Verilog &2 o] &3 FBDS] A A=

Verification of Function Block Diagram through

Verilog Translation



Verification of Function Block Diagram through

Verilog Translation

Advisor : Professor Cha, Sungdeok
by

Jeon, Seungjae
Department of Electrical Engineering and Computer Science
Division of Computer Science

Korea Advanced Institute of Science and Technology

A thesis submitted to the faculty of the Korea Advanced
Institute of Science and Technology in partial fulfillment of the
requirements for the degree of Master of Engineering in the
Department of Electrical Engineering and Computer Science,

Division of Computer Science

Daejeon, Korea
2006. 12. 22.
Approyed by

Dt 6

Profeéor Cha, Sungdeok
Advisor




Verilog H3}2 o] 23 FBDO AP A=

RS WA ANAYEEOR T =T AL
A3)o) 4 AN BHE S

2006 12¢ 12¢

A9 A 4 EE

AR o] &

gl

An9e B T

of




MCS X %Rl Jeon, Seungjae. Verification of Function Block Diagram through Verilog

Translation . Verilog #1212 0|38 FBDE| HEZZE. Department of Electrical
20053532 Engineering and Computer Science, Division of Computer Science . 2007. 26p.
Advisor Prof. Cha, Sungdeok. Text in English.

Abstract

The formal verification of FBD program is required in nuclear engineering domain as
traditional relay-based analog systems are being replaced with digital PLC based software.
This paper proposes a way to formally verify the FBD program. For this purpose, Verilog
model is automatically translated from the FBD program, then Cadence SMV performs
model checking. We demonstrated the effectiveness of the suggested approach by conducting
a case study of the nuclear reactor protection system, which is currently being developed in

Korea.



KAIST



Contents

Abstract i
Contents : iii
List of Figures v
1 Introduction 1
2 Background 3
2.1 PLC programming in FBD . . . .. .. ... . L 3
2.2 Verilog . . . . . . 3
2.3 Model Checking and Cadence SMV . . . . . .. ... ... ... ........ 4

3 Verilog Translation from FBD 6
3.1 Formal Definition of FBD . . . . . . . .. ... 6
3.2 Assumptionson FBD . . . . . .. 9
321 FBDiswellwired . ... .. . ... ... . . 9

322 FBDistypesafe . . .. . ... 9

3.2.3 FBD should not overwrite output variables . . . . . ... .. ... .. 9

3.2.4 Execution order is predefined . . . .. ... L oL 9

3.3 Tramslation Steps . . . . . . . Lo 10
3.3.1  Variable type detection . . . . .. ... oL 10

3.3.2  Variable size decision . . . . . . . ... Lo L 11

3.3.3  Output assignment to Verilog expression . . . . .. .. ... ... ... 11

3.3.4  Verilog generation . . ... ... oL L 12

4 Case Study 15
4.1 FIX_RISING example . . .. . . . . .. 15
4.2 FBD2V . . e e 17

5 Related Work 22

il



6 Conclusion
Summary (in Korean)

References

iv

23

24

25



b
—

3.1
3.2
3.3
34
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6

ot
—

List of Figures

Function block groups and examples . . . . . .. ... ... ... .. ..... 4
FBD Example . . . . . . . 5
FBD Verification Framework . . . . ... .. .. oL 6
Example: Formal definition of ADD block . . . . . . .. ... .. .. ..... 7
Example: Fig.2.2 formally defined . . . ... .. ... ... ... . ...... 8
Example: FBD not satisfying assumptions . . . . . . ... oL 0L 10
Verilog generation template . . . . . . . ... oo Lo 13
Example: Fig.2.2 translated into Verilog model . . . . . . .. .. .. ... .. 14
Original FIX_RISING program . . . . . . . . . . . v v v 15
FIX_RISING program without overwriting output variables . . . .. ... .. 16
FIX _RISING program translated into Verilog . . . . . ... ... .. ... .. 18
FBD2V screenshot . . . . . . .. Lo 19
Counterexample from FIX RISING . . . . . . .. . ... ... ... .... 20
FBD2V feature: counterexample sliced by user . . . . ... ... .. ... .. 21
FBD generation and equivalence framework by [2] .. . ... .. ... .. .. 22



1. Introduction

Software safety became a critical issue in nuclear engineering area because traditional analog
systems are being replaced by Programmable Logic Controller (PLC) based software[5]. As
formal methods are gaining acceptance in research community as a promising approach
to provide a high degree of safety assurance, several formal specification and verification
methods have been developed and applied to nuclear power plant systems.

KNICS{3] consortium is developing a suite of instrumentation and control software for
next generation Korean nuclear power plants, which is classified as being safety-critical by
government regulation authority. Currently developed advanced power reactor’s (APR-1400)
protection system (RPS) is thoroughly verified using formal verification technique such as
model checking]6].

PLC is a special type of industrial computer largely used in control systems. It provides
powerful functionality to deal with periodic time and polling mechanism. International
Electrotechnical Commission (IEC) defined five application software programming languages
for PLCs. Among them, Function Block Diagram (FBD) is one of the most widely used
languages. A major part of KNICS APR-1400 RPS Software Design Specification (SDS)[4]
is specified in FBD.

Rigorous safety demonstration is required on FBD program since it is automatically com-
piled to machine code and executed on industrial computers. Correctness of FBD program
can be guaranteed by using formal verification technique as well as traditional testing and
simulation methods.

This paper proposes a way to formally verify FBD program. We define the FBD formally
based on the IEC standard, then translate the program into Verilog[10] model. Translated
Verilog model is verified using Cadence SMV[14] model checker. APR-1400 RPS is used as
a case study to show effectiveness of the proposed approach.

