A MC/DC and Toggle Coverage Measurement Tool for FBD Program Simulation

Eui-Sub Kim, Sejin Jung, Jaeyeob Kim, Junbeom Yoo
Dependable Software Laboratory
KONKUK University

2016.05.13
Functional Verification of FBD

- Functional verification of FBD (Function Block Diagram) is important

- FBD is a design model for PLC (and FPGA in the NuDE framework)

- Detection errors early (design phase) ➔ Can reduce costs and increase quality

- Software design errors are often only detected during final test or after delivery
How Adequately the Testing has been Performed?

“Test Done = Test Plan Executed and All Codes Executed”

Functional Coverage
- Requirements Coverage
- This coverage will be defined by the user
- User will define the coverage points for the functions to be covered
- 100% of functional coverage is always required

Code Coverage
- Structural Coverage
- How many lines are executed, how many times expressions, branches executed, etc.
- Code coverage is collected by the simulation/testing tools.
- Users use code coverage to reach those corner cases which are not hit by the test cases.
 - Unfortunately, errors and bugs are often found in the corner cases.
- To assure a high quality of functional verification, code coverage is important as well as functional coverage
Introduction

- We applied two code coverages to FBDs
 - (1) Toggle coverage, (2) MC/DC coverage
- Defined coverage criteria for FBD simulation
- If the coverages is not 100%, it means that the verification may be insufficient or the FBD may have unintended errors or bugs.

- We developed a set of supporting CASE tools
 - Developed two CASE tools ‘FBDSim’ and ‘FBDCover’
 - Can simulate FBDs and measure the code coverages of the FBD simulation
 - Objective: measuring the coverages during simulation (a sequential/continuous operation environment, not a single execution)
Toggle Coverage & MC/DC Coverage

• **Toggle Coverage**
 - One of the oldest measurements of coverage in hardware design
 - Measures the bits of logic that have toggled during simulation
 - Can be measured in logic simulation
 - Ex) 1-to-0 and 0-to-1 → 100% toggle coverage

• **MC/DC Coverage**
 - Control flow-based structural coverage of the most highest level, in practice
 - Widely applied to C/Java programs
 - Case # | A | B | OUT | A | B
 |---|---|---|---|---|
 1 | T | T | T | O | O
 2 | T | F | F | | O
 3 | F | T | F | | O
 4 | F | F | F | |

100% MC/DC
⇒ (T,T), (F,T), (T,F)
Toggle Coverage in FBDs

- **Toggle Coverage in the FBD**

- Two application targets: (1) Output toggle, (2) Block toggle
 - (1) Output toggle: an output is toggle during the simulation
 - (2) Block toggle: a function block's output is toggle during the simulation

- Ex) If an output is not toggled, we may doubt that
 - the output variable is not tested → simulation may be **insufficient**.
 - the output variable is unreachable → the logic may have **dead codes** → a logic-fix requires

[Diagram showing toggle coverage in FBD with specific values and conditions for toggled states.]
MC/DC Coverage in FBDs

- MC/DC Coverage in the FBD
 - Based on the typical MC/DC principle
 - Measure the MC/DC coverage of a function block
 - Ex) If any block does not cover 100% MC/DC coverage, we may doubt that
 - the block is not tested \rightarrow simulation may be insufficient
 - the block is unreachable \rightarrow the logic may have dead codes \rightarrow a logic-fix requires

<table>
<thead>
<tr>
<th></th>
<th>Inputs</th>
<th>MC/DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>IN1, IN2</td>
<td>(0,1) (1,0) (1,1)</td>
</tr>
<tr>
<td>OR</td>
<td>IN1, IN2</td>
<td>(0,0) (0,1) (1,0)</td>
</tr>
</tbody>
</table>
Block Toggle Coverage (An Example of Insufficient Simulation)

- **Insufficient simulation?**
- If the variable ‘PV_OUT’ is always located between MIN and MAX,
 - The block ‘LT_INT_2’ is never toggled. → 0% toggle coverage
- User can add more test cases to toggle the function block
 - Ex) PV_OUT = 0~9 and next PV_OUT > 10 (again)

 \[
 (0 \rightarrow 1) \quad (1 \rightarrow 0)
 \]
Output Toggle Coverage (An Example of Unreachable Code)

