Journal of
J E Computing Science and Engineering

Regular Paper

Journal of Computing Science and Engineering,

Vol. 11, No. 1, March 2017, pp. 9-23

NuDE 2.0: A Formal Method-based Software Development,
Verification and Safety Analysis Environment for Digital I&Cs in
NPPs

Eui-Sub Kim, Dong-Ah Lee, Sejin Jung, and Junbeom Yoo*
Division of Computer Science and Engineering, Konkuk University, Seoul, Korea
atang34@konkuk.ac.kr, ldalove@konkuk.ac.kr, jsjj0728 @konkuk.ac.kr, jpyoo@konkuk.ac.kr

Jong-Gyun Choi and Jang-Soo Lee
Man-Machine Interface System Team, Korea Atomic Energy Research Institute, Daejeon, Korea
choijg@kaeri.re.kr, jslee@kaeri.re.kr

Abstract

NuDE 2.0 (Nuclear Development Environment 2.0) is a formal-method-based software development, verification and
safety analysis environment for safety-critical digital I&Cs implemented with programmable logic controller (PLC) and
field-programmable gate array (FPGA). It simultaneously develops PLC/FPGA software implementations from one
requirement/design specification and also helps most of the development, verification, and safety analysis to be per-
formed mechanically and in sequence. The NuDE 2.0 now consists of 25 CASE tools and also includes an in-depth solu-
tion for indirect commercial off-the-shelf (COTS) software dedication of new FPGA-based digital I&Cs. We expect that
the NuDE 2.0 will be widely used as a means of diversifying software design/implementation and model-based software

development methodology.

Category: Embedded computing

Keywords: MBD; Formal methods; Safety analysis; PLC; FPGA; Digital I&C

I. INTRODUCTION

The programmable logic controller (PLC) [1] is an
industrial computer widely used to implement safety-crit-
ical systems in digital I&Cs of nuclear power plants
(NPPs). The increasing complexity of newly developed
systems and maintenance costs now warrant a more pow-
erful and cost-effective implementation platform such as
the field-programmable gate array (FPGA). The nuclear
industry is now eagerly researching FPGA-based digital
[&Cs [2-5] to replace PLC-based systems.

However, the platform change from PLC to FPGA is
not straightforward. It gives rise to a paradigm shift from
CPU-based software development to gate-based hard-
ware development. PLC software engineers should give
up all experience, knowledge, and practices accumulated
over decades, and start new FPGA-based hardware
development from scratch. The platform change may
potentially result safety-related problems. It is an urgent
priority to transition safely and seamlessly to the new
approach [6].

The NuDE 2.0 (Nuclear Development Environment

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

http://jcse.kiise.org

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:/creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received 0 A 2017; Revised 0 A 2017; Accepted 0 A 2017
*Corresponding Author

Copyright © 2017. The Korean Institute of Information Scientists and Engineers

pISSN: 1976-4677 elSSN: 2093-8020

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 9-23

2.0), the latest version of NuDE [7-10], is a formal
method-based software development, verification, and
safety analysis environment for safety-critical digital
1&Cs implemented with PLC and FPGA. It starts from a
formal requirement specification written in NuSCR [11],
and finally synthesizes C codes for PLC or Verilog/
VHDL codes for FPGA, through a series of model trans-
formations. It also supports various levels of formal veri-
fication and safety analysis to check the correctness and
safety of transformed models. Verifications such as simu-
lation, model checking, and equivalence checking are
supported at each development phase, along with the pro-
vision of safety analysis such as STAMP/STPA and FTA.
The 25 CASE (computer-aided software engineering) tools
now mechanically and seamlessly support all model cre-
ations, transformations, verification and safety analysis.

While the NuDE (The name NuDE began to be used
by [8] in 2012) was originally intended for the software
development of PLC platforms, the NuDE 2.0 has been
completely extended for FPGA platforms. The NuDE 2.0
makes it possible to develop software systems of PLC/
FPGA platforms simultaneously from the same require-
ments or design specifications. We expect that the NuDE
2.0 can reduce the semantic gap between software and
hardware-based developments (i.e., PLC vs. FPGA),
while keeping all accumulated experience and knowledge
for decades. It can also be used as a means of gaining a
variety of software designs/implementations and a model-
based software development methodology.

This paper explains the motivation and rationale of all
techniques and supporting tools of the NuDE 2.0, and
also shares an upgrade plan for the NuDE 3.0. This paper
summarizes all the different case studies that we per-
formed with several extracted reactor protection systems
(RPS) examples [2, 12-14].

The organization of this paper is as follows: Section II
provides overviews of the fundamental standards and
guidelines for the software system development in NPPs.
It also summarizes typical software development pro-
cesses for PLC and FPGA-based platforms. Section III
introduces the NuDE 2.0 and its supporting tools in
detail. The future extension plan is also shared. Section
IV briefly looks at all case studies that we have per-
formed, and Section V compares the NuDE 2.0 with its
competitors such as commercial model-based develop-
ment (MBD) tools. Section VI concludes the paper.

Il. THE SOFTWARE SYSTEM DEVELOPMENT
IN NPPS

The software systems such as digital I&Cs in NPPs
have been implemented with two platforms, PLC and
FPGA. They should be developed, verified and assessed
by standards and guidelines about a safety life-cycle and
safety assessment, as summarized in Section II-A. The

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

10

CPU-based software development process for PLC and
the gate-based hardware development process for FPGA
are compared in the following subsections.

A. Standards and Guidelines

Safety-critical software to implement digital 1&Cs
should be developed and assessed by the safety criteria of
IEC and IEEE. The two organizations show different per-
spectives on the way to try to guarantee safety. The IEC
guidelines are based on functional safety of IEC 61508
and try to establish a safety life-cycle in parallel with a
typical software development life-cycle (SDLC, a hierar-
chy of regulatory guides [NUREG] and industrial codes/
standards [IEEE] are applied). The plan of the standards
is to realize and verify/validate safety requirements,
which are developed and refined through safety/hazard/
risk analysis [15] at the early phases of the safety/devel-
opment life-cycle. The safety life-cycle checks iteratively
whether safety requirements are implemented appropri-
ately and sufficiently. The list below indicates IEC and
IEEE standards.

« [EC 61508: Functional safety of electrical/electronic/
programmable electronic (E/E/PE) safety-related sys-
tems [16]

« [EC 61513: Nuclear power plants — Instrumentation
and control for systems important to safety — General
requirements for systems [17]

« [EC 60880: Nuclear power plants — I&C systems
important to safety — Software aspects for computer-
based systems performing category A functions [18]

« [EEE Std. 603-2009: IEEE Standard Criteria for Safety
Systems for Nuclear Power Generating Stations [19]

« [EEE Std. 7-4.3.2-2003: IEEE Standard Criteria for
Digital Computers in Safety Systems of Nuclear
Power Generating Stations [20]

« [EEE Std. 1228-1994: IEEE Standard for Software
Safety Plan [21]

The IEEE standards, on the other hand, require direct
safety analysis at each phase of the SDLC. They suggest
that all hazards (new and as well as survived) should be
identified at each development phase and the hazardous
conditions should be validated through various selected
V&V (verification and validation) activities. Manimaran
et al. [22] carried out independent V&V at each develop-
ment phase, according to the IEEE standards, for a proto-
type fast breeder reactor.

Lee et al. [23] performed a detailed comparative analy-
sis of the IEC and IEEE standards. Based on the experi-
ence of developing a new commercial digital I&C in
Korea, the authors established a complementary relation-
ship between the processes of development and safety
analysis [24], which the NuDE 2.0 can cope with effi-
ciently. Gabbar [25] also tried a similar approach by using
process object-oriented modeling (POOM) methodology.

Eui-Sub Kim et al.

NuDE 2.0: A Formal-Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

Software Development Process for PLC

| Requirements

Analysis Deslgn

Implementation |

5

5

FBD /LD
Programs

Manual
Programming

y N

C Programs Executable

Translator

Code for PLC ||
Compiler

PLC SW Engineering Tools

Fig. 1. A typical software development life-cycle for PLC platforms.

