An Integrated Software Development Framework
for PLC & FPGA based Digital 1&Cs

Junbeom Yod, Eui-Sub Kim?, Dong Ah Leé€, and Jong-Gyun Choi*

1. Computer Science and Enginering Konkultniveristy Republic of Koredjbyoo@konkuk.ac.Kr
2. Computer Science and Enginering Konkuk Univeristy Republic of Kofatang34@kakuk.ac.kr)
3. Computer Science and Enginering Konkuk Univeristy Republic of Koftalove @konkuk.ac.Kr
4. MMIS Lab. KoreaAtomic Energy Research InstitutRepublic of Korea(choijg@kaeri.re.kr)

Abstract: NUDE 2.0(Nuclear Development Environment) is a mebaked software development
environment for safetycritical digital systems in nuclear power plants. It makes podsilnlevelop
PLC-based systems as well as FR8#sed systems simultaneously from the same requirement or
design specifications. The case study showed thalNthgE 2.0can be adopted as an effective
method of bridging the gap between the existing PLC acdrapmg FPGAbased developments as

well as a means of gaining diversity.

Keyword: software development, PLC, FPGA, nuclear power plants

1 Introduction

A safetygrade PLC (Programmable Logic
Controller) has been used as an implementation
platform of safetycritical digital systems in
nuclear power plants, such as RPS (Reactor
Protection System) and ESFCS (Engineered
Safety Feature€omponents Control System).
While complexity of newly developed systems
and maintenance cost dhe old ones have
increased rapidly, alternative platforms for the
PLC are widely being researchedeTlsolution of
[1,2.3] proposes to use FPGA
(Field-Programmable Gate Array), which can
provide powerful computation with lower
hardware cost.

The platform change from PLC to FPGA,
however,s notsostraightforwardlt givesriseto

a paradigmshift from the CPUbased software
development to FPGahased hardware
development.All PLC software engineersin
nuclear domain should give up all experience,
knowledge and practices accumulated over
decades, and start a new FR8#sed hardware
development from thescratch. The platform
changemay resultin potentialcausedeading to
safetyrelated problems. It is now strongly
required to transit to the new development
approach safely and seamlessly.

The loss and potential risk can be reduced if we
can use the req@ments and design
specifications of the PLBased systems as those
of the FPGAbased systems, since the
specifications are the fruit of the statbthe-art
PLC-based systems. ThBIUDE 2.0 (Nuclear
Development Environment) [8,6] makes us
possibleto dewelop the software systemsf the
PLC and FPGA platforms simultaneously from
the samerequirements odesign specifications.
The &BDtoVerilog 2.0/2.t translator [7], in
particular, can translatean FBD programof a
PLC-basedRPS into a behaviorally equivalent
Verilog program of FPGA platform which is the
starting point of the mechanical FPGA synthesis
process. We expect that the NuDE 2.0 can reduce
the semantic gap between the Ph&sed and
FPGAbased developmentsi.g., software vs.
hardware) and ab be used as a means of gaining
diversity of software design and implementation.

In order to demonstrate the possibility and
effectiveness of th&luDE 2.0 we performed a
case study with a preliminary FBD program of
the KNICS APR1400 RPS BP [8]. From ¢h
FBD program, C programs for PLC and
Verilog/EDIF programs for FPGA were
synthesized mechanically, and an exhaustive
simulation tried to validate their behavioral
equivalence. The organization of the paper is as

ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 1

Junbeom Yoo, Ex$ub Kim, @ng Ah Lee, and Jor@yun Choi

follows: Section 3 introduces tH¢uDE 2.0and
various supporting toolsaind Section4 explains

the casestudyin details. Section 5 concludes the
paper and provides remarks on future research

extension.

2 NuDE 2.0

The NuDE 2.0 (Nuclear

Environment) is a formal methetased softwar

development environment, specialized for
safetycritical digital systems in nuclear power
plants. It starts from a formal requirements
specification and transforms/synthesizes more

concrete models subsequently acrtsswhole
SDLC (Software DevelopmentLife- Cycle). It

now supports for PLC and FPGA platforms,
seamlessly. It also
encompasses various formal verification and

simultaneously and

safety analysis as well as the MBD (Mo@alsed

Developmentbased code generation.
depicts the whole pross in details, and the

following subsectiondriefly explaineachphase

aroundsupporting tools.

NuSRS

Requirement A
,// i
F NuSCR —— NUSCRtoSMV
/ + s —
Quick i
Ches 1

i Safety onolysis

g ult Tree Analysis |
- ;
NuFTAT .

