpoint_Rising_Trip_with_OB.

J. Yoo et al. / Reliability Engineering and System Safety 87 (2005) 287–294288
trip logics and missing initialization routines were found in

documents written in English.

In the KNICS project [3], as is often the case with many

embedded software projects, programmable logic controller

(PLC) is used as an implementation platform. There are

several widely used PLC programming languages, and

function block diagram (FBD) and ladder diagrams are

frequently used in industry. CASE tools like SIEMENS

TELEPERM XS/XP [1] can automatically generate execu-

table code from FBD. While C code can also be generated

for testing purpose, such step is unnecessary if (1) adequate

safety analysis can be applied on NuSCR; (2) FBD code can

be synthesized from NuSCR specification; (3) transform-

ation rules between the two are rigorously defined and

verified; and (4) adequate techniques exist in testing PLC

code.

This paper describes a systematic process of generating

FBD-based PLC program from NuSCR specification using

fixed set-point rising trip with operating bypass example

included in the requirements for reactor protection system

(RPS). After briefly introducing the trip logic in Section 2,

we introduce key features of NuSCR and FBD program-

ming. Section 3 explains NuSCR-to-FBD transformation

rules, and Section 4 concludes the paper.
Fig. 2. SDT for f_X_Valid.
2. Background

2.1. RPS

KNICS digital plant protection system consists of three

subsystems: RPS, engineering safety features-component
control system (ESF-CCS), and automatic test and inter-

face processor (ATIP). RPS, further divided into BP and

coincidence processor (CP), implements trip logics so that

the plant can be safely shut down in emergency situations

such as increased reactor temperature or loss of coolant.

EFS-CCS, similar in features to RPS, attempts to reduce

influence of other reactor accidents while ATIP period-

ically tests RPS and EFS-CCS so that plant safety is always

ensured. BP accepts inputs from 18 different sensors and

performs required computations to monitor reactor’s safety

status. Among several trip logics, fixed set-point rising trip

with operating bypass generates the trip signal (th_X_Trip)

if input value f_X rises above the predefined threshold

value. However, trip logic must be bypassed (h_X_OB_

Sta) if an operator pushes the bypass button (f_X_OB_Ini)

while the input value remains in the normal and permitted

range. Different and preliminary trip logic (th_X_Pretrip),

whose setpoint is slightly lower than that of the trip, warns

an operator of potentially imminent trip. Figs. 1–3 show

FOD as well as requirements for f_X_Valid and th_X_Trip

in NuSCR, respectively. The system is quite complex in



Fig. 4. IEC 61131-3 FBD samples for nuclear DPPS Software.

Fig. 3. TTS for th_X_Trip.

J. Yoo et al. / Reliability Engineering and System Safety 87 (2005) 287–294 289
that requirements for BP and CP alone in NuSCR exceed

400 pages.2 All four redundant copies of BPs and a CP are

implemented on separate PLCs and executed periodically.
2.2. NuSCR

NuSCR improves expressiveness of the notation and

readability of the SCR specification [6,7]. Ref. [4] describes

details NuSCR syntax and formal semantics in detail, and

Ref. [8] reports a NuSCR-based requirements engineering

environment named NuEditor. In this section, we briefly

review only the features necessary to understand how FBD

code is synthesized from NuSCR.

Function overview diagram (FOD), in notation similar to

the data-flow diagrams, captures dependency relation

among various nodes hierarchically so that complex
2 Requirements written in natural language, during preliminary phase of

requirements engineering is about 40 pages.
requirements can be specified in a divide-and-conquer

fashion. FOD for g_Fixed_Setpoint_Rising_Trip_with_OB

(Fig. 1) shows the overall structure for fixed set-point falling

trip logic. It is a screen-dump of NuEditor. Rectangular

nodes indicate inputs and outputs, and different types of

nodes are drawn in different shape and color so that their

roles are visually apparent.