B. The PLC Software Development

The PLC-based digital 1&Cs have a typical software
development process as shown in Fig. 1. Most safety-crit-
ical systems in NPPs such as RPS and ESF-CCS (engi-
neered safety features-components control system) have
been developed with the platform. Software requirements
specification (SRS) is first written in natural languages,
and then the design specification is manually modeled
with PLC programming languages [1] such as FBD or
LD. Commercial PLC vendors provide PLC SW engi-
neering tools (e.g., ‘TriStation 1131 of Invensys for ‘Tri-
Station 1131” PLC, ‘SIMATIC-Manager’ of Siemens for
‘SIMANTIC Controller’ PLC, ‘pSET’ of PONU-Tech
for ‘POSAFE-Q’ PLC [26, 27] and ‘SPACE’ of AREVA
for ‘TELEPERM XS’ PLC), which mechanically trans-
late FBD/LD programs into subsequent ANSI-C pro-
grams and executable codes for specific target PLCs.
Unfortunately the commercial PLC SW engineering tools
are not compatible with other tools.

Most PLC SW engineering tools also translate a high-
level language such as C in order to perform verification
activities such as the control flow graph (CFG)-based
structural test [28] and simulation. The executable codes
are too primitive to do the system/integration/unit test.
Conventional software testing tools for C programs such
as LDRA [29] and the one embedded in SCADE [30] can
perform various testing on the C programs, while checking
CFG-based structural coverages like all statements and
MC/DC to assess the quality of the test cases used in [31, 32].

The problem with the approach is that the translated C
program lacks enough control flows to check the CFG-
based structural coverages. FBD/LD are data-flow based
programming languages for PLC, and the FBD/LD pro-
grams include almost no control flows, except for a few
functional blocks containing internal timers like TOF and
TON. Jee et al. [33] developed 3 new data-flow based
structural coverages for FBD programs and proposed a
direct test of the FBD programs [34, 35].

The typical PLC software development process includes
two translation/compilation steps. The translation step
makes C programs with FBD programs and the compila-

Eui-Sub Kim et al.

11

tion step makes executable codes for PLCs with C pro-
grams, which are depicted as triangles in Fig. 1. For the
compilation of C programs to executable codes for PLCs,
most commercial PLC SW engineering tools use com-
mercial off-the-shelf (COTS) compilers such as ‘“TMS-
320C55x’ of Texas Instruments. The compilers were well
verified and certified enough to be used without addi-
tional verification. However, the nuclear industry has not
acknowledged empirically that a vendor-provided auto-
matic compiler able to translate FBD to C is a correct and
safe tool. To gain acceptance, it should be subjected to
rigorous tests to demonstrate its functional safety and
accuracy. There is no compiler verification technique [36,
37] for FBDs, to the best of our knowledge, and it is one
of the critical obstacles for all new (so-called) FBD-to-C
translators such as [27] to overcome.

C. The FPGA Software Development

An FPGA-based system has a specific feature that is
classified into software as part of the development life-
cycle using HDL (hardware description language), while
the final chip is classified into hardware after the program
is downloaded. It should be developed to meet both IEC-
60880 [18] in terms of software and IEC-60987 [38] in
terms of hardware criteria. Fig. 2 depicts the V-shaped
life-cycle of FPGA development defined by IEC-62566
[39], consisting of software and hardware aspects. The
software aspect also has a typical development life-cycle
defined by NUREG/CR-7006 [40], as presented in the
left-hand side of Fig. 2.

The FPGA software development (this paper uses the
FPGA Software to indicate the software aspect of FPGA)
is fully automated by FPGA logic synthesis tools and
commercial Electronic Design Automation (EDA) tools
of FPGA vendors. After programming a register-transfer
level (RTL) design with HDLs, the design is mechani-
cally transformed into a gate-level design (i.e., netlist) by
synthesis software (e.g., Synopsys Synplify Pro, Preci-
sion RTL and Encounter RTL Compiler). The FPGA
EDAs such as Xilinx ISE Design Suit, Altera Quartus 2,
and Microsemi Libero SoC perform P&R (place & route)

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 9-23

Software Aspect

Requirements
Specification

Requirements/Design
Specification

RTL Design
Equivalence Synthesis Behavioral

Checking Simulation
Gate-level Design

Place & Route

by commercial

Logic
Simulation

Hardware Aspect
Validation
Verification Verification
m Integ raten
Verification Verification

Implementation

Verification

vendors Configuration
& Download

FPGA

Post-layout
Simulation

Fig. 2. A typical development life-cycle for FPGA platforms.

to physically place and map all netlist elements, and pre-
pare a downloadable file through configuration. Since
FPGA EDA tools make the synthesis process fully-auto-
matic, software designers largely focus on HDL designs
to correctly implement FPGA requirements.

At each step of the FPGA software development life-
cycle, designers perform simulation-based verification in
order to confirm that each artifact satisfies its required
specification. All simulation-based verifications at each
step are prepared/performed individually and repetitively
by experienced engineers, and are considered to be one of
key factors for efficient FPGA development.

The V&V process also includes equivalence checking
[41, 42] and the simulation techniques. The equivalence
checking can prove that two given designs have the same
functionality, i.e., “whether they show the same behavior
for all possible input sequences.” For example, it can
prove that an RTL design and the gate-level design syn-
thesized from the RTL design always show the same
behaviors. Most synthesis software are black-boxes of
unknown quality (the FPGA industry have acknowledged
them empirically as correct and safe processes and tools)
and have been developed in-house by EDA company.
The equivalence checking can help us ensure correct syn-
thesis or optimization.

lll. THE NUDE 2.0

The NuDE 2.0 starts from a formal requirement speci-
fication and subsequently transforms/synthesizes more
concrete models across the whole SDLC, as an MBD

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

12

[43] methodology for the nuclear domain. It simultane-
ously and seamlessly supports PLC and FPGA platforms,
encompasses various formal verification and safety anal-
ysis, and the MBD-based code generation. Fig. 3
describes the whole process, techniques and CASE tools
in the NuDE 2.0. The NuDE 2.0 consists of all 25 CASE
tools, except for the ones marked with an asterisk (*).
The following subsections explain each SDLC phase of
the supporting tools.

A. The Requirements Analysis Phase

The NuDE 2.0 starts from a NuSCR specification [11]
modeled in ‘NuSRS 2.0’ as depicted in Fig. 4. NuSCR is
a data-flow based formal requirement specification lan-
guage, specialized for the safety-critical systems in NPPs
such as RPS and ESF-CCS. It provides 4 different nota-
tions—FOD (Function Overview Diagram), SDT (Struc-
tured Decision Table), FSM (Finite State Machine) and
TTS (Timed Transition System)—to improve modeling
convenience in comparison with SCR [44]. SCR provides
just one notation—the decision table for all cases.
NuSRS 2.0, the NuSCR modeling tool, also provides a
static analyzer, Quick Checker [45], to check the syntactic
completeness and consistency of NuSCR specifications. All
tools underlined in Figs. 4—7 are the ones we developed.

The NuSCRtoSMV [46] translator embedded in NuSRS
2.0 generates a behaviorally-equivalent SMV input pro-
gram from a NuSCR specification. After inserting CTL
properties [47], which the model should satisfy, we can
execute the Cadence SMV model checker [48] seam-
lessly and perform the model checking. The SMV model

Eui-Sub Kim et al.