NuSCRtoFBD

Y _FBD Editor

FBD - FBDtoverilog 1.8 |
+ VIS' & SHV

FBD_FTA

FBOtoC

FBDtoVerilog
2.8/2.1

A

4

C Program

cots Synthesize
compiler

4

Executable
Code

PLC
mercial

Verilog

Nelist
(EDIF)

in Cami in Com
PLC Software Engineering Tools FPGA FPFA Software S;

Development

(Fig.1)

Demonstration

] >,
EDIFtoBLIF-HY 5
+vis' -

7

p
/
,/’
// 3
y

mercial
ynthesis Tools

Figure 1 An overview of theNuDE 2.0framework

2.1 The Requirements Analysis Phase

(Fig.2) is an example of thluSCRspecification
mo d e | eNdSR$ 20NASCR[9] is a dataflow
based requirements specification language,
specialized for the safetyitical systems in the
nuclear domain. The NuSCR modeling
environment, NUSR2.0, includesstatic grammar
checker@uick Checkeba n d NuBERtoSMY
[10] translator to generate the SMV input program
and execute the Cadence SMV model checker [11],
seaml eNsFSFAOY .[1@] al so gener
fault trees for the NuSCR specification
mechanically. The NuSCR formal requirents
specification is then translated into a
behaviorallyequivalent FBD program by
ONuSCRtoFBD [1 3] .

Figure 2 An NuSCR formal specification modeled ir
NuSRS 2.0

2.2The Design Phase

&BD Edito® i n (Fi g. 3)progrdmws t
which is mechanically translated from an NuSCR
specification. We can also model it directly on the

t ool [14] . 6 ExBchtes & mwRBD at or
program with predefined inputs or randomly, while

&BD Tested [15] enables wus to
prograns directly with datdlow based coverage

criteria for FBDs. Formal verification with the VIS
verification system [16] and the SMV model
checker i s al so FBDw¥eslagh!| e t
106 transl ator [17] . The F
include hardwarglependent modifications on the

FBDs, the formal verification are required
additionally. The M8 DE a
Analyzeb [18] t o assi st t he
graphically BBDAFTAS e f@mbDés dlsy
fault tree generation and analysis tool for FBD
programs.

ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014

An Integrated Software Development FramewforkPLC & FPGA lased Digital 1&Cs

The FBD pr ogr amBDnithré | e a acknawletgedethet empirically as correct and safe
be transformedhto differentimplementatiorcodes processes and tools. While the synthesis process
forPLC and FBDROGHO] tramslates FBDs can be formall verified with the compiler
into behaviorally equivalent C programs for PLC, verification techniques [23], [24], it is hard to apply
wh i FBDtoMerilog 2.026 [7] , [2 1] them toahe svdrks oBrdparty developers. It must
FBDs into Verilog programs for FPGA. We are be the most important obstader FPGAs to be
working on the transformation from FBDs into used as a new platform of nuclear 1&C systems. We

VHDL programs. are trying to overcomehe obstacle through the
safety and correctness demonstration technique
— —_— — proposed in [21].

(WS IR TRVIE JE SR e e
.

2.5 Auxiliary Support for the Compiler
Verification

_ The formal verification of compiler, translator and
= =k = synthesizer is an important issue, and should be fully
==t] demonstratedwhenever new PLC compilers or
sl e FPGA synthesis tools are proposed to use to develop
: new safetycritical digital systemsn nuclearpower
Figue3An examp | e F B BBDEditorg r plants.These are typically developed by Jrdrties,
and we have no information to perform thedigpth
andysis on them with typical compiler verification
2.3 The PLC Implementation Phase techniques. We have proposed an indirect
The C programs transformed by the 6 FOBoCOocan demonstration technique [21], which uses the VIS
be compled into exeautable codes for a specific equivalence checking and (HW/SW)-sionulation
target PLC. Most commercial software engineeing [25]. It is our current omgoing research issue.
tods, however, trandates BDs into equivalent C
and exeautable oodes subsequently, and also
downloads them into specific target PLCs Most 3 Case Study
PLC vendors typically use COTS (Commercial
Off-the-Shelf) software such as 6TMS32@C55x ©f
Texas Instruments for the C compilers. The COTS
complerswere well verified and cetified enoudh to
be used withou additional verification effort.
However, the vendar-provided aitomatic translators
from FBD to C shoud demorstrate its functional
safety and correciness rigorously, aswe propaedin

W

We performed a case study with a preliminary
version of FBD programs [8] of the KNICS
APR-1400 RPS BPRstarting fom the FBDprogram
the NuDE 2.0seamlessly transformed the C and
Verilog programs for the PLC and FPGA platforms,
respectively(Fig.4) depictsan overview of the case
study we performed.

