

 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 1

An Integrated Software Development Framework

for PLC & FPGA based Digital I&Cs

Junbeom Yoo
1
, Eui-Sub Kim

2
, Dong Ah Lee

3
, and Jong-Gyun Choi

4

1. Computer Science and Enginering Konkuk Univeristy Republic of Korea (jbyoo@konkuk.ac.kr)

2. Computer Science and Enginering Konkuk Univeristy Republic of Korea (atang34@konkuk.ac.kr)

3. Computer Science and Enginering Konkuk Univeristy Republic of Korea (ldalove@konkuk.ac.kr)

4. MMIS Lab. Korea Atomic Energy Research Institute Republic of Korea (choijg@kaeri.re.kr)

Abstract: NuDE 2.0 (Nuclear Development Environment) is a model-based software development

environment for safety- critical digital systems in nuclear power plants. It makes possible to develop

PLC-based systems as well as FPGA-based systems simultaneously from the same requirement or

design specifications. The case study showed that the NuDE 2.0 can be adopted as an effective

method of bridging the gap between the existing PLC and upcoming FPGA-based developments as

well as a means of gaining diversity.

Keyword: software development, PLC, FPGA, nuclear power plants

1 Introduction

A safety-grade PLC (Programmable Logic

Controller) has been used as an implementation

platform of safety-critical digital systems in

nuclear power plants, such as RPS (Reactor

Protection System) and ESF-CCS (Engineered

Safety Features-Components Control System).

While complexity of newly developed systems

and maintenance cost of the old ones have

increased rapidly, alternative platforms for the

PLC are widely being researched. The solution of

[1,2,3] proposes to use FPGA

(Field-Programmable Gate Array), which can

provide powerful computation with lower

hardware cost.

The platform change from PLC to FPGA,

however, is not so straightforward. It gives rise to

a paradigm shift from the CPU-based software

development to FPGA-based hardware

development. All PLC software engineers in

nuclear domain should give up all experience,

knowledge and practices accumulated over

decades, and start a new FPGA-based hardware

development from the scratch. The platform

change may result in potential causes leading to

safety-related problems. It is now strongly

required to transit to the new development

approach safely and seamlessly.

The loss and potential risk can be reduced if we

can use the requirements and design

specifications of the PLC-based systems as those

of the FPGA-based systems, since the

specifications are the fruit of the state-of-the-art

PLC-based systems. The NuDE 2.0 (Nuclear

Development Environment) [4,5,6] makes us

possible to develop the software systems of the

PLC and FPGA platforms simultaneously from

the same requirements or design specifications.

The óFBDtoVerilog 2.0/2.1ô translator [7], in

particular, can translate an FBD program of a

PLC-based RPS into a behaviorally equivalent

Verilog program of FPGA platform which is the

starting point of the mechanical FPGA synthesis

process. We expect that the NuDE 2.0 can reduce

the semantic gap between the PLC-based and

FPGA-based developments (i.e., software vs.

hardware) and also be used as a means of gaining

diversity of software design and implementation.

In order to demonstrate the possibility and

effectiveness of the NuDE 2.0, we performed a

case study with a preliminary FBD program of

the KNICS APR-1400 RPS BP [8]. From the

FBD program, C programs for PLC and

Verilog/EDIF programs for FPGA were

synthesized mechanically, and an exhaustive

simulation tried to validate their behavioral

equivalence. The organization of the paper is as

Junbeom Yoo, Eui-Sub Kim, Dong Ah Lee, and Jong-Gyun Choi

2 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014

follows: Section 3 introduces the NuDE 2.0 and

various supporting tools, and Section 4 explains

the case study in details. Section 5 concludes the

paper and provides remarks on future research

extension.

2 NuDE 2.0

The NuDE 2.0 (Nuclear Development

Environment) is a formal method- based software

development environment, specialized for

safety-critical digital systems in nuclear power

plants. It starts from a formal requirements

specification and transforms/synthesizes more

concrete models subsequently across the whole

SDLC (Software Development Life- Cycle). It

now supports for PLC and FPGA platforms,

simultaneously and seamlessly. It also

encompasses various formal verification and

safety analysis as well as the MBD (Model Based

Development)-based code generation. (Fig.1)

depicts the whole process in details, and the

following subsections briefly explain each phase

around supporting tools.