NuDE 2.0: A Formal-Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

Safety Analysis NuDE Navigator
] Requirements / Fault Tree Analysis
Analysis NuSRS NUFTA
Safety Analysis
NuSCR NuSTPA
Quick Checker P~ STAMP/STPA
NuSCRtoSMV
+ SMV* Verification
Model checking
NuSCRtoFBD

Safety Analysis
FBD Editor 2 %

>
N FBD_FTA — Fault Tree Analysis
FBD | FBDtoVerilog 1.0
FBD Checker 98 Verification
N + VIS" & SMV
FBD Simulator N
Equivalence checking VIS Analyzer
Model checking
FBDtoC FBDtoVerilog 2.0/2.1

/FBDtoVHDL Verilog/VHDL
Libero Linker

PLC FPGA
| Implementation Implementation

Verilog

C Program !
8 FBDtoVerilog 1.0 /VHDL
COTS Synthesizer

C Simulator COTS Compiler

FBD-C Comparator Verification Verification
HW-CBMC® CVEC IST-FPGA
(Equivalence Checking) (Co-Simulation)
Verification Verification Netlist ScTacrios.Geulertator
o-Simulator
Co-Simulation Model checking (EDIF) + Modelsim'
P&R
Executable I
Code Layout f—
2|
PLC FPGA
In Commercial In Commercial

{ PLC Software Engineering Tools FPGA Software Synthesis Tools/

Fig. 3. An overview of the NuDE 2.0.

| Requirements Analysis

[Verification l

NuNavigator SMv

NuSCRtoFBD
- V
I

Quick Checker FeD NuFTA

Fig. 4. The NuDE 2.0 in requirements analysis phase.

Eui-Sub Kim et al. 13 http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 9-23

checking upon NuSCR specifications found several omit-
ted but important assumptions [49, 50] in preliminary ver-
sions of KNICS APR-1400 RPS BP [12, 13].

The NuDE 2.0 supports two safety analysis tech-
niques/tools in the requirements analysis phase. NuFTA
[51] generates software fault trees [52] mechanically for
an important output node in the NuSCR specification as
shown in Fig. 4. It generates a software fault tree back-
wardly from the output to all inputs, and finds all combi-
nations (i.e., conditions) of input variables, which will
result in important situations such as “the shutdown sig-
nal is fired.”

The NuDE 2.0 also provides the state-of-the-art safety
analysis technique STAMP/STPA [53], which tries to
analyze system safety from the viewpoint of system the-
ory. It claims that “Accidents occur when the system gets
into a hazardous state, which in turn occurs because of
inadequate control in the form of enforcement of the
safety constraints on the system behavior.” NuSTPA [54]
helps safety engineers do the STAMP/STPA analysis on
the NuSCR requirements specification. The full-scale
application accompanies the extension of NuSCR and
‘NuSRS 2.0°, since the target of STAMP/STPA is not a
SW component but a whole system consisting of many
SW/HW components (e.g., RPS or NPP). The modeling
target of NuSCR is now a small but critical SW compo-
nent such as RPS BP.

A number of iterative modeling, verification and safety
analysis produce a NuSCR specification, which fulfill the
higher requirements (e.g., Functional Requirements Spec-
ification [FRS]) sufficiently and correctly. NuSCRtoFBD [55]
then translates the NuSCR formal requirements specifica-

L oesien

[Verification l ;-{ Development

tion into a behaviorally-equivalent FBD program. The
FBD program plays the role of design specification for
the traditional PLC-based system development. NuNavi-
gator also shows the current phase in SDLC and helps the
change into other CASE tools and SDLC phases, as
shown in the upper left part of Fig. 4.

B. The Design Phase

The design phase starts from an FBD program trans-
lated from a NuSCR requirements specification by
NuSCRtoFBD. FBD Editor [56] reads and displays the
FBD program as depicted in Fig. 5. The FBD Editor is an
independent tool from PLC vendors’ SW engineering
tools so that it is possible to edit FBD programs comply-
ing with the PLCopen TC6 XML scheme [57]. Commer-
cial tools are not compatible with other editing tools for
FBD programs. We can use any FBD program as a start-
ing point, through translating it into the standard format
as [58] did, if no formal specification is prepared. Pro-
gramming an FBD in ‘FBD Editor’ from scratch is of
course possible.

FBD Checker [59] checks the structure of FBD pro-
grams in accordance with several international rules and
guidelines [1, 60, 61], and advises which parts may have
errors or potential problems in the structure. Commercial
PLC SW engineering tools perform the structural analy-
sis well, but the exact correlation to upper rules and
guidelines is not clear nor opened. FBD Checker includes
a set of specific rules on the FBD structure and makes it
possible to argue/acknowledge direct correlations from
FBDs to rules. The example shown in the upper left part

Safety Analysis

EBD éhecke

] “|eBD Editor| [s~

=

FBDtoVerilog 1.0

e

FBDtoC

FBDtoVerilog 2.0/2.1
FBDtoVHDL 1.0

EBD Simulator
+ EBD Scenario Generator

I C "Verilog" VHDL I

VIS Analyzer + VIS SMv

Fig. 5. The NuDE 2.0 in design phase.

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

14

Eui-Sub Kim et al.

NuDE 2.0: A Formal-Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

of Fig. 5 advises that the function block MOVE_BOOL_1
violates the rule, “1.3.1 Implicit type conversion should
not be used.” It also informs that the violated rule 1.3.1
corresponds to the higher guideline “1.2.6 Use of data
typing” in NUREG/CR-6463 [61].

FBD Simulator [62] simulates any FBD program of the
PLCopen TC6 standard format. It executes (i.e., simu-
late) the FBD program randomly or according to pre-
defined scenarios which FBD Scenario Generator generates.
Generally, PLC SW engineering tools use, store and
receive each specific FBD program style or format, so
that the FBD programs in different PLC engineering tools
are not compatible with each other. Whereas FBD Editor
and FBD Simulator follow the industrial standard, PLCo-
pen TC6 format, the tools provide a PLC vendor-inde-
pendent FBD development environment.

FBD Scenario Generator [62] generates a number of
guided scenarios mechanically from an FBD program. It
requests for auxiliary information on the FBD program in
order to make the generated scenario meaningful ones.
Initial values and a rate of change of all input variables,
trip/pretrip set-points, the overall percentage of trip situa-
tions, and the number of PLC execution cycles for each
scenario are requested (Now it has been customized into
the features of RPS). Our previous work [63] shows how
we could use the scenario generator efficiently.

The FBDtoVerilog 1.0 translator [64, 65] makes user
perform formal verification using the VIS verification sys-
tem [66] and the SMV model checker. As the design
phase often includes hardware-dependent modifications on
FBD programs, formal verifications such as model check-
ing and equivalence checking are additional requirements.

The NuDE 2.0 also provides VIS Analyzer [67] to
assist the VIS verification. Since the VIS provides no
graphical interface and even requires a series of com-
mands to do the verification, the VIS Analyzer provides
GUI to analyze the verification results efficiently and
also automate many kinds of the VIS verification such as
model checking, equivalence checking and simulation.
The screen-dump in the lower right of Fig. 5 shows two
flow-charts reorganized from a text-based verification
result (i.e., counter-example).

FBD FTA [68] is a tool of mechanical fault tree gener-
ation and analysis for FBD programs. It generates a soft-
ware fault tree for an important output function block in
the same way with NuFTA, as shown in the upper right of
Fig. 5. We are now refining it to get improvement of the
generation-time. Fault tree templates [69] for FBDs can
also be used to do the analysis, but safety experts have to
perform manual methods [70] without automatic generation.

After a number of FBD programming iterations, verifi-
cation and safety analysis, the FBD program in the FBD
Editor can be transformed into two different implementa-
tion codes for PLC and FPGA, simultaneously. FBDtoC
[71] translates the FBD into a behaviorally-equivalent C
program for PLC, while FBDtoVerilog 2.0/2.1 [72, 73]

Eui-Sub Kim et al.

15

transforms it into a Verilog program for FPGA. FBD-
toVHDL [74] transforms the FBD into a VHDL program,
too. Additionally, the NuDE 2.0 provides an automatic
linking program, Libero Linker [75], for the FPGA EDA
of Actel. It reads the Verilog/VHDL program, creates a
Libero project, and executes Actel Libero SoC.

C. The PLC Implementation Phase

The C programs transformed by FBDtoC [71] are then
compiled into executable codes for a specific target PLC.
Most commercial PLC SW engineering tools use COTS
compilers, which were well verified and certified enough
to be used without additional verification. However, the
vendor-provided automatic translators from FBD to C,
such as pSET [27] and FBDtoC, should be demonstrated
to be functionally safe and accurate through rigorous tests.