- Unreachable ?
- If the variable ‘OB_INT_ST’ is always true?
 - The output variable ‘TRIP’ is never toggled. → 0% toggle coverage
- User can modify the logic
 - Ex) remove ‘AND_BOOL’ block
 - Ex) change the ‘OB_INT_ST’ variable (i.e., constant) to an (simulation) input variable
MC/DC Coverage (An Example of Insufficient Simulation)

• Insufficient simulation ?
 • If the variable ‘PV_OUT’ is always located between MIN and MAX,
 – The input of ‘AND_BOOL’ is always (1, 1) → 33% MC/DC coverage
• User can add more test cases to toggle the function block
 • Ex) PV_OUT = 0~9 and PV_OUT = over 20000
 (0, 1) (1, 0)
MC/DC Coverage (An Example of Unreachable Code)

- Unreachable?
- If two inputs of the upper ‘LT_INT_2’ are exchanged (due to a logic error)
 - It means “PV_OUT < MIN and PV_OUT < MAX”
 - The condition (1, 0) is never generated. → The max MC/DC is 66%
- User may have a chance to identify the (hypothetical) error and fix the logic

100% MC/DC → (1,1), (0,1), (1,0)
THE TOOL DEVELOPMENT
The Tool Development

- We develop two tools: (1) FBDSim (2) FBDCover
FBDSim

- **FBD Simulation Tool**

 - Input: (1) FBD program in PLCopen TC6 XML format, (2) Simulation scenario
 - Output: (1) Simulation result, (2) Coverage information
 - Embedded in FBD Editor
FBDCover

- **Coverage Measurement Tool**
 - **Input:**
 - Coverage information from FBDSim
 - **Output:**
 - Graphical coverage result
 - Embedded in FBD Editor
 - Notifies ranks of scenarios
 - Notifies uncovered elements

![FBDCover Interface](image)

- **UnCoverd_Toggle**
 - Uncovered Toggle Coverage

- **UnCoverd_MC/DC**
 - Uncovered MC/DC condition

- **Coverage**
 - Total Toggle Coverage
 - Ranking of scenarios
 - Toggle/MCDC Coverage of a scenario

Total MC/DC Coverage

Total Toggle Coverage
Ranks of FBDCover

- Highest rank scenario vs. Lowest rank scenario of toggle coverage

- Provide valuable information to improve simulation scenarios
Uncovered Elements of FBDCover

- Notify elements which are not simulated
- After improving the scenarios, user can re-simulate them seamlessly

LocalId 28
LT_INT_2 block LocalId 28 (1 → 0) toggle
CASE STUDY
Case Study

• We performed a case study with an example replicating a KNICS APR-1400 RPS BP

• ‘FBDSim’ automatically simulates a set of FBD scenarios and checks toggle and MC/DC coverage

• We used our tool-set of
 – FBD Editor
 – Scenario Generator
 – FBDSim
 – FBDCover
Case Study

- We found uncovered elements and improved the scenarios and then re-simulated with the scenarios.
Case Study (Example)

- We found that we missed to simulate the bypass, with the MC/DC coverage.
Case Study (Example)

• Finally, we were able to get 100% toggle and MC/DC coverage.

• Of course, it is not sufficient to assure that the program is free from bug or error.

• It is possible to fail with 100% code coverage.

• However, we always try to improve on the quality of verification with every possible means.

• The tool is helpful because it notify engineers about that there are uncovered elements.
 – The uncovered elements imply that the simulation is not sufficient or the FBD has unintended errors or bugs.
Conclusions and Future Work

- We applied toggle and MC/DC coverage to the FBD.
 - If the coverages are not 100%, user should analyze whether it is reasonable.
 - If it is not reasonable, it means that the simulation may be insufficient or the logic may have unintended errors or bugs.
 - We are trying to evaluate the efficiency/applicability of the coverages proposed.
 - All condition coverage is also applicable.

- We developed two CASE tools.
 - We developed two CASE tools ‘FBDSim’ and ‘FBDCover’
 - We can simulate the FBD and measure the coverages of the simulation
 - It produces a rank of scenarios and uncovered elements.
Conclusions and Future Work

- We are now planning to extend the coverage technique and tools to develop a full coverage-based scenario generation tool.
 - NuDE 2.0
 - IST-FPGA

THANK YOU

http://dsslab.konkuk.ac.kr
jbyoo@konkuk.ac.kr