A tool, FBD2V, is implemented to support proposed approach. It generates Verilog
model from FBD program. It is also used as a front-end for model checking and coun-
terexample analysis. These features enables nuclear engineers to verify FBD program with
minimum expertise on formal method.

The remainder of the paper is organized as follows: section 2 explains FBD, Verilog,
and Cadence SMV briefly. Section 3 describes the translation rules from FBD to Verilog.

Section 4 presents FBD2V and a case study of a real system. Section 5 introduces related



KAIST



2. Background

2.1 PLC programming in FBD

Programmable Logic Controller (PLC) is an industrial computer applied to wide range
of control systems. The main characteristic of PLC program is scan cycle[8]. In each
iteration of this permanent loops, the program reads inputs, computes new internal states,
and updates outputs. This cyclic behavior makes PLCs suitable for interacting with a
continuous environment.

Function Block Diagram (FBD) is one of the standard PLC programming languages
identified in IEC61131-3[7]. FBD is widely used because of its graphical notations and
usefulness in applications with a high degree of data flow among control components{l].
FBD defines system behavior in terms of flow of signals among function blocks. A collection
of function blocks is wired together in a manner of a circuit diagram.

Fig.2.1 shows ten function block groups and a representative example of each group.
Arithmetic, comparison, bitwise boolean, type conversion, selection, and numerical blocks
do not have internal states. They always produce a primary value as a result when executed
with a particular set of input values. In contrast, timer, edge detection, bistable and counter
blocks store values in internal and output variables[9].

Fig.2.2 gives an example of FBD to calculate TRIP.T and TSP. The outputs are pro-
duced by the sequential combination of the block operations. Details will be explained with

formal definitions in next section.

2.2 Verilog

Verilog[10] is one of the most popular Hardware Description Languages (HDL) used by
integrated circuit (IC) designers. Below we sumunarize the Verilog features[2] pertinent to
our discussion.

Verilog has several types of variables. A wire represents a physical wire in a circuit and
is used to connect gates or modules. A wire does not store its value, but must be driven by
the assign statement or by connected output of a gate or a module. On the other hand, a

reg is a data object holding its value. Reg variables are assigned only in always and initial



Avithmetic Functions Comparison Functions Bitwise Boolean Functions Selection Functions
ADD, SUB, MUL ... EQ, NE, GE, LT ... AMD, OR, NOT ... SEL, MAX, MIN .
ADD GT AND SEL
ANY_NUM-—IND ANY —ING ANY_BIT wd [NO BOOL ~ig L ANY
ANY,{&‘M‘“W'? QUTI—ANY_NUM "NY TINT OUT-BOOL  ANY_BIT —|INT  QUTF—ANY_BIT  ANY i IO
ANY — IH1
ANY_NUBI—Nn ANY ~1iNn ANY_BIT ~ 1N
= OQUT=(INO>INT)& .. (INT >  QUT=IND &INT & ... INn OUT=G 7 INT - IND
QUT = INO +INT + ... INn N2 2. (NNt > e )
Type Conversion Functions Mumerical Functions Edge Detection Function Blacks
BOOL TO_* INT_TO " ... SIN, COS, LOG ... h R_TRIG, F_TRIG
BODL_TO_+++ SIN_REAL R_TRIG
BOOL e REAL — —REAL 8OOL —{CLE Q—BOOL
Convert bool type to another OUT = sin (IN) Q=1 if clk is switched to 1 from 0
Timer Function Blocks Bistable Function Blocks Counter Function Blocks
TOM, TOF ... SR,RS CTU,CTD ...
TON 2334 CTY
BOOL —1N o} BOOL BOOL —{ =1 G BOOL BOOL — o1 G- BOOL
TIME —{ T BT |- TIME BOOL —R BOOL —r
INT —{ PV CW - INT
G=1ifIN=11is continued for PT time unit Set-dominant flip flop Increment CV on rising edge of CU
Q = 0 otherwise Reset CVifR=1
Q=1ifCY = PV
Figure 2.1: Function block groups and examples
block.

A module is a principal design entry in Verilog. Module declaration specifies the name
and list of I/O ports. The first part of a module defines I/O and data type of each port.
Keywords input and output declare the input and output ports of a module. Data type
is generally represented as the size of a bit vector. Module declarations are templates from
with one creates actual instantiations. Modules are instantiated inside other modules and
each instantiation creates a unique object from the template. The exception is top-level

module (i.e., main) which is its own instantiation.

2.3 Model Checking and Cadence SMV

We use model checking to formally verify FBD programs. Model checking is a technique to
prove whether a formal system satisfies certain properties or not. Cadence SMV is a model
checker based on symbolic model checking technique[12]. Cadence SMV can verify a model

programmed in Synchronous Verilog (SV)[11], a slight variation of the Verilog language with



ge : ton

GE_INT : TON
P _QUT[— IH Q0 +—=TRIP_T
Top[=—r MECNT — FT BT —A{=at
ﬁ ﬁ sel ‘
SEL
add 0.
TSP (WD TSP
TSP [ I M1 .
HY §l=— .

Figure 2.2: FBD Example

cycle-based behavior. It converts Synchronous Verilog into SMV input language[13], and
then performs model checking. True is returned if Verilog model meets given properties.

Otherwise, a counterezample is produced to show the existence of errors in the model.



3. Verilog Translation from FBD

Fig.3.1 shows an overview of FBD verification framework. Verilog model is translated from
target FBD program. Properties, specifications of the system, are embedded in Verilog
model as assertions[14]. Cadence SMV performs model checking on the Verilog model, then

counterexample is analyzed.