FBDtoC [71] defined all FBD elements formally and
proposed 1:1 translation algorithms from all FBD ele-
ments to corresponding C elements. It generates a hierar-
chy of ANSI-C programs, consisting of basic functions,
components and a system. We acknowledge their behav-
ioral equivalence through looking into their 1:1 corre-
spondence between all elements. The behavioral
equivalence can even be formally verified, if necessary,
using the HW-CBMC model checker [76] through the
verification process we proposed [77].

C Simulator and C Scenario Generator [62, 78] test
(i.e., simulate/execute) the intermediate C programs. C
Scenario Generator generates a number of guided simula-
tion scenarios for C programs, trying to reflect the physi-
cal conditions for the RPS trip logics. It is similar to the
FBD Scenario Generator. C Simulator executes the
ANSI-C programs. These tools support the efficient sys-
tem testing of PLC software.

C Simulator and C/FBD Scenario Generator are also
used to demonstrate the safety and correctness of the ven-
dor-specific (so-called) FBD-to-C translators. C/FBD
Scenario Generator generates scenarios for FBD and C
programs, while C Simulator and FBD Simulator exe-
cutes the ANSI-C and FBD programs, respectively. FBD-
C Comparator reads the sets of FBD/C programs and sce-
narios, executes the both sets, compares simulation results,
and finally decides their behavioral equivalence, as sum-
marized in Fig. 6.

In summary, most commercial PLC SW engineering
tools read FBD programs and generate C programs and
executable codes for PLCs without human intervention.
We must use the commercial tools when developing FBD
programs, even if the target PLC is not decided yet. On
the other hand, FBDtoC can transform all FBD programs
written in the PLCopen TC6 format into a set of behav-
iorally-equivalent ANSI-C programs. With the help of C
Simulator and Scenario Generator, we can perform sys-
tem tests upon the C programs. While FBDtoC provides a
straightforward translation from all FBD elements into all

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 9-23

— PLC Implementation

[

Verification]

FBD

Scenario

HW-CBMC

Equivalence
Checking

EBD Scenario Generator
C Scenario Generator
€ Scenario Generator

N

Scenario \

FBD Simulator

Result

system
Test

CcoTs

Compiler - S

F80 & C Simulaion Comparator*

—— L\

Result

\ 4

Executable
Code

C Simulator

EBD-C Comparator

Fig. 6. The NuDE 2.0 in the PLC implementation phase.

FPGA Implementation

. N Development
|

Verification]

FBD

H] ;
FBDtoVerilog 2.0/2.1
FBDtoVHDL 1.0

Verilog
VHDL

~ IST-FPGA ———————————————————__

Synopsis -
Synplify
Pro

8D, Verog Layou.

cenario

enerator FBD Simulator

N\

-

Netlist
(EDIF)

P&R

Y

Layout I»
Actel -

Libero SoC

IST-FPGA

FED=RDT
Comparator

\
I
|
I
I
|
|
I
|
I
I
|
D SCONArio Senerator
HDL Scenario Generator I
I
|
I
|
|
I
I
|
I
I
|
I
I

P RS S sy

Fig. 7. The NuDE 2.0 in the FPGA implementation phase.

corresponding C elements, formal verification with HW-
CBMC and the co-simulation with FBDC Comparator
can be used effectively to demonstrate the safety and cor-
rectness of new FBD-to-C translators.

D. The FPGA Implementation Phase

The Verilog program translated by FBDtoVerilog 2.0/
2.1[72, 73] and the VHDL program by FBDtoVHDL 1.0

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

16

[74] are the starting point of the fully-automated FPGA
synthesis procedure provided by commercial EDA tools,
as shown in Fig. 7. The NuDE 2.0 can also start from the
Verilog/VHDL programs programmed by software engi-
neers from scratch. Although any commercial EDA tools
can read the Verilog and VHDL programs, Synplify Pro
is a specific case tool in NuDE 2.0. The CVEC and IST-
FPGA only aim to verify the tool.

Nuclear regulation authorities, however, require more

Eui-Sub Kim et al.

NuDE 2.0: A Formal-Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

considerate/rigorous demonstration of the correctness
and even safety of the mechanical synthesis processes of
FPGA synthesis tools, even if the FPGA industry has
acknowledged them empirically as correct and safe pro-
cesses and tools. We, therefore, have to get the indirect
COTS SW dedication [79] upon the commercial FPGA
synthesis tools. While the synthesis process can be for-
mally verified with the compiler verification techniques
[36, 37], it is hard to apply them to the works of 3rd-party
developers. It must be the most critical obstacle for
FPGAs to be used as a new platform of digital I&Cs. We
have tried to overcome it through a safety-and-correct-
ness demonstration technique we proposed in [80].

The proposed solution is to do the indirect demonstra-
tion [81]. For a specific program (e.g., a Verilog pro-
gram), if a synthesis tool produces a program (e.g.,
Netlist) that shows the same behavior for all possible
cases, then we can claim that the synthesis tool works
correctly at least for the program. There are several com-
mercial formal verification tools which can be used for
our purpose such as FormalPro, Encounter Conformal
EC, and Formality. They are, however, too case-sensitive
to use naively, as depending upon the combination of
synthesis, EDA and verification tools, as summarized in
[82]. For example, we cannot use FormalPro for Actel
Libero IDE with Synopsys Synplify Pro synthesizer,
which is the combination of the project we worked with.
The FormalPro, however, requires additional information
such as register/variable matching or libraries from syn-
thesis tools. We cannot use the tools without supporting
vendors. We needed to develop a new customized solu-
tion for this combination, since the vendors cannot expect
to get a lot of profit from the extension.

CVEC [82] is a VIS-based equivalence checker, cus-
tomized for the combination above. It formally checks
the behavioral equivalence between a Verilog program
and a Netlist (i.e., EDIF) subsequently synthesized by
Synopsys Synplify Pro in the Actel Libero IDE environ-
ment. If the formal verification with CVEC succeeds, we
can claim that the logic synthesis from Verilog into Net-
list worked correctly at least for the Verilog program
used. FPGA software designers often use the simulation-
based verification techniques [83-85] in order to check if
high-level designs are correctly synthesized into low-
level ones. At each step (i.e., RTL, gate-level and layout),
designers perform three similar activities. They first
develop test scenarios, simulate each target in a test
bench, and finally evaluate the simulation results against
specified requirements. The problem is that they should
perform the verification activity at each step individually
and repetitively, and it takes considerable time and cost.

IST-FPGA [63] provides an integrated software testing
framework for FPGA software developments. It allows
us to perform the three activities only once and in one
step. For all design artifacts at every step, it generates
common and meaningful test scenarios mechanically,

Eui-Sub Kim et al.

17

simulates all designs simultaneously, and finally evalu-
ates the simulation results against expected ones all
together. If any one of designs shows different (i.e.,
incorrect) behaviors from the expected ones, IST-FPGA
analyzes and compares the incorrect case in detail.

In summary, commercial FPGA EDA tools provide
fully-automatic FPGA SW synthesis. Nuclear regulation
authorities, however, require more considerate/rigorous
demonstration of the correctness of the automatic synthe-
sis. CVEC provides formal equivalence checking between
an RTL program and a Netlist in order to demonstrate the
correctness of the Synopsys Synplify Pro synthesizer in
the ‘Actel Libero IDE’ EDA. IST-FPGA also provides an
integrated software simulation (testing) framework, which
can generate and execute simulation cases simultane-
ously for all phases of FPGA SDLC.