2.1 The Requirements Analysis Phase

(Fig.2) is an example of the NuSCR specification

modeled in óNuSRS 2.0.ô NuSCR [9] is a data-flow

based requirements specification language,

specialized for the safety-critical systems in the

nuclear domain. The NuSCR modeling

environment, NuSRS 2.0, includes static grammar

checker óQuick Checkerô and the óNuSCRtoSMVô

[10] translator to generate the SMV input program

and execute the Cadence SMV model checker [11],

seamlessly. óNuFTAô [12] also generates software

fault trees for the NuSCR specification

mechanically. The NuSCR formal requirements

specification is then translated into a

behaviorally-equivalent FBD program by

óNuSCRtoFBDô [13].

2.2 The Design Phase

óFBD Editorô in (Fig.3) shows the FBD program,

which is mechanically translated from an NuSCR

specification. We can also model it directly on the

tool [14]. óFBD Simulatorô executes an FBD

program with predefined inputs or randomly, while

óFBD Testerô [15] enables us to do test the FBD

programs directly with data-flow based coverage

criteria for FBDs. Formal verification with the VIS

verification system [16] and the SMV model

checker is also possible through the óFBDtoVerilog

1.0ô translator [17]. The FBD design phase often

include hardware-dependent modifications on the

FBDs, the formal verification are required

additionally. The NuDE also provides óVIS

Analyzerô [18] to assist the VIS verification

graphically and seamlessly. óFBD FTAô [19] is a

fault tree generation and analysis tool for FBD

programs.

Figure 1 An overview of the NuDE 2.0 framework

Figure 2 An NuSCR formal specification modeled in

NuSRS 2.0

An Integrated Software Development Framework for PLC & FPGA based Digital I&Cs

 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 3

3

The FBD program modeled in the óFBD Editorô can

be transformed into different implementation codes

for PLC and FPGA. óFBDtoCô [20] translates FBDs

into behaviorally- equivalent C programs for PLC,

while óFBDtoVerilog 2.0/2.1ô [7], [21] transforms

FBDs into Verilog programs for FPGA. We are

working on the transformation from FBDs into

VHDL programs.

2.3 The PLC Implementation Phase

The C programs transformed by the óFBDtoCô can

be compiled into executable codes for a specific

target PLC. Most commercial software engineering

tools, however, translates FBDs into equivalent C

and executable codes subsequently, and also

downloads them into specific target PLCs. Most

PLC vendors typically use COTS (Commercial

Off-the-Shelf) software such as óTMS320C55xô of

Texas Instruments for the C compilers. The COTS

compilers were well verified and certified enough to

be used without additional verification effort.

However, the vendor-provided automatic translators

from FBD to C should demonstrate its functional

safety and correctness rigorously, as we proposed in

[22].

2.4 The FPGA Implementation Phase

The Verilog program translated by óFBDtoVerilog

2.0/2.1ô is the starting point of the fully-automated

FPGA synthesis procedure provided by commercial

tools. On the other hand, nuclear regulation

authorities require more considerate demonstration

of the correctness and even safety of the

mechanical synthesis processes of FPGA synthesis

tools, even if the FPGA industry have

acknowledged them empirically as correct and safe

processes and tools. While the synthesis process

can be formally verified with the compiler

verification techniques [23], [24], it is hard to apply

them to the works of 3rd-party developers. It must

be the most important obstacle for FPGAs to be

used as a new platform of nuclear I&C systems. We

are trying to overcome the obstacle through the

safety and correctness demonstration technique

proposed in [21].

2.5 Auxiliary Support for the Compiler

Verification

The formal verification of compiler, translator and

synthesizer is an important issue, and should be fully

demonstrated whenever new PLC compilers or

FPGA synthesis tools are proposed to use to develop

new safety-critical digital systems in nuclear power

plants. These are typically developed by 3rd-parties,

and we have no information to perform the in-depth

analysis on them with typical compiler verification

techniques. We have proposed an indirect

demonstration technique [21], which uses the VIS

equivalence checking and (HW/SW) co-simulation

[25]. It is our current on-going research issue.

3 Case Study

We performed a case study with a preliminary

version of FBD programs [8] of the KNICS

APR-1400 RPS BP. Starting from the FBD program,

the NuDE 2.0 seamlessly transformed the C and

Verilog programs for the PLC and FPGA platforms,

respectively. (Fig.4) depicts an overview of the case

study we performed.