Translation

FBD i)i‘dgl‘anl

Analysis &
Revision
- Verilog model
=)
=5 J 4 Property

o

Model checking

Figure 3.1: FBD Verification Framework

This section mainly describes how to translate FBD program into Verilog model. First
subsection formally defines function blocks and function block diagrams. Those definitions
are based on [1] and slightly modified. Next subsection restricts the scope of target FBD

program. Then we show translation steps with a small example.

3.1 Formal Definition of FBD

Defintion 1 (FB Type) Function block type is defined as a tuple < Type, IP, OP, BD >,

where
e Type: a name of function block type

e IP: a set of input ports, {IPy, ... , IPy}

6



o OP: a set of output ports, {OPy, ... , OPy}

e BD: behavior description. as functions for each OP,
BDOP,, Z(IPl, ,IPA[)HOPn ‘1§n§N J

Input port (IP) and output port (OP) are the official term used in the standard [7].
Fig.3.2 describes an example of ADD block. Other function blocks can be defined in the

similar way.

ADD
—t N, OUT}— < ADD,
N {IN,IN, },
1N, {OUT};,

: { BDgyr (INy, IN; ) =IN; + IN, § >
OUT =IN, +IN,

Figure 3.2: Example: Formal definition of ADD block

As FBD is a network of function blocks, we can consider each block as an instance of
function block type. Instance names of blocks are specified in Fig.2.2; ge, ton, add, and sel.
We write sel.G to indicate the port named G in block sel for convenience. Behavior de-
scription of function block instance is written similarly; add. BDoyr(add.INy, add.INy) =
add.IN| + add.IN,.

Defintion 2 (FBD) Function block diagram is defined as a tuple < FBs, V, T >, where
e ['Bs: a set of function block instances

o V: a set of input and output varicbles of FBD,
V=V,UVo
— Vi a set of input variables into FBD

— Vo: a set of output variables from FBD
o T': a set of transitions between FBs and V

- Vix FB.IP
- FB.OP x FB.IP
~ FB.OP x Vp 4



< FBs, V, T >

T={PV.OUT x
TSP X
ge.OUT  x
MAXCNT x
ton.QQ X
ton.ET X

FBs = {ge, ton,add, sel}
Vi = {PV_OUT, TSP, MAXCNT, HYS, TRIP_.T}
Vo = {TRIP_T, et, TSP_1}

ge.INy
ge.INs |
ton.IN |,
ton.PT
TRIP.T ,

et ,

TSP.1  x add.INy ,
HYS X add.INs ,
TRIP.T x sel.G,

TSP x sel.INg ,
add.OUT x sel.INy ,
sel.OUT x TSP_1 }

Figure 3.3: Example: Fig.2.2 formally defined

Let Vo be a set of output variables computed at each iteration of scan cycles. Vj is a
set of input variables and each v; € V; has its own value; their values are set by external,
output variables having same name, or constants. Transition T represents wires connecting

variables and function blocks. Fig.3.3 shows the FBD example formally defined.

Defintion 3 (Evaluation function) Fach port and variables are evaluated as f: (port or
variable) — FBD_data_type

e For input variable p € Vy,

flp)=p

e For output variable p € Vo
or input port of a block p € fb.IP, fb € FBs,

let (p) xp)eT,
fp) = f@)

o For output port of a block p € fb.OP, fb € FBs,
let f[)IP = {pl, vy DAL },
f(p) = beDp{[)1 s ey DA }

Qutput variables in FBD are evaluated by inputs and function blocks connected. For

example, TSP_1 at Fig.2.2 is evaluated as below:

f(TSP.1) = f(sel.OUT)




= sel.BDoyr(f(sel.G), f(sel. INy), f(sel.INy))

= f(sel.G) ? f(sel.INy) : f(sel.INy)

= TRIP_T ? add.BDour(f(add.INy), f(add.IN3)) : TSP
= TRIP.T ? (f(add.INy) + f(add.INy)) : TSP
=TRIP.T ? ( TSP + HYS ) : TSP

3.2 Assumptions on FBD

FBD should satisfy following assumptions in order to be translated into Verilog. These

assumptions correspond to FBD semantics stated in IEC 61131-3 standard.

3.2.1 FBD is well wired

e Every port and variable is connected.
{zl(xxy)eT}={plpeViorpe fb.OP, fb € FBs}
{yl(x xy) e T} = {plp € Vo or p € fb.IP, fb € FBs}

e Every port and variable has only one source.
Vexy)eT Ve £z, (' xy)¢T
3.2.2 FBD is type safe
o V(z xy) €T, z and y should have same data type; e.g., bool, int, or word. FBD data
type is defined in the standard.
3.2.3 FBD should not overwrite output variables

e Every output variable has unique name so that its value can be assigned only once per
cycle. Some FBD development tools allow overwriting output variables. In this case,
output variables should be renamed to temporary names to be distinguished from each

other.

3.2.4 Execution order is predefined

e Output variables are evaluated in arranged order. Let Vo = {vo1, ..., Uon }, cCOmputa-

tion starts from v,1 and ends at v,y within a cycle.

9



Fig.3.4 shows examples of FBD not satisfying the assumptions. As IN1 in a. has two
sources, booll and bool2, it is vague that which input variable should be selected. IN2 is
not connected, therefore this AND block cannot be computed. b. presents an example of
unmatched type; integer value cannot be negated. c. describes that an output variable ¢ is
overwritten by two blocks. If top-down execution order is predefined in this case, two cs are

renamed to c.1 and ¢_2, respectively.