E. The Challenges and Future Extension
Plans for NuDE 3.0

The challenges in the NuDE 2.0 is to improve the qual-
ity with regard to a traceability of the processes and to
assure safety of final program. The NuDE 2.0 helps the
user to smoothly use all of individual tools such as edit-
ing and translation tools. The translators in NuDE 2.0 are
whole automatic system so that users do not need to con-
sider the internal behavior. However, the whole auto-
matic assistance may reduce a tracing ability, which is an

NuSCR 2.0 + NuSRS 3.0

Requirement
Analysis

NuSRS

NuSCR E
L] [

INuSCRtoFBD

NuSTPA 2.0 + NuSTPA_Patterns

NuSTPA

FBD Editor

FBD j
)

FBDtoVerilog 2.0/2.1/

FBDtoC
PLC FBDtoVHDL FPGA
Implementation - - ‘ Implementation

v ! Structural Coverage Checker
C Proglem E Vefilog g + Test Scenario Generator 2.0
g)
[/vfioL §
orS cots A
qmpiler Synthesizer Nils E
i ']
Neplist £ 1 istrrea t
(EpIF) ¢ o E
wrzrergrererr
1
Executdble ;] []
_ Cod g ! C Program j:’}““‘]‘f i
Layjout g; ‘
7 I
o Netlist
I (EDIF)
ExecutableT....j
PL(FAGA Code
- b
NuSystem Test + NuSRS 3.0 l el |
PLC W FPGA

NuTracer

Fig. 8. A brief look at NuDE 3.0.

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 9-23

important factor in software development life-cycle. We
need to develop a new environment in order to trace the
important clues during software development life-cycle.
With regard to safety, the NuDE 2.0 only uses fault tree
analysis (FTA) method, which may be lacking diversity.
We also have to supplement other methods such as
STAMP/STPA and Safety case to get a variety of insights.
We are now planning to extend the NuDE 2.0 to incor-
porate several advanced facilities. Fig. 8 shows the over-
all plan of the NuDE 3.0. The NuDE 3.0 will include an
extended version of NuSCR formal requirements specifi-
cation, which can handle not only a single SW but also a
whole system consisting of many SW and HW. It will
also include new structural testing coverages for RTL/
gate levels, and a mechanical coverage checker for Ver-
ilog/VHDL/Netlist programs will be developed. An auto-
matic generation of simulation test cases according to
defined structural coverages will be supported, too. For-
ward and backward traceability analysis on the whole
elements of the NuDE will be the most important contri-
bution of the NuDE 3.0.
+« NuSCR 2.0 & NuSRS 3.0: Extending NuSCR to
incorporate a SW-based system as well as a single SW
« NuSTPA 2.0: The STAMP/STPA analysis on NuSCR
2.0
« NuSTPA_Patterns: STAMP/STPA patterns for digital
1&Cs
« Structural Coverage Checker: Checking structural
coverages of Verilog/VHDL/Netlist programs in IST-
FPGA
« Scenario Generator 2.0: Generating simulation sce-
narios according to structural testing coverages
« NuSystem Tester: Assisting and automating the sys-
tem test execution on an FPGA SW system, starting
from requirements analysis phase
e NuTracer: Tracing functional requirements up to
implementation codes and test cases

All elements of the NuDE 3.0 will be reimplemented
with the state-of-the-art development platform, Eclipse
RCP (rich client platform). The NuDE 2.0 used the
Eclipse plug-in to integrate/manage 25 tools.

IV. CASE STUDY

We have performed various case studies to demon-
strate the effectiveness and applicability of the NuDE 2.0.
Fig. 9 summarizes all partial/full scale case studies for 25
techniques/tools of the NuDE 2.0. We have used 4 exam-
ple systems.

[Example System I] starts from a NuSCR formal
requirements specification [12] for a preliminary version
of KNICS APR-1400 RPS BP. It consists of 8 representa-
tive shutdown logics for the RPS BP. The formal specifi-
cation is translated to a behaviorally-equivalent FBD

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

18

KINICS ARP-1400 RPS BP SRS (a preliminary version) [12]
\/ NuSRS /
NuSCR
KINICS ARP-1400 RPS SDS
NuSCRtoFBD (a preliminary version) [13,14]
FBD Editor \/
FBD
// \
FBD%C BDtoVerilog 2.0/ 1/
FBRtoVHDL
\ / PLD-based RPS BP [2]
o \L/ ! -—/ - I
K
Netlist
Executable (EDIF)
Co.de
l Layout
~~ PIc li ~
FPGA
Example System 1 (NuSCR) [6,7,11,45,46,49,50,51,52,54,55,56,59,65,67,68,69,71]
) Example System 2 (FBD) [56,59,62,64,72,73,74,77,78,80,82]
=) Example System 3 (Verilog) [63,82]
=) Example System 4 (VHDL) [63]

Fig. 9. All case studies for the NuDE 2.0.

program by NuSCRtoFBD, and also translated to a C
program for PLC implementation by FBDtoC and a Ver-
ilog program for FPGA implementation by FBDtoVerilog
2.0. More than 20 case studies [6, 7, 49, 55, 69, 71] were
performed with the Example System 1.

[Example System II] starts from an FBD program
[14] for the second phase of KNICS APR-1400 RPS BP
[13]. It was excerpted from an almost (but, not officially
final version) commercial NPP in operation and it is
much more complicated and detailed than the Example
System 1. It consists of 18 shutdown logics of FBD pro-
grams, and FBDtoVerilog 2.0/2.1 transform them into
Verilog programs. Many case studies [64, 77, 80, 82]
focusing on safety/correctness demonstration of commer-
cial FPGA synthesis tools used the Example System II.

[Example System III & IV] start from Verilog and
VHDL programs, respectively, for an experimental pro-
grammable logic device (PLD)-based RPS BP [2] in
Korea. They consist of 18 shutdown logics as commer-
cial RPS BPs, but are experimental systems with funda-
mental functionalities. Recent case studies in CVEC [82]
and IST-FPGA [63] used the Example System III and IV.

It is worthwhile to note that the NuDE 2.0 has been
developed, refined and improved for more than 10 years.
Now it consists of 25 tools which can seamlessly commu-
nicate/link with each other. A number of case studies
with the 4 example systems have been tried to demon-

Eui-Sub Kim et al.

NuDE 2.0: A Formal-Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

Table 1. A comparison table of commercial MBD tools

SCADE

Rose

Suite Simulink Rhapsody RealTime ASCET NuDE

SDLC

Requirements o X O X X O

Design (0] (0] (0] (0] (0] (0]

Implementation o 0} O o O o
Safety analysis X X FTA X X FTA, STPA
Formal verification (0} 0} O X (¢} O
Code generation C,Ada C,C++ ST, HDL C,C++ Java,Ada C, C++, Java, CORBA C C, FBD, Verilog, VHDL
Testing (simulation) (0] (0] (0] (0] (0] (0]
Last release 2014 2015 2015 2012 2016 2016
NPP application [31,92] [93, 94] [95] X X Cases in Fig. 9

strate the correctness, effectiveness and applicability of
the NuDE 2.0. This paper would like to settle down this
version of the NuDE before proceeding to the next version.

The four case studies show that the NuDE 2.0 helps
engineers develop an RPS software successfully where
starting points are located. With the NuDE 2.0, engineers
can considerably reduce the development time and effort
by automatic translation tools. The safety of the final
RPS software is also improved by various verification,
validation and safety analysis tools.

V. RELATED WORK

This section briefly surveys and compares widely-used
commercial MBD tools with the NuDE 2.0. Each one has
unique characteristic specific to target systems and objec-
tives, as summarized in Table 1. Applicability to NPP
applications as well as support of code generation, safety
analysis and formal verification are analyzed.

SCADE Suite [86] is gradually used to design critical
software such as trains, cars, airplanes and power plants.
It supports system modeling, simulation, formal verifica-
tion and C/Ada code generation. Simulink [87] is a
widely-used modeling and simulation environment,
based on block diagrams for multi-domain dynamic sys-
tems. It provides various solvers for modeling and simu-
lating dynamic (i.e., continuous) systems, and also offers
tight integration with the MATLAB environment [88].

SCADE Suite [86] is gradually used to design critical
software such as trains, cars, airplanes and power plants.
It supports system modeling, simulation, formal verifica-
tion and C/Ada code generation. Simulink [87] is a
widely-used modeling and simulation environment,
based on block diagrams for multi-domain dynamic sys-
tems. It provides various solvers for modeling and simu-
lating dynamic (i.e., continuous) systems, and also offers

Eui-Sub Kim et al.

19

tight integration with the MATLAB environment [88].