Function variables use SDT as used in SCR. Fig. 2

describes how f_X_Valid computes the required output.

NuSCR allows an arbitrarily complex composition Boolean

expression whereas SCR notation requires it to be
Fig. 5. FBD for f_X_Valid.



Fig. 6. Example of the completeness and consistency for SDT.

J. Yoo et al. / Reliability Engineering and System Safety 87 (2005) 287–294290
decomposed into primitive units (e.g. no Boolean oper-

ators). Example shown in Fig. 2 is too simple to convin-

cingly demonstrate the difference in expressiveness of SDT

used in NuSCR and SCR. However, domain experts have

repeatedly emphasized that there is no practical advantage

to gain by forcing fine-grained breakdown of complex

mathematical equations that are well-understood as a

coherent unit. Revised syntax of SDT is a critical factor

contributing to conciseness and reviewability. For example,

in Wolsung SDS2, written in SCR, some tables were so

complex as to contain 16 rows and 12 columns, and
Fig. 7. Modified complete and consiste
requirements for KNICS RPS is significantly more complex

than that of Wolsung SDS2.

History variables, specifying state-dependent behavior,

use finite state machine notation whose labels represent

triggering events and conditions. Timed-history variables

are similar to history variables in notation, but time

constraints (e.g. durations such as [1,5]) are associated

with labels. Macros are also supported to prevent automata

from becoming too crowded to be easily reviewed.
2.3. PLC programming in FBD

PLC has relatively simple architecture, compared to

modern microprocessors, where sensors and actuators are

plugged in via input and output channels, respectively.

Simplified architecture and processing steps make PLC an

attractive platform for implementing embedded application
nt timed automata for th_X_Trip.



Fig. 8. 2C-table for th_X_Trip.

J. Yoo et al. / Reliability Engineering and System Safety 87 (2005) 287–294 291
software. Operating system, managing periodic execution of

PLC applications, reads all input values at the beginning of

each cycle, generates required outputs, and stores system

variables.

Among the five PLC programming languages included in

the IEC 61131-3 standard [9], KNICS project chose to

implement software in FBD. FBD, similar to electrical

circuit diagram in notation, consists of a network of

primitive function blocks. Fig. 4 includes some of the

representative samples of function blocks performing

logical, arithmetic, selection, and timing operations.

For example, SDT for f_X_Valid, shown in Fig. 2, can be

easily translated into FBD shown in Fig. 5.3 Numbers

appearing in parenthesis appearing above the function

blocks indicate the generation and execution sequences.

That is, AND_BOOL computation is started when GE_INT

and LE_INT function blocks produced their results.
3. FBD synthesis

This section describes a process of generating FBD code

from NuSCR specification. Consistency and completeness

of the tables and automata are first analyzed. Automata are

then converted into an intermediate tabular notation which

we call 2C-table. Basic FBD corresponding to each table
3 FBD shown in Fig. 5 is developed using Concept version 2.2 XL SR2, a

PLC programming assistant tool marketed by Schneider Automation

GmbH.
notation is generated, and the final step determines an

execution order of all the FBD nodes.

Step 1. Consistency and completeness checking. NuSCR

allows inclusion of arbitrarily complex expressions and

macros in SDT and automata. When specifying state- and

time-dependent behavior using (timed) automata notation,

not all edges are drawn explicitly. In addition, SDT may

contain nondeterminism if specific ordering of execution

sequences does not matter. While such features reduce

complexity of requirements, all the missing details and

exceptional situations must be made explicit, complete

and consistent. For example, SDT shown in Fig. 6(a) is

neither complete nor consistent. As ‘-’ denotes ‘don’t care’

condition, output can be either 1 or 0 if both conditions

Cond_a and Cond_b are TRUE. On the other hand, output

is unspecified when Cond_a is FALSE and Cond_b is

TRUE. As there is no completely automated process

through which one can transform tables to be complete,

consistent, and semantically correct, user intervention is

required. Similarly, state- and time-dependent requirements

must also be verified, in isolation, for completeness and

consistency. See Fig. 7 for an example where automata

shown in Fig. 3 are made complete and consistent.