PLC Implementation

FPGA Implementation

Scenario

Generator

FBDEditor

FBDtoC FBDtoVerilog 2.0

GCC

compiler

FBD
FBDSimulator

C Program Verilog
ModelSim

Executable Code
C Simulator

Simulation

Result

Simulation

Result

Simulation

Result

FBD & Verilog

Comparator

FBD & C

Comparator

Scenario

Scenario

Scenario

Figure 3 An example FBD program in óFBD Editorô

Figure 4 An overview of the case study

Junbeom Yoo, Eui-Sub Kim, Dong Ah Lee, and Jong-Gyun Choi

4 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014

We also performed an exhaustive simulation of the

two implementation programs in order to validate

the transformations. We have developed a

co-simulator which can execute C and Verilog

programs simultaneously and confirm their

sequential equivalence as [26].

The preliminary FBD programs are two of 18

independent logics of the RPS BP, which read sensor

inputs and decide shutdown of the reactor

periodically. The two are fixed set- point logics;

one is a rising trip logic; and the other is a falling

one. (Fig.5) shows a partial FBD program of the

rising trip logic, which is designed using óFBD

Editor.ô The case study performs translation from

the FBD programs into C programs and Verilog

programs using óFBDtoCô and óFBDtoVerilog 2.0ô

respectively. After the translation, we simulate the

programs using simulatorsðFBD simulator, C

simulator, and ModelSimðto demonstrate

sequential equivalence between the programs. The

simulations have to take the same input sequence to

confirm the equivalence. The data formats, however,

are different because language and simulator are

difference. óScenario Generatorô generates virtual

input data of sensors in three different formats for

FBD simulator, C simulator, and ModelSim. Two

comparators, óFBD & C Comparatorô and óFBD &

Verilog Comparator,ô compare the simulation

results which are output sequences of the each

program

3.1 The PLC Implementation

óFBDtoCô mechanically transforms FBD programs

into C programs to implement PLCôs programs. We

transformed the two FBD programs into C

programs using the óFBDtoC.ô It generated 5 files -

one is a header file and the others are C code files.

The header file defines basic information, such as a

data structure or interfaces. The four C code files,

Function_Block.c, Component_FBD.c, System_FBD.c

and Software_FBD.c, are hierarchically organized.

Function_Block.c includes basic functions, such as

addition or selection, and Software_FBD.c includes

top functions which implement operational function

for the PLC. (Fig.6) represents the transformed

řfixed set-point rising trip logic.ô Only two of the

transformed files are meaningful in the example - it

depends on the structure of the FBD program.

It is necessary for execution to compile the

transformed program. GNU Compiler Collection

(GCC) is one of the most popular compilers for C

programs. We used the GCC compiler of the

transformed C programs.

3.2 The FPGA Implementation

ɤSystem_FBD.c

Function_Block.c ɣ

Ź C files

Œ...

Œ...

Figure 4 A part of the FBD program, ófixed set-point

rising tripô

Figure 5 The result of the translation from FBD into

C

An Integrated Software Development Framework for PLC & FPGA based Digital I&Cs

 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 5

5

óFBDtoVerilog 2.0ô is a translator which the

translated Verilog program needs pre-translated

library modules, while óFBDtoVerilog 2.1ô

translates all elements on-the-fly. We used

óFBDtoVerilog 2.0ô with the library modules

developed by experts in KAERI for the case study.

Using the library modules helps the translator only

focuses on the translation about the programsô

interface and blocksô connections.

(Fig.7) shows translation result of the ófix set-point

rising trip logicô using the óFBDtoVerilog 2.0.ô

Module call statements, which refer modules in the

library, are at the middle of the transformed code,

such as statements start with GE_INT_2 and

LT_INT_2. The pulse signal is a unique feature to

copy cyclic execution behavior of FBD programs.

Verilog programs wait to store and read values of

former execution result as input values

synchronizing with the pulse signals.

3.3 The Equivalence Validation

We validated the behavioral equivalence between

FBD versus C and FBD versus Verilog using

simulation. It consists of three steps for the

validation of FBD versus C programs: step-1)

simulation of FBD programs; step-2) simulation of

C programs; step-3) comparison of results of the

two simulations from step-1 and step-2. The

validation of FBD versus Verilog is a similar

method. Verilog programs take the second step

instead of C programs.