Rhapsody [89] is a UML-based visual modeling envi-
ronment for real-time systems. It uses graphical UML
models to generate application programs of C, C++, Java
and Ada. Rose RealTime [90] is similar to Rhapsody.
Rose RealTime does not support verification activities,
but Rhapsody provides analysis to check deadlock,
mutual exclusion and invariants. Rhapsody also provides
a tool for modeling FTA and deriving safety-based
requirements. ASCET [91] has been developed to meet
embedded automotive requirements. It uses block dia-
grams and state machines to design and generate C code.
It can import UML models and models of other suppliers
such as Simulink.

In summary, we note that most MBD tools do not sup-
port safety/hazard analysis such as FTA and STAMP/
STPA. FBD is only supported by the NuDE, while Sim-
ulink support an old and simple PLC programming lan-
guage, ST (structured text). Most MBDs were used to
develop PLC-based NPP applications [31, 92-95] only,
but the NuDE can be used to develop both, PLC and
FPGA-based NPP applications. Formal verification such
as equivalence checking and model checking can only be
supported by the NuDE.

VI. CONCLUSION AND FUTURE WORK

The NuDE 2.0 is a formal methods-based software
development, verification and safety analysis environ-
ment for safety-critical digital I&Cs implemented with
PLC and FPGA. It now consists of 25 tools which can
communicate/link with each other. It makes possible to
develop PLC/FPGA-based systems simultaneously from
one requirement/design specification, and also helps
most of the development, verification and safety analysis
to be performed mechanically and seamlessly. A number
of case studies with the 4 example systems have tried to

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 9-23

show the correctness, effectiveness and applicability of
the NuDE 2.0. We are now working on the next version
of the NuDE to efficiently support safety analysis, struc-
tural testing and traceability. We expect that the NuDE
2.0 will be widely used as a means of gaining diversity of
software design/implementation as well as a model-based
software development methodology. We also expect that
it will be used to reduce the semantic gap between the
PLC-based and FPGA-based developments.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Sci-
ence, ICT & Future Planning. It was also supported by a
grant from the Korea Atomic Energy Research Institute,
under the development of the core software technologies
of the integrated development environment for FPGA-
based controllers.

REFERENCES

1. Programmable Controllers—Part 3: Programming languages,
International Electrotechnical Commission, IEC 61131-3, 1993.

2. J. G Choi and D. Y. Lee, “Development of RPS trip logic
based on PLD technology,” Nuclear Engineering and Tech-
nology, vol. 44, no. 6, pp. 697-708, 2012.

3. J. Ranta, “The current state of FPGA technology in the
nuclear domain,” VTT Technical Research Centre of Fin-
land, Espoo, Finland, 2012.

4. J. She, “Investigation on the benefits of safety margin
improvement in CANDU nuclear power plant using an
FPGA-based shutdown system,” Ph.D. dissertation, The Uni-
versity of Western Ontario, Canada, 2012.

5. L. Lotjonen, “Field-programmable gate arrays in nuclear
power plant safety automation,” M.S. thesis, Aalto Univer-
sity, Espoo, Finland, 2013.

6. J. Yoo, J. H. Lee, and J. S. Lee, “A research on seamless
platform change of reactor protection system from PLC to
FPGA,” Nuclear Engineering and Technology, vol. 45, no. 4,
pp. 477-488, 2013.

7. J. Yoo, E. Jee, and S. Cha, “Formal modeling and verifica-
tion of safety-critical software,” IEEE Software, vol. 26,
no. 3, pp. 42-49, 2009.

8. J. H. Lee and J. Yoo, “NuDE: development environment for
safety-critical software of nuclear power plant,” in Transac-
tions of the Korean Nuclear Society Spring Meeting, 2012,
pp. 1154-1155.

9. J. Yoo, E. S. Kim, D. A. Lee, J. G. Choi, Y. J. Lee, and J. S.

Lee, “NuDE 2.0: a model-based software development envi-

ronment for the PLC & FPGA based digital systems in

nuclear power plants,” in Proceedings of 2014 14th Interna-
tional Symposium of Integrated Circuit (ISIC), Singapore,

2014, pp. 604-607.

J. Yoo, E. S. Kim, D. A. Lee, and J. G. Choi, “An inte-

grated software development framework for PLC & FPGA

based digital 1&Cs,” in Proceedings of International Sympo-

10.

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

20

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

sium on Future 1&C for Nuclear Power Plants/International
Symposium on Symbiotic Nuclear Power System (ISOFIC/
ISSNP), Jeju, Korea, 2014.

J. Yoo, T. Kim, S. Cha, J. S. Lee, and H. S. Son, “A formal
software requirements specification method for digital
nuclear plant protection systems,” Journal of Systems and
Software, vol. 74, no. 1, pp. 73-83, 2005.

Korea Atomic Energy Research Institute, “SRS for reactor
protection system (KNICS-RPS-SRS101),” 2003.

Korea Atomic Energy Research Institute, “SRS for reactor
protection system (KNICS-RPS-SRS221),” 2005.

Korea Atomic Energy Research Institute, “Software design
specification for reactor protection system (KNICS-RPS-
SDS231),” 2006.

C. A. Ericson, Hazard Analysis Techniques for System
Safety, Hoboken, NJ: John Wiley & Sons, 2015.

Functional safety of electrical/electronic/programmable elec-
tronic safety related systems, International Electrotechnical
Commission, IEC 61508, 2000.

Nuclear power plants—Instrumentation and control import-
ant to safety—General requirements for systems, Interna-
tional Electrotechnical Commission, IEC 61513:2011, 2011.
Nuclear power plants—Instrumentation and control systems
important to safety—Software aspects for computer-based
systems performing category A functions, International Elec-
trotechnical Commission, IEC 60880:2006, 2006.

IEEE Standard Criteria for Safety Systems for Nuclear
Power Generating Stations, IEEE Standard 603-2009, 20009.
IEEE Standard Criteria for Digital Computers in Safety Sys-
tems of Nuclear Power Generating Stations, IEEE Standard
7-4.3.2-2010, 2010.

IEEE Standard for Software Safety Plans, IEEE Standard
1228-1994, 1994.

M. Manimaran, A. Shanmugam, P. Parimalam, N. Murali,
and S. S. Murty, “Software development methodology for
computer based 1&C systems of prototype fast breeder reactor,”
Nuclear Engineering and Design, vol. 292, pp. 46-56, 2015.
J. S. Lee, A. Lindner, J. G. Choi, H. Miedl, and K. C. Kwon,
“Software safety lifecycles and the methods of a program-
mable electronic safety system for a nuclear power plant,” in
Proceedings of International Conference on Computer Safety,
Reliability, and Security, Gdansk, Poland, 2006, pp. 85-98.

J. S. Lee, V. Katta, E. K. Jee, and C. Raspotnig, “Means-
ends and whole-part traceability analysis of safety require-
ments,” Journal of Systems and Software, vol. 83, no. 9, pp.
1612-1621, 2010.

H. A. Gabbar, “Integrated framework for safety control
design of nuclear power plants,” Nuclear Engineering and
Design, vol. 240, no. 10, pp. 3550-3558, 2010.

PONU-Tech, “Nuclear plant design and repair services,”
2015; http://www.ponu-tech.co.kr/.

S. Cho, K. Koo, B. You, T. W. Kim, T. Shim, and J. S. Lee,
“Development of the loader software for PLC program-
ming,” in Proceedings of Conference of the Institute of Elec-
tronics Engineers of Korea, 2007, pp. 959-960.

M. Young, Software Testing and Analysis: Process, Principles,
and Technigues, Hoboken, NJ: John Wiley & Sons, 2008.
Liverpool Data Research Associates, “LDRA tool suite,”
http://www.ldra.com.

Eui-Sub Kim et al.

NuDE 2.0: A Formal-Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Esterel Technologies, “SCADE - IEC 60880 Compliant,”
http://www.esterel-technologies.com/industries/iec-60880/.

J. H. Kim, D. Y. Oh, N. H. Lee, C. H. Kim, and J. H. Kim,
“A nuclear safety system based on industrial computer,” in
Transactions of the Korean Nuclear Society Spring Meeting,
2011, pp. 963-964.