4. ANDZ_B00L b. moott  BOOL
EM ENO|

WOT_BO0L B0

boa 1 N1 ANDZ_BOOL|—8 EN END
intd o HNT
boal2 N2 int1—o —b

1M HOT_BOOL|

5 . B0

¢ . ‘ ' V ' BB
HOT_BOOL HOT_B00L
EN END[X EN
bool1—in NOT.BOOL|—¢ booll—iN  nHOT_BOOL[—¢-"
NGT_B00L HOT_BO0L . BL
EN Enpl EN
boolz—j N NOT_BOOL|—C bool2— |y NOT_B00L|—t.2

Figure 3.4: Example: FBD not satisfying assumptions

3.3 Translation Steps

If FBD program satisfies all the assumptions, it is ready to be translated into Verilog model.

Each steps will be explained with an example FBD program shown in fig.2.2.

3.3.1 Variable type detection

Each variable in FBD is mapped to one of Verilog variable types; input, reg, wire and
output. A input variable v; € V; is input type if there is no output variable having same
name with v;, i.e., its value is transmitted from external. v; is reg type if its value needs to

be stored internally. Reg variables hold their value and will be used at next cycle operation.

10



On the other hand, values that need to be stored just for this cycle are assign to wire
variable. They represents physical wires connecting function blocks and variables. A output

variable v, € Vp is output type if it is designated as an external output of the module.
® Vinput = {PV_OUT, TSP, MAXCNT, HYS}

e Viyie = {TRIP_T, et, TSP_1}

3.3.2 Variable size decision

Non-boolean values are represented as bit vectors and their size should be decided. We
use notation size(v) for number of bit size required to represent v. Let size(v) = 0 if v is
boolean variable. Size of input and reg variables should be given by the user so that a model
checker can cover proper input range of the program. Size of wire and output variables are
computed from the connected input, reg variables and function blocks. They should be large

enough to represent maximum values in the program.

o Let size(PV_.OUT) = size(TSP) = 7, size(MAXCNT) = 4, size(HYS) = 2 given by

user
o size(TRIP.T) =0
o size(et) = size(MAXCNT) = 4

e size(TSP_1) = mazx(size(TSP), size(HYS)) + 1 =38

3.3.3 Output assignment to Verilog expression

A Verilog expression for assigning p has a same semantic with f(p) at definition 3.
Function blocks that do not store internal states are mapped to Verilog operators. Some
function blocks store internal states, e.g., timers, flip-flops, and counters. These function

blocks are translated into Verilog modules.

o f(TSP_1) = TRIP_T ? ( TSP + HYS ) : TSP

11



o f(TRIP_T) = ton.BDg(PV_.OUT >= TSP, MAXCNT),

behavior of TON is translated into Verilog module.

3.3.4 Verilog generation

Based on translation rules in [2], Verilog model is generated as Fig.3.5. In Rule 1, module
name, input and output ports are specified in the first line. Variables are declared with their
type, bit size, and name in Rule 2. Rule 3 initiates the reg variables. The main evaluation
logic, expressed by a collection of function blocks and variables in FBD, is translated by
Rule 4. Stored values are assigned to reg variables in Rule 5. @ (posedge clk) means the
beginnings of each cycle. As updated value of a reg variable becomes visible at next time

unit[14], new value is read at next cycle. Finally, properties are embedded by the user.

e Verilog model is generated as Fig.3.6 from the FBD program through Rule 1 - 5.

12



// Rule 1. module declaration:

module main (clk, [input.variables], [output_vaiiables]);

// Rule 2. for each variable v € V:

input | reg | wire | output [size(v) : 0] v;

initial begin
// Rule 3. for each reg variable vyeg:
Vreg <= |initial.value_of_vregl;

end

// Rule 4. for each wire and output variable v, € Vo:

assign v, = f(vo);

always @ (posedge clk) begin
// Rule 5. for each reg variable vyeg:
Upeg <= [stored_value};

end

always begin
// properties
if ([condition]) assert [label]: [assertion];

end

endmodule

Figure 3.5: Verilog generation template

13




module main (clk, PV_OUT, TSP, MAXCNT, HYS);
input clk;
input [7:0] PV_OUT;
input [7:0] TSP;
input [4:0] MAXCNT;
input [1:0] HYS;
wire TRIP_T;
wire [4:0] et;
wire [8:0] TSP_1;
// instantiation of module TON
TON ton (clk, (PV_OUT >= TSP), MAXCNT, TRIP.T, et);
assign TSP_1 = TRIP.T ? ( TSP + HYS ) : TSP;

endmodule

module TON (clk, IN, PT, Q, ET);

input clk;

input IN;

input [4:0] PT;
output Q;
output [4:0] ET;
reg [4:0] t;

initial t = 0;

assign ET = t;
assign Q = IN && (ET >= PT);
always @ (posedge clk)

t <=IN? ((t <PT)?t+1:PT):0

endmodule

Figure 3.6: Example: Fig.2.2 translated into Verilog model

14




4. Case Study

4.1 FIX_RISING example

This section demonstrates an example of a real system translated into Verilog model. Target
system is Bistable Processor (BP) at APR-1400 RPS[4]. BP consists of several decision logics
of trip, emergency shutdown of nuclear reactor.