Step 2. 2C-table generation for FSM and TTS. Require-

ments captured in automata are converted into an inter-

mediate tabular notation called the 2C-table. While its

format is similar to that of SDT, 2C-table has an additional

action part capturing changes made to state variables. Fig. 8

is the 2C-table obtained from modified automata shown in

Fig. 7. SV is the state variable, and Output denotes the

output of th_X_Trip node. For example, the second column



Fig. 9. FBD generated from SDT of f_X_Valid.

J. Yoo et al. / Reliability Engineering and System Safety 87 (2005) 287–294292
of Fig. 8, shaded for the purpose of illustration, denotes that

if Cond_a and not Cond_d are satisfied in state Normal, the

output value of th_X_Trip is the same as the previous one

and the next state is Waiting.

Step 3. Basic FBD generation. The next step separately

generates basic FBD from each SDT and 2C-table.

Reflecting the characteristics of PLC, where input values

are first read before output values are computed, FBD

generated from SDT and 2C-table consists of two parts: (1)

preprocessing routine in which conditions and macros used

in the SDTs are first evaluated; and (2) computation routine

where output values are determined. See Fig. 9, generated

from SDT shown in Fig. 2, for an example. Complex

conditions are internally decomposed into a collection of
Fig. 10. Preprocessing part
primitive predicates, and Boolean operators are replaced by

the corresponding FBD blocks. Ref. [10] describes the

details of the algorithm. 2C-table is transformed, as shown

in Figs. 10–12, into FBDs using the same procedure. SEL

block allows one of several inputs be chosen as outputs and

updated value of state variables.

Step 4. FBDs execution order decision. In the final step,

FOD is analyzed, and execution order of each FBD is

decided. Analysis of FOD shown in Fig. 1 reveals the

following dependencies among nodes: 1/5 and 2/3/5.

Therefore, three interleaving sequences are possible

when all the nodes except the node 4 are included, and

15 possibilities exist when all the nodes are included.

Because all such cases are semantically equivalent,

our procedure selects one of them in a nondeterministic

manner.

While the procedure describe above is straightforward

in concept and algorithm, it is not optimal in the number

of FBD blocks used because FBDs computing outputs and

updating state variables are separately but redundantly

implemented (Table 1). Such redundancy is acceptable in

nuclear applications where safety assurance is much more

important than optimization of FBD blocks. As each FBD

block is inexpensive and RPS is not mass produced in

large quantity, as is the case with automotive

control PLCs, optimization of the FBD is not the most

important concern. In fact, experimental studies
FBD for th_X_Trip.



Fig. 11. Output processing part FBD for th_X_Trip.

Fig. 12. State-variable processing part FBD for th_X_Trip.

J. Yoo et al. / Reliability Engineering and System Safety 87 (2005) 287–294 293



Table 1

Comparison of the number of FBD blocks included in the fixed set-point rising trip logic

f_X_Valid th_X_Trip th_X_Pretrip F_X_OB_Perm h_X_OB_Sta Total

System atically gen-

erated from NuSCR

3 39 16 2 11 71

Manually generated

by experts

3 12 8 9 32

Number of function blocks used.