C. Park, C. Choe, and S. Jin, “An effective application pro-
cess for code coverage analysis,” in Proceedings of Interna-
tional Symposium on Future 1&C for Nuclear Power Plants/
International Symposium on Symbiotic Nuclear Power Sys-
tem (ISOFIC/ISSNP), Jeju, Korea, 2014.

E. Jee, J. Yoo, S. Cha, and D. Bae, “A data flow-based
structural testing technique for FBD programs,” Information
and Software Technology, vol. 51, no. 7, pp. 1131-1139, 2009.
E. Jee, D. Shin, S. Cha, J. S. Lee, and D. H. Bae, “Auto-
mated test case generation for FBD programs implementing
reactor protection system software,” Software Testing, Verifi-
cation and Reliability, vol. 24, no. 8, pp. 608-628, 2014.

D. Shin, E. Jee, and D. H. Bae, “Comprehensive analysis of
FBD test coverage criteria using mutants,” Soffware & Sys-
tems Modeling, vol. 15, no. 3, pp. 631-645, 2016.

T. Hoare, “The verifying compiler: a grand challenge for
computing research,” Journal of the ACM, vol. 50, no. 1, pp.
63-69, 2003.

X. Leroy, “Formal verification of a realistic compiler,” Com-
munication of the ACM, vol. 52, no. 7, pp. 107-115, 2009.
Nuclear power plants—Instrumentation and control import-
ant to safety—Hardware design requirements for computer-
based systems, International Electrotechnical Commission,
IEC 60987:2007, 2007.

Nuclear power plants—Instrumentation and control import-
ant to safety—Development of HDL-programmed integrated
circuits for systems performing category A functions, Interna-
tional Electrotechnical Commission, IEC 62566:2012, 2012.
M. Bobrek, D. Bouldin, D. E. Holcomb, S. M. Killough, S.
F. Smith, C. Ward, and R. T. Wood, “Review guidelines for
field-programmable gate arrays in nuclear power plant safety
systems,” United States Nuclear Regulatory Commission,
Rockville, MD, Report No. NUREG/CR-7006, 2010.

S. Y. Huang and K. T. Cheng, Formal Equivalence Check-
ing and Design Debugging, Boston, MA: Kluwer Academic
Publishers, 1998.

J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill, “Symbolic model checking for sequential circuit
verification,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 13, no. 4, pp. 401-
424, 1994,

M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and
D. Ratiu, “Seamless model-based development: from iso-
lated tools to integrated model engineering environments,”
Proceedings of the IEEE, vol. 98, no. 4, pp. 526-545, 2010.
K. L. Heninger, “Specifying software requirements for com-
plex systems: new techniques and their application,” /IEEE
Transactions on Software Engineering, vol. 6, no. 1, pp. 2-
13, 1980.

J. Jo, S. Yoon, and J. Yoo, “Improvement of quick checker
for the verification of NuSCR,” in Proceedings of the Korea
Conference on Software Engineering (KCSE 2011), 2011,
pp. 393-400.

Eui-Sub Kim et al.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

J. Cho, J. Yoo, and S. Cha, “NuEditor: a tool suite for speci-
fication and verification of NuSCR,” in International Con-
ference on Software Engineering Research and Applications,
Heidelberg: Springer, 2004, pp. 19-28.

E. M. Clarke, O. Grumberg, and D. Peled, Model Checking,
Cambridge, MA: MIT Press, 1999.

K. McMillan, “Cadence SMV,” http://www.kenmcmil.com/
smv.html.

J. Yoo, S. Cha, C. H. Kim, and Y. Oh, “Formal software
requirements specification for digital reactor protection sys-
tems,” Journal of KIISE: Software and Applications, vol. 31,
no. 6, pp. 750-759, 2004.

E. Jee, D. Shin, and D. H. Bae, “Analysis of model check-
ing and testing and consideration of development direction
for ensuring safety of RPS software,” Communications of
the Korean Institute of Information Scientists and Engineer,
vol. 33, no. 7, pp. 15-26, 2015.

T. Kim, J. Yoo, and S. Cha, “A synthesis method of soft-
ware fault tree from NuSCR formal specification using tem-
plates,” Journal of KIISE: Software and Applications, vol.
32, no. 12, pp. 1178-1191, 2005.

S. Cha and J. Yoo, “A safety-focused verification using soft-
ware fault trees,” Future Generation Computer Systems, vol.
28, no. 8, pp. 1272-1282, 2012.

N. Leveson and J. Thomas, “An STPA primer,” Massachu-
setts Institute of Technology, Cambridge, MA, 2013.

Y. Seo, “An extended process of STPA and implementation
of an automatic assistant tool for reactor protection system
software,” M.S. thesis, Konkuk University, Seoul, 2016.

J. Yoo, S. Cha, C. H. Kim, and D. Y. Song, “Synthesis of
FBD-based PLC design from NuSCR formal specification,”
Reliability Engineering & System Safety, vol. 87, no. 2, pp.
287-294, 2005.

D. A. Lee, E. S. Kim, Y. J. Seo, and J. Yoo, “FBDEditor: an
FBD design program for developing nuclear digital 1&C sys-
tems,” in Proceedings of the Korea Conference on Sofiware
Engineering (KCSE 2014), 2014, pp. 315-318.

PLCopen, “PLCopen for efficiency in automation,” http:/
www.plcopen.org.

D. A. Lee and J. Yoo, “pSET2TC6: a translation tool to
standardize the output format of pSET,” in Proceedings of
the KIISE 2011 Fall Conference, 2011, pp. 105-107.

S. Jung, J. Yoo, and J. S. Lee, “A platform-independent
structural analysis on FBD programs for digital reactor pro-
tection systems,” Annals of Nuclear Energy, vol. 103, pp.
454-469, 2017.

Functional safety of electrical/electronic/programmable elec-
tronic safety related systems—Part 3: Software requirements,
International Electrotechnical Commission, IEC 61508-
3:2000, 2000.

H. Hecht, M Hecht, S. Graff, W. Green, D. Lin, S. Koch, A.
Tai, and D. Wendelboe, “Review guidelines on software lan-
guages for use in nuclear power plant safety systems,”
United States Nuclear Regulatory Commission, Rockville,
MD, Report No. NUREG/CR-6463, 1996.

E. S. Kim, D. A. Lee, and J. Yoo, “The scenario generator
for verifying the correctness of FBDtoVerilog Translator,” in
Proceedings of the Korea Information Processing Society
2014 Spring Conference, 2014, pp. 599-602.

http://jcse.kiise.org

Journal of Computing Science and Engineering, Vol. 11, No. 1, March 2017, pp. 9-23

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78

J. Kim, E. S. Kim, J. Yoo, Y. J. Lee, and J. G Choi, “An
integrated software testing framework for FPGA-based con-
trollers in nuclear power plants,” Nuclear Engineering and
Technology, vol. 48, no. 2, pp. 470-481, 2016.

J. Yoo, S. Cha, and E. Jee, “Verification of PLC programs
written in FBD with VIS,” Nuclear Engineering and Tech-
nology, vol. 41, no. 1, pp. 79-90, 2009.

J. Yoo, J. H. Lee, S. Jeong, and S. Cha, “FBDtoVerilog: a
vendor-independent translation from FBDs into Verilog pro-
grams,” in Proceedings of the 23rd International Confer-
ence on Software Engineering and Knowledge Engineering
(SEKE 2011), Miami Beach, FL, 2011, pp. 48-51.

R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F.
Somenzi, A. Aziz, S. T. Cheng, et al., “VIS: a system for
verification and synthesis,” in Proceedings of the Sth Inter-
national Conference on Computer Aided Verification
(CAV’96), New Brunswick, NJ, 1996, pp. 428-432.

S. Jeong, J. Yoo, and S. Cha, “VIS analyzer: a visual assis-
tant for VIS verification and analysis,” in Proceedings of the
13th IEEE International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing (ISORC),
Carmona, Spain, 2010, pp. 250-254.

Dependable Software Laboratory, “FBD FTA,” http:/
dslab.konkuk.ac.kr/Nuclear-Requirement/FBD FTA.htm.