1 : 18 ' j A3
GE_INT . AND_BOOL , SEL

o OUTI—] G
TSP [ TRIP_LOGIZ [=—d - [ [N L {=TRIP_CNT

14
ADD_INT

TRIP_CNT[=——

GENT | . . o T

TRIP_CHT [-——] G .
MAKCNT [=—of . ) TRIP_LOGIC [=—ro IND —I=TRIP_LOGIC
. . A 1 B IN1 ,

SEl
143 -

SUB_INT ' G

....................... e e TEP e IND L TERe - e
: TSP [—— N1 -

LT_INT ) AND_BOGL ) SEL

TRIP_LOGIC [ TRIP_LOGIC [F—i] IND —{=TRIP_LAGIC

BOD_THT ) G .
TSP (=—oJ IND =T3P
T T — N1 .

PRy — :

Figure 4.1: Original FIX_RISING program

Fig.4.1 shows FIX_RISING program, one of the modules in BP. The output TRIP_LOGIC out
takes part in the trip decision logic.

The FBD is well wired, type safe, and has top-down (traditional) execution order. But



BA A8 13
GE_INT AND_BOOL SEL
¢ PYVLOUTEs—— G
TSP [=— TRIP_LOGIC [y -0 =] [HD —I=TRIP_CHT out
: : IM1 : T
K
AOD_INT
. TRIP_CHT [mmr
1z : 1=— 18
GE_INT SEL
TRIF_CNT_out [zt 3 :
RAHCNT o] TRIP_LOGIC [—— N0 ——{=TRIP_LOGIC_
. -1 b 1N . -
RRTT
413 SEL
SUB_INT G .
Ce e TP =——— IND —L=TsP_1- - -
TSP [2——] NI .
HY & [——]
L3 A7 1.1
LT_INT AND_BOOL SEL
Py DUTE=— G .
TSR_t =—]f TRIP_LOGIC_t 7 TRIP_LOGIC_f fz— N0 ——{=TRIP_LOGIC out
A1z
SEL
15
ADO_INT G .
TSP_1 [=— IND TSP _out
TP 1[——] N :
HY S [>——f
BRE
MOVE
TRIP_CHT out [=— ——E=TRIP_CNT
: 116 '
RAOWE
TRIP_LOGIC out [ —{=TRIP_LOGIC
: 47 :
MOWE

T3P _out [5=——ri

—==TSP

Figure 4.2: FIX_RISING program without overwriting output variables

it overwrites output variables; TRIP_CNT, TRIP_LOGIC, and TSP. To make FBD satisfy

the assumptions, it is processed as Fig.4.2. Duplicated output variables are renamed to have

postfix, 717, ”__out”, etc., in order to distinguished from each other. Values storage logics

for next cycle are explicitly specified using MOVE blocks.

To translate Fig.4.2 into Verilog, we detect variable type first. As {PV_OUT, HYS,
MAXCNT} are appeared only in input variables Vi, they are input type. {TRIP.CNT,
TRIP_.LOGIC, TSP} are reg type variables which are stored and used at next cycle.

16



{TRIP_CNT_out, TSP_1, TSP_out, TRIP_LOGIC_1, TRIP LOGIC_ out} are appeared both
in input and output variables (V; and V). Their values are assigned in wires and become
inputs for evaluating other variables, but they are not stored for next cycle, i.e., wire type.
We decide bit size of the variables next. Let size(PV_OUT) = 7, size(HYS) = 2,
size(MAXCNT) = size(TRIP.CNT) = 4 are given by the user. size(TRIP_CNT out) =
max(0, size(TRIP_.CNT) + 1) = 5 because maximum value produced by SEL block is the
largest one between INO and IN1, and ADD block merges the range of inputs. Similarly,
size(TSP_1) = 7, size(TSP_out) = 8. SMV will give warnings if the variables exceed their
range.
To see an example of definition 3, TRIP_LOGIC_1 in Fig.3.3 is evaluated as below.
S(TRIP.LOGIC.1) = f(SEL2.0UT)
= SEL2.BDour(f(SEL2.G), f(SEL2.INO), f(SEL2.IN1))
= f(SEL2.G) 7 f(SEL2.IN1): f(SEL2.INO)
= GE2.BDour(f(GE2.IN1), {(GE2.IN2)) ? 1 : TRIP_LOGIC
= (TRIP_.CNT_out > MAXCNT) 7 1 : TRIP_LOGIC
Fig.4.3 shows Verilog model generated from FIX _RISING program through Rule 1 - 5.
System specification defines that HYS, MAXCNT, and TSP have non-zero initial values;
they are hard coded in the Verilog model. Two properties are embedded in the example. Al
means 7 Trip should be set if TRIP_CNT out becomes larger than or equal to MAXCNT.”
A2 means " Trip should be unset if PV_OUT is less than or equal to TSP_out.”

4.2 FBD2V

This section demonstrates the usefulness of the proposed formal verification technique. A
tool, FBD2V, is implemented to support the verification framework. We briefly introduce
the tool, explain how to analyze the model checking result of FIX RISING program, and
then discover an error.

FBD2V automates the FBD verification framework described in Fig.3.1. It takes LDA
file, FBD storing format of a tool[15] used by KNICS consortium, as input then converts the
FBD into Verilog model. User adjusts bit size and initial values of the variables during the
translation, as shown in fig.4.4. After properties are embedded, FBD2V executes Candence
SMV and model checking result is computed. To enhance 1'(%adembility of counterexample, it
is displayed in timing graph form, which is familiar to hardware engineers. Variables are
highlighted in different color and shape for visualization.