It is essential that pairs of the programs have to take

the same input sequences to validate if they

perform equivalent behavior. óScenario Generatorô

mechanically generates input sequences for FBD, C,

and Verilog programs. (Fig.8) depicts screen dump

of óScenario Generatorô and a single scenario.

Scenarios are able to be fully random or take

several constraints, e.g., initial value, rate of change

and maximum/minimum values.

óFBD Simulator,ô which we developed, performs

simulation of FBD programs automatically. The

simulation executes tons of scenarios in a way of

batch processing. We performed the simulation of

the two FBD programs with 1000 scenarios for

each. The scenarios are automatically generated

Figure 6 The result of the translation from FBD into

Verilog
Figure 7 óFBD Simulatorô and simulation results

Junbeom Yoo, Eui-Sub Kim, Dong Ah Lee, and Jong-Gyun Choi

6 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014

using óScenario Generatorô under some constraints

about the logic. (Fig.9) shows the screen dump of

óFBD simulatorô and a part of simulation results in

text.

óC Simulatorô performs simulation of C programs

automatically. It simulates compiled executable

code not C programs just as it is. We compiled the

transformed C programs using GCC compiler and

simulated them using óC Simulator.ô The simulator

takes exactly the same scenario files that óFBD

Simulatorô does. The simulation, therefore, also

executed 1000 scenario and generated results also

in text. (Fig.10) shows the screen dump of óC

simulatorô and a part of simulation results.

(Fig.11) is a screen-dump of the tool, óFBD & C

Comparator,ô to compare the simulation results of

the two programs, FBD and C, with the same

scenarios. It read a number of simulation results

executed óFBD Simulatorô and óC Simulator,ô and

compares them. The comparison makes results in

True (sequentially equivalent) or False (sequentially

NOT equivalent). If all simulation results are

sequentially equivalent then it will make a graph of

the last comparison result. On the other hand, if

there is a simulation result which is not equivalent

then the simulator will make a graph of it. We

performed simulations with 1000 scenario for each

and found that the all simulation results are

sequentially equivalent.

Figure 10 A screen dump of óFBD & C Comparatorô

Figure 8 óFBD Simulatorô and simulation results

Figure 9 óC Simulatorô and simulation results

An Integrated Software Development Framework for PLC & FPGA based Digital I&Cs

 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 7

7

We also validated sequential equivalent between

FBD and Verilog. We used the ModelSim, which is

a simulator developed by Mentor Graphics, to

simulate Verilog programs. Simulation of Verilog

programs, however, takes a different form of input

scenarios called a test bench. óScenario Generatorô

also provides test benches, which is the same input

scenarios that óFBD Simulatorô and óC Simulatorô

takes, for ModelSim. Naturally, we performed the

simulation of the two Verilog programs with 1000

scenarios. The simulator provides the simulation

results in wave and text forms. (Fig.12) shows an

example of the simulation results in the two

different forms.

óFBD & Verilog Comparator,ô which was

developed for automatic comparison, takes the two

simulation results from óFBD Simulatorô and

ModelSim. It also produces True or False whether

the two are sequentially equivalent or not likewise

óFBD & C Comparator.ô (Fig.13) is a screen-dump

of óFBD & Verilog Comparatorô and comparison

results. The results of the 1000 comparisons with

the 1000 input scenarios were True.

4 Conclusion and Future Work

This paper introduced óNuDE 2.0ô, which is an

integrated software development framework for

two kinds of digital I&C platform, PLC and

FPGA. óNuDE 2.0ô includes various CASE tools

not only for software development but also

language translation, translation validation, etc.

We performed a case study with two logics in a

preliminary version of an FBD program in order

to demonstrate the sequential equivalence

between two programs - FBD and C; FBD and

Verilog.

We are now planning to increase confidence and

thoroughness of the process to implement FPGA

from Verilog. Various techniques, such as formal

verification, simulation, testing, etc., are in

consideration to validate equivalence between

development steps or to evaluate suitability of

Figure 11 Verilog simulation using ModelSim

Figure 12 A screen dump of óFBD & Verilog

Comparatorô