[22] ' FBDEditor
FBDSimulator Simulation
2.4The FPGA Implementation Phase FoD : @
T Scenario —

Generator FBD&C

Comparator !

t h Mgielsim f

The Verilog program translated iyF BDt o Ve r ésothc@mml
2.0/ 2.106 is the satutemated n :

FPGA synthesis procedupeovidedby commercial |
tools. On the other hand, nuclear regulation e FPGA Implementation Fgg’m&pgf;;ggj
authorities require more consideratemonstration | C Simulatr @
of the correctness and even safety of the ————— seenene

mechanical synthesis processes of FPGA synthesil*:igUIre 4 An overview of the casatudy

tools, even if the FPGA industry have

Simulation
Result

‘ C Program | ‘ Verilog

ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 3

Junbeom Yoo, Ex$ub Kim, @ng Ah Lee, and Jor@yun Choi

We also performed an exhaustive simulation of the3.1The PLC Implementation
two implementation programs in order to validate &BDtoCd mec hani cal ly transfo
the transformation We have develogd a inoCprograms to i mplement P
co-simulator which can execute C and Verilog transformed thetwo FBD programs into C
programs simultaneouslyand confirm their pr ogr a ms FBBtACnagenetated 5 éles
sequential equivalence as [26]. one is a header file and the others areo@efiles.

The header file defines basic information, suclh as
The preliminary FBD programs are two of 18 data structure or interfaces. The four C code files,
independent logics of the RPS BP, which read sensoFunction_Block.c Component_FBD.c System_FBD.c
inputs and decideshutdown of the reactor and Software FBD.¢ are hierarchicél organizd.
periodically. The two are fixed sepoint logics; Function_Block.dncludes basic functionsush as
one is a risingrip logic; and the other is a falling addition or selection, anBoftware_FBD.c includes
one. (Fig.5) shows a partial FBD program of the top functions which implement operatioriahction
rising trip Ilogic, wh i tohthei PAC. (Big@6 regresents the gransiognmedd F B D
Editor. 6 The <case st ud yfixed eetpfod rnmhs rtirsda mgyl attriiopn |forgoi
the FBD programs into C programs and Verilog transformed files are meaningful in the exaenpit
pr ogr am&EBDW®i dadgriBDtoVerilog2.06 depend®n the structure of the FBD program.
respectively. After the translation, we simulate the It is necessary for execution to compile the
programs using simulatasFBD simulator, C transformedprogram. GNU Compiler Collection
simulator, and ModelSilhto demonstrate (GCC) is one of the mogtopular compiles for C
sequential equivalence between the programs. Th@rograms. We used the GCC compilef the
simulations have to take the same input sequence ttransformed C programs
confirm the equivalence. The data formats, however,
are different because language and simulator are Function_Block.c y | s emmaee oo
difference.@cenarioGeneratod gener at es Vi It U g smomesms, wm
input data of sensors ithree different formats for 7C files
FBD simulator, Csimulator and ModelSim. Two e Lo

(4] Function Blocke « |

return INO - IN1:;

{
¥
bool GE_INT(int INO , int INI1)
{
return (INO >= IN1)? true : false;
+

comm r atkRBD & C Camparatod afBD & 3 e €.
Verilog Comparatoy 6 compare th{a== |mul a [
results which are output sequences of the each Baol D B0SL (oot THO , beo TX1)
pr‘og ram : return INO & IN1;

¥ System_FBD.c

#include "Header FBD.n"

extern Struct_FIX_RISING struct_FIX RISING:

Struct_FIX_RISING FIX_RISING(int PV_OUT, bool RNG E, bool MDL E, bool AT_E, bool OB_INIT_STA)

/ ear Local wariables #/
int HYS — , PHYS — , RNG_MIN — , RNG_MAX — , MBXCNT — 107
bool TRUE = 1, FALSE = 0

.......

nsla s
To_9 = GE_INT(PV_OUT, struct_FIX_RISING.TSP):
to_31 = AND_BCOL(to_8, !struct FIX RISING.TRIP_LCGIC)

E..
to_79 = AND_BOOL(to_28, to_29):
to_64 — SEL BOOL(to_39, to_57, FALSE