Fig.4.5 shows model checking result of FIX_RISING program displayed in FBD2V. Right

17



module main (ctk, HYS, MAXCNT, PV_.OUT);

input clk;

input [2:0] HYS;

input [4:0] MAXCNT;
input [7:0} PV_OUT;
reg [4:0] TRIP_CNT;
reg TRIP_LOGIC;

reg (7:0] TSP;

wire [5:0] TRIP.CNT out;
wire TRIP.LOGIC_1;
wire [7:0] TSP.L;

wire TRIP_LOGIC_ out;
wire [8:0] TSP_out;

/ /constants

assign HYS = 1;
assign MAXCNT = 5;

initial begin
TRIP_.CNT <= 0;
TRIP.LOGIC <= 0;
TSP <= 20;

end

assign TRIP_CNT out = ((PV.OUT >= TSP) && ! TRIP_LOGIC) ? (TRIP.CNT + 1) : 0;
assign TRIP_LOGIC.1 = (TRIP.CNT_out >= MAXCNT) 7 1 : TRIP_LOGIC;

assign TSP_1 = (TRIP_CNT _out >= MAXCNT) ? (TSP - HYS) : TSP;

assign TRIP_LOGIC.out = ((PV.OUT < TSP.1) && TRIP_LOGIC_1) ? 0 : TRIP_LOGIC_I;
assign TSP_out = (((PV_OUT < TSP.1) && TRIP_.LOGIC.1) ? (TSP.1 + HYS) : TSP_1;

always @ (posedge clk) begin
TRIP.CNT <= TRIP_.CNT_ out;
TRIP.LOGIC <= TRIP_LOGIC_ out;
TSP <= TSP_out;

end

always begin
if ( TRIP.CNT out >= MAXCNT ) assert Al: TRIP_LOGIC.out == 1;
if ( TRIP.LOGIC == 1 && PV_.OUT =< TSP_out ) assert A2: TRIP.LOGIC out == 0;

end

endmodule

Figure 4.3: FIX_RISING program translated into Verilog




¢

£} rBD verifier ;7
File Verify Help

W\ FED verificaliontFBD 2WVexamplaWF i _RIBING v

module mein (olk, HYE, MAXCHT, PHYS, BV OUT); oo
input olk;

[2:0] HY3; =
(4:0] MaKCHT, L
[2:0] BHYS;
[4:0] ETRIF_CHT;
BTRIP_LOGIC;
7:01 PTRPR;
7:01 BV _OUT;
[4:0] TRIP_CNT;
TRIP LOGIC;

PTRIP_LOGIC
ioreq pPTSp

input  PY_OUT

reqg TRIP_CNT
1eq TRIP_LOGIC

haoolean

o

boolean

1eg SP [7:03] TEY;
OK Cancel [5:0]  BPRIP_CNT out;
T PTRIP_LOGIC_1;
ADD

[7:0] PTIE 1; v

Translating...

Figure 4.4: FBD2V screenshot

side is original couterexample shown by Cadence SMV and left side is timing graph repre-
sentation. The program failed to satisty the property A2, ”Trip should be unset if PV_OUT
is less than or equal to TSP_out.” To aid counterexample analysis, the tool enables users to
declare monitoring variables; constants, variables in counterexample, and arithmetic opera-
tors can be used. A monitoring variable, PV_OUT < TSP _out, is displayed at the bottom of
the figure to check the condition of the property. Although this condition is satisfied at the
6th cycle, TRIP_LOGIC_out holds the same value with TRIP_LOGIC_1. As a result, the
logic assigning TRIP_LOGIC_out has an error. User can conclude that the LT INT block is
misused instead of LE_INT block.

BP has six modules including FIX_RISING introduced above. 18 trip decision logics
are implemented in BP, where two or more modules are interleaved to compute each logic.
Every logic and module was formally verified with proposed framework, and errors were
found.

Fig.4.6 shows a counterexample from a trip logic containing FIX_RISING module. It is
composed of approximately 40 blocks and 20 variables. Because of its size, couterexample is
more complicated than fig.4.5. FBD2V supports variable slicing for user to hide variables.
After slicing, as shown in right side of the figure, its error cause is as same as appeared in

fig.4.5.

19



Property | Result | Tima ]

41 true Py Dac 22 143407 6z 558 B 1% 2008 pv ouT
Az false Fri Do 22 143407 4x. 7 RELE 78 2008 3
; }1 28 128 128 128 128 19
gource | Trace | Loy i : .
TRIB_CHT
Fite Edit’ Run' View
= ! 2 3 4 5
5 5 5 5 o o TRIP_LOGIC
3 3 5 % 3 ®
& i 2] 4 s k4
5 1 % 5 o L
. " ’ " - ; o 20 20 20 20 19
2 2 & o g ] TRIP_CNT_out
o 2 % o o o L 2 3 4 5 &,
3 2 2 i g ¢ TRIP_LOGIC_1 TRIF_LOGIC out
“ 5 - 5 : 5 YUR—
o 2 o 5 o g
B 2 3 G 5 3 TSP_1 TSP_out
& 3 o B 3 % ]
= 5 5 < . 1?}20 20 20 20 19 19
12 ° & o kil : PV_OUT <= TSP_out
s E b2 1 B 5 [
5 o 3 o 2 g

Figure 4.5: Counterexample from FIX_RISING

There was a state explosion problem with the program having large number of inputs or
storing variables for long term of cycles. We adopt a manual abstraction technigue to make
the verification feasible. Automated abstraction and slicing techniques for Verilog model

will be needed for futurework.