Y. Oh, J. Yoo, S. Cha, and H. S. Son, “Software safety analy-
sis of function block diagrams using fault trees,” Reliability
Engineering & System Safety, vol. 88, no. 3, pp. 215-228, 2005.
G. Y. Park, K. Y. Koh, E. Jee, and P. H. Seong, “Fault tree
analysis of KNICS RPS software,” Nuclear Engineering and
Technology, vol. 40, no. 5, pp. 397-408, 2008.

J. Yoo, E. S. Kim, and J. S. Lee, “A behavior-preserving
translation from FBD design to ¢ implementation for reactor
protection system software,” Nuclear Engineering and Tech-
nology, vol. 45, no. 4, pp. 489-504, 2013.

D. A. Lee, E. S. Kim, and J. Yoo, “FBDtoVerilog 2.0: an
automatic translation of FBD into Verilog to develop
FPGA,” in Proceedings of the Sth International Conference
on Information Science and Application (ICISA 2014),
Seoul, Korea, 2014, pp. 447-450.

Dependable Software Laboratory, “FBDtoVerilog 2.10,”
http://dslab.konkuk.ac.kr/Nuclear-Design/FBDtoVerilog.htm.
J. Kim, E. S. Kim, J. Yoo, Y. J. Lee, and J. G. Choi, “FBD-
toVHDL: an automatic translation from FBD into VHDL for
FPGA development,” Journal of KIISE, vol. 43, no. 5, pp.
569-578, 2016.

Y. Seo, D. A. Lee, and J. Yoo, “VerilogLinker: a tool for
link IDE for FPGA controller to commercial FPGA synthe-
sis software,” in Proceedings of the Korea Information Pro-
cessing Society 2014 Spring Conference, 2014, pp. 595-599.
E. Clarke and D. Kroening, “Hardware verification using
ANSI-C programs as a reference,” in Proceedings of the
2003 Asia and South Pacific Design Automation Confer-
ence, Yokohama, Japan, 2003, pp. 308-311.

D. A. Lee, J. Yoo, and J. S. Lee, “A systematic verification
of behavioral consistency between FBD design and ANSI-C
implementation using HWCBMC,” Reliability Engineering
& System Safety, vol. 120, no. 12, pp. 139-149, 2013.

E. S. Kim, “A technique for demonstrating correctness and

http://dx.doi.org/10.5626/JCSE.2017.11.1.9

79.

80.

81.

82.

83.

84.

85.

86.
87.
88.
89.
90.

91.
92.

93.

94.

95.

safety of program translators: strategy and case study,” M.S.
thesis, Konkuk University, Seoul, 2015.

S. Jung, E. S. Kim, J. Yoo, J. Y. Kim, and J. G. Choi, “An
evaluation and acceptance of COTS software for FPGA-
based controllers in NPPs,” Annals of Nuclear Energy, vol.
94, pp- 338-349, 2016.

E. S. Kim, J. Yoo, J. G. Choi, J. Y. Kim, and J. S. Lee, “A
technique for demonstrating safety and correctness of pro-
gram translators: strategy and case study,” in Proceedings of
the 2nd International Workshop on Assurance Cases for
Software-intensive Systems (ASSURE), Naples, Italy, 2014,
pp- 210-215.

J. Yoo, E. S. Kim, and S. Jung, “Verification techniques for
COTS dedication of commercial FPGA tools,” in Proceed-
ings of the 10th International Symposium on Embedded
Technology (ISET2015), Daegu, Korea, 2015, pp. 150-151.
E. S. Kim, J. Yoo, and J. Y. Kim, “CVEC: a customized
VIS-based equivalence checker for FPGA logic synthesis,”
Science of Computer Programming, 2016, submitted.

D. Kim, M. Ciesielski, and S. Yang, “A new distributed
event-driven gate-level HDL simulation by accurate predic-
tion,” in Proceedings of Design, Automation & Test in
Europe Conference & Exhibition (DATE), Grenoble, France,
2011, pp. 1-4.

D. Zheng, W. Yichen, and Z. Xueyi, “The methods of FPGA
software verification,” in Proceedings of 2011 IEEE Interna-
tional Conference on Computer Science and Automation
Engineering (CSAE), Shanghai, China, 2011, pp. 86-89.

R. E. Bryant, “A methodology for hardware verification
based on logic simulation,” Journal of the ACM, vol. 38,
no. 2, pp- 299-328, 1991.

Esterel Technologies, “SCADE Suite,” http://www.esterel-
technologies.com/products/scade-suite/.

MathWorks, “Simulink,” https://www.mathworks.com/prod-
ucts/simulink.html.

MathWorks, “MATLAB,” https://www.mathworks.com/prod-
ucts/matlab.html.

IBM, “Rational Rhapsody,” http://www.ibm.com.

IBM, “Rational Rose RealTime,” http://www.ibm.com.
ETAS, “ASCET,” http://www.etas.com.

P. Thevenod-Fosse, “Unit and integration testing of LUS-
TRE programs: a case study from the nuclear industry,”
Centre National de la Recherche Scientifique (CNRS), Tou-
louse, France, Report No. CNRS-LAAS-98078, 1998.

H. Gao, C. Wang, and W. Pan, “A detailed nuclear power
plant model for power system analysis based on PSS/E,” in
Proceedings of 2006 IEEE PES Power Systems Conference
and Exposition (PSCE), Atlanta, GA, 2006, pp. 1582-1586.
S. A. M. Shirazi, “The theoretical simulation of a model by
SIMULINK for surveying the work and dynamical stability
of nuclear reactors cores,” in Nuclear Reactor, Rijeka, Croa-
tia: InTech, 2012.

P. Pihlanko, S. Sierla, K. Thramboulidis, and M. Viitasalo,
“An industrial evaluation of SysML: the case of a nuclear
automation modernization project,” in Proceedings of 2013
IEEE 18th Conference on Emerging Technologies & Fac-
tory Automation (ETFA), Cagliari, Italy, 2013, pp. 1-8.

Eui-Sub Kim et al.

NuDE 2.0: A Formal-Method-based Software Development, Verification and Safety Analysis Environment for Digital I&Cs in NPPs

Eui-Sub Kim et al.

Eui-Sub Kim

Eui-Sub Kim is a PhD candidate in computer science and engineering at Konkuk University in Korea. He
received his B.S. and M.S. degrees in computer science and engineering from Konkuk University in 2012 and
2015, respectively. His research interests include software engineering and formal verification.

Dong-Ah Lee

Dong-Ah Lee is a PhD candidate in the department of computer science and engineering at Konkuk
University. He has received his B.S. and M.S. degrees at the same department and university in 2010 and
2012, respectively. His main research interests are in formal verification, hazard analysis, and software V&V.

Sejin Jung

Sejin Jung is a PhD candidate in the department of computer science and engineering at Konkuk university.
He has received his B.S. and M.S. degrees at the same department and university in 2015 and 2016,
respectively. His research interests are in software engineering and hazard/safety analysis.

Junbeom Yoo

Junbeom Yoo is an associate professor in Konkuk University’s Department of Computer Science and
Engineering. His research interests include software engineering, safety analysis and formal methods. Yoo
has a Ph.D. degree in computer science from Korea Advanced Institute of Science and Technology.

Jong-Gyun Choi

Jong-Gyun Choi received the B.S. degree in Nuclear Engineering from Hanyang University in 1994, M.S. and
Ph.D. from KAIST in 1996 and 2001, respectively. He has been a principal researcher of Korea Atomic Energy
Research Institute (KAERI) since 2001. His research interests include instrumentation and control system,
reliability analysis, and safety assessment.

Jang-Soo Lee

Jang-Soo Lee is a principal research scientist at Korea Atomic Energy Research Institute (KAERI). He has
received his M.S. degree in computer science from Korea Advanced Institute of Science and Technology
(KAIST) in 1986, and Ph.D. degree from KAIST in 2002. His research interests include safety analysis of
software based system, software verification and validation, embedded system testing, formal methods,
digital instrumentation and control architecture.

23 http://jcse.kiise.org