J. Yoo et al. / Reliability Engineering and System Safety 87 (2005) 287–294294
comparing synthesized FBDs against manually developed

and optimized FBDs by domain experts revealed that

there is about 2:1 ratio in the number of FBD blocks

required. Table 2 compares the number of necessary FBD

blocks in implementing three representative trip logics for

KNICS RPS BP: fixed set point trip, auto-limited

rate variable set point trip, and manual reset variable

set point trip.
4. Conclusion and future work

In this paper, we proposed a systematic procedure of

generating FBD-based PLC code from NuSCR specifica-

tion. While the procedure is not fully automated in that

user interactions are needed when filling in implicit

information or making sure that SDTs are complete and

consistent, the rest is automated. While the transformation

algorithm is not yet fully refined to generate optimized

FBD code, the case studies applied to nuclear instrumen-

tation and control applications found the approach

effective in several ways. First, correctness of the

synthesis procedure is easy to validate, and straightfor-

wardness of the algorithm carries an important advantage
Table 2

Comparison of the number of function blocks used for the representative

trip logics in BP

Trip logic for BP Mechanically gener-

ated from NuSCR

Manually generated

by experts

Fixed set-point rising

trip with operating

bypass

71 32

Fixed set-point rising

trip without operating

bypass

53 24

Auto-limited rate

variable set point trip

without operating

bypass

95 40

Manual reset variable

set point trip with

operating bypass

117 67

Total 336 163

2.06:1

Number of function blocks used.
when demonstrating software safety. Second, in nuclear

applications, we found that synthesized FBD code was

efficient enough in meeting the deadlines. Whereas

application required cycle times in the range of 30–

50 ms, synthesized FBDs completed its computation in

less than 20 ms.

While FBD code can be automatically generated, domain

engineers are still most likely to modify or manually

optimize synthesized FBD code. In order to provide

adequate support when developing safety-critical software,

one must provide techniques where two different FBD

designs are proven to be semantically equivalent. We are

working on developing techniques to accomplish formal

verification of FBD equivalence.
References

[1] SIEMENS, TELEPERM XP/XS, http://www.powergeneration.sie-

mens.com/en/processcontrol/index.cfm.

[2] Yoo J, Cha S, Kim CH, Oh Y. Formal software requirements

specification for digital reactor protection systems. J KISS: Software

and Application June 2004;31(6):750–9.

[3] KNICS. Korea Nuclear Instrumentation and Control System

Research and Development Center. http://www.knics.re.kr/english/

eindex.html.

[4] Yoo J, Kim T, Cha S, Lee J-S, Son HS. A formal software

requirements specification method for digital nuclear plants protection

systems. J Syst and Software 2003 in press.

[5] Parnas D, Madey J. Functional documentation for computer systems

engineering (version 2). CRT 237. Hamilton, Ont.: Telecommunica-

tions Research Institute of Ontario (TRIO), McMaster University;

1991.

[6] Heninger KL. Specifying software requirements for complex systems:

new techniques and their application. IEEE Trans Software Eng 1980;

SE-6(1):2–13.

[7] Schouwen Van AJ, Parnas D, Madey J. Documentation of require-

ments for computer systems In: RE’93: IEEE International Sym-

posium On Requirements Engineering 1993 pp. 198–207.

[8] Cho J, Yoo J, Cha S. NuEditor—a tool suite for specification and

verification of NuSCR In: Second ACIS International Conference on

Software Engineering Research, Management and Applications

(SERA 2004) 2004. LA, USA, May 5–7, pp. 298–304.

[9] IEC (International Electrotechnical Commission). International stan-

dard for programmable controllers: programming languages 61131-3,

1993.

[10] Yoo J, Bang HJ, Cha S. Procedural transformation from formal

software requirement to PLC-based design. Technical Report

CS/TR 2004-198. Korea Advanced Institute of Science and

Technology (KAIST), 373-1, Kusong-dong, Yusong-gu, Taejon,

Korea, 2004.

http://www.powergeneration.siemens.com/en/processcontrol/index.cfm
http://www.powergeneration.siemens.com/en/processcontrol/index.cfm
http://www.knics.re.kr/english/eindex.html
http://www.knics.re.kr/english/eindex.html

	Synthesis of FBD-based PLC design from NuSCR formal specification
	Introduction
	Background
	RPS
	NuSCR
	PLC programming in FBD

	FBD synthesis
	Conclusion and future work
	References