Displaying veriable: Input ] Reg 1 Cutput

‘Original CE ! Reduced form i Timing graph I Sliced vars E

FBD Verifier

Fite Verify Help

Dispz

gveriable: Input i

Rey

Qutput

{ Original CE | Reduced form

3'5/ Timing graph ;/ Sliced vars

i

PZR_PR_HI PV OUT_oul 5 Fi_RISING_ Py OUT

%‘JG 96 e 96 a5 38
_5.BP_T_A_VAL _5 BP_T_INI

LA_TRIB_ONT 5 FRCRISING 1 TRIP_ONT

a

!
,'}mm% 2 3 4
CS_TRIP_LOGIC  _S_FRCRISING_1__THRIP_L.

.
L5 TSP 5 F_RISING 1
3:19 a9 59 ] 89 8
B TRIP_CNT aut 5 FI¥ RISING 1 TRIP_CNT ol
i

2 3 4 5
U5 _TRIF LOGIC out _5_Fid RISING

PV_OUT _out

gps 96 96 36 26 88
LSUTRIP CRY
LBUTRIP LOGIC
rmmmw

_5_Tap
iﬂs 89 a9 89 89 88
5 TRIP_CNT _put
_5_TRIF_LOGIC_out

ARSI
_5_TSP_omt
Eﬂs 89 a3 89 88 88

5 TSP out S _FRO_RISING
. PY_OUT ot <= _5_TSP_out
B9 89 29 a9 88 3% Twmmw
PV _QUT _out <= _§ TSP _out
(i T 1 i 0 i
ing variabie EPV__,Ol.IT__nut <= 5 TSP out v Monitoring variable ?PV”,OUT_"mu <= § TSP out

%SMV ended with cade 0

%SM\I ended with code §

Figure 4.6: FBD2V feature: counterexample sliced by user

21




5. Related Work

Verilog translation from FBD and verification technique was previously proposed in [2]. It
focused on mechanical generation of FBD from the formal specification and equivalence
checking using VIS verifier[16] on various versions of FBD program. It originally devised
Verilog translation rules in order to use VIS. It also stated the possibility for model checking

on translated Verilog program. Main difference of our research is that we focused on model
checking and counterexample analysis.

Design Changes

Verilog
Translation 3

7

Verilog
(@)

i s saswtaiin i

é‘xieriiog
= 1M

s

oIS S

iV sk R

VIS Equivalence Checking
Figure 5.1: FBD generation and equivalence framework by [2]

There are other many Verilog HDL model checkers. CBMCI18] checks Verilog for con-
sistency with ANSI-C program. VCEGAR[19] performs model checking of Verilog using
CounterExample Guided Abstraction Refinement[20] framework. Using these model check-
ers instead of Cadence SMV might be meaningful.

Counter-example visualization is one of the active research areas. smv2ved[17] converts
SMV counterexample into industrial standard format, Variable Change Dump (VCD). It

can be viewed and analyzed by a wide variety of tools.



6. Conclusion

This paper proposed a framework for formal verification of FBD. We suggested a way to
automatically translate Verilog model from FBD program. Generated Verilog model is
verified with Cadence SMV model checker. Verilog model generation and counterexample
analysis are done with tool support.

Contributions of suggested method are followings: First, FBD program is thoroughly
verified using model checking. An error residing in a long term of cycles might not be easily
found by traditional validation methods, e.g., testing and simulation. The model checking
result, true guarantees that the program satisfies given properties at any conditions, and
conterexamples are key enablers for discovering errors: Second, the tool FBD2V visualizes
counterexamples returned by Cadence SMV. Counterexamples with many variables and
cycles are hard to be analyzed. FBD2V represents a counterexample in timing graph form
which is familiar to hardware engineers. User can declare monitoring variables and slice
variables in counterexample to debug the FBD program.

Proposed method was applied to the verification of KNICS APR-1400 RPS. Several errors

were found and they were noticed to nuclear engineers to be fixed in the next revision.

23



Verilog H15+2 0|85t FBD2| M ZAS

LA Z8F ool A 71&o] AR5 d RLL (Relay Ladder Logic) 7]4te] ofd 2 1
ZAEE & 7} PLC (Programmable Logic Controller) 7]512] Ti A& Alx~dlo 7 o)A = A A
Az Ego]o] kd Aol thst Fado] EobA L Ut KNICS AAA QoA 7HdkE<l 2}
Ml YA E APR-1400 RPS =4 B & A2l PLC 7| 9ol 3Fu}<l FBD (Function
Block Diagram) 2. & SDS (Software Design Specification: 4414 A) 7} A s o] glow, o
E Ao R st V&V 71 o] oA 1 ot 7Y AT ES 9 dHAE S}
A7l I ogA 22T glon, A FofollME HE5 T Yt o] 7hgtA 2E
A7) 71 o]l FBDZ A4 H o] A|l2"-E AP FFe=rl] AAgHEHTE 2 A7 odAl= FBD =
BI¥E @33745?—5}7] 3k g Al

WA A 2 AR Cadance SMVE AHE38lw, Rl 7ol AbEE 400 93t
g Fof % —‘:7}—01] os AHMA Qg 7HFsct. BAF o] P A FBD =2

oz HE AE HEH Verilog Zdo] Bl Verilog B2 B AtoA AtE A

719 ef ©]&le] FBDEZYE] AAECl FBD Verifier &7 78= o] Verilog 29 A5 Y
A, BdA A A, vk E40] ojl2 & dHe] AYAF A AT AGHE P
KNICS APR-1400 RPS Al &~ glo]l 2 &3lo] th4o] 2 {78 A8t



[1]

2]

3]

4]

(5]

(6]

[7]

8]

(9]

References

Junbeom Yoo, Hojung Bang, Sungdeok Cha. FBD Program Synthesis for PLC Con-

trollers. Science of Computer Programming, 2005, submitted.

Junbeom Yoo. Synthesis of Function Block Diagrams from NuSCR Formal Specification.
Doctoral Thesis, 2005.

KNICS(Korea Nuclear Instrumentation and Control System Research and Development

Center), http://www.knics.re.kr/english/eindex.html

Korea Atomic Energy Research Institute. SDS for reactor portection system. KNICS-
RPS-SDS231 Rev.02, 2006.

U. NRC. Digital Instrumentation and Control Systems in Nuclear Power Plants: safety

and reliability issues. National Academy Press, 1997.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
1999.

IEC. International Standard for Programmable Controllers: Programming Languages.
Part 3, 1993.

A. Mader. A Classification of PLC Models and Applications. In Proc. WODES 2000:
5th Workshop on Discrete Event Systems, August 21-23, Gent, Belgium, 2000.

R. Lewis. Programming industrial control systems using IEC 1131-3 Revised Edition(IEE

Control Engineering Series). The Institute of Electrical Engineers, 1998.

[10] IEEE Standard Hardware Description Language Based on the Verilog hardware De-

scription Language (IEEE Std 1364-2001). IEEE, 2003.

[11] Ching-Tsun Chou. Synchronous Verilog: A Proposal. Fujitsu Laboratories of America,

1997.

[12] K.L.McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[13] vi2smv manual, http://www.cis.ksu.edu/santos/smv-doc/vI2smvman. txt

[14] Cadence SMV tutorial, http://www.cis.ksu.edu/santos/smv-doc/tutorial /tutorial.hitml

25



[15] pSET (POSCON Software Engineering Tool), http://rnd.poscon.co.kr

[16] VIS, http://visi.colorado.edu/ vis/

[17] smv2ved, http://www.cs.cmu.edu/ modelcheck/smv2ved.html

[18] Bounded Model Checking for ANSI-C, http://www.cs.cmu.edu/ modelcheck/cbme/

[19] H. Jain, N. Sharygina, D. Kroening, E. Clarke. Word Level Predicate Abstraction and
Refinement for Verifying RTL Verilog. In 42nd Design Automation Conference, 2005.

[20] E. Clarke, O. Grumberg, 5. Jha, Y. Lu, and H. Veith. Counterexample-guided abstrac-
tion refinement for symbolic model checking. J. ACM, 50(5), 2003.



o WA 297k o}
o oleE azE
o} Wl sl opE
=gyr

3 A,
Ag T 7}

NERte

AL Eig
[Uiﬂ

Fru

-
€
+
)
rlo

f‘|0 l,n
oo
o

E

n 32
oy © O

L

=
@ do ot
2
]

N
L
2

gy o b
=
o
i

RS A2

T oo
o
o

Py
sl
=,
rir
1
54

e o
i o

L
off
o

N

00
>
o T,

Y
3
]
i
iz
N
R
->1:I .
ol
>
>
%
c
kn}
=z
v
>
o
o
o
i=)

o
_\_ru_‘ -
i
C
o
a

_
i
o% Mo
ox
B oAt A R A o)

>

o
-
A

&

oo o Lo

ol
g Aule FEdvnh d7stes AAE RS U A&
A dvid ZAgUTh jle) 33 #2 d& Lot sl FAl

o) Ay

Tm

>
by

2

.r.[g_x_l

t
-

ooz 12
fo o Mg > >
o

%t

ol

o

N

e

Qo
R

(o]

o
4o & o

o> o ot
A
g2 I

Q1
RCAN A1
3,
ofy
o
)
o

IT.
e

e 1o, |
inom
>,
ftfo
I ox on

]

A

SR L IRE
3 29 9, deAlE v
AT B2l wH o
1 5 2 AUt 978 whapy
AA B ool HYEed s o4l ol WL B

oM 2 f4F o]FAZ

)
4

nl
2 ¢
Aui
mk
=)
>
el
t
=
W
N
N

=2
2
>
2 o

& A8 E ot7A ¢ke
71 4Tk

KAIST &5 A AFsAE ZA=E- UTE 5dojut Z2-g wheflA
o], £& ol Yste vk F o] R7E 7Pt AR} oAl &
vtk A= AFG7tA e 2o 418 A YE5H7E v th
A nsday A3E, Fobg] SPARCSS AL E, AZwdEAE B
c}.
ARl Ete B A F AE YA 8 FA R, Ao A sFoloA o A E do

Arreioin detn Aguc

L



1999. 3. - 2001. 2.
2001. 3. - 2005. 2.
2005. 3. - 2007. 2.

B me o

k>

A

of¥

A
19834 109 309
T S AT FEF5 113 3 ek 8/306

sjjeon@dependable.kaist.ac.kr

o -7} 5
F=2387)
pEE L

R
o

)
kl
4>
il

£

A AR AET WA

A AArA e At A F



	Abstract
	Contents
	List of Figures
	1. Introduction
	2. Background
	2.1 PLC programming in FBD
	2.2 Verilog
	2.3 Model Checking and Cadence SMV

	3. Verilog Translation from FBD
	3.1 Formal Definition of FBD
	3.2 Assumptions on FBD
	3.2.1 FBD is well wired
	3.2.2 FBD is type safe
	3.2.3 FED should not overwrite output variables
	3.2.4 Execution order is predefined

	3.3 Translation Steps
	3.3.1 Variable type detection
	3.3.2 Variable size decision
	3.3.3 Output assignment to Verilog expression
	3.3.4 Verilog generation


	4. Case Study
	4.1 FIX_RISING example
	4.2 FBD2V

	5. Related Work
	6. Conclusion
	요약문
	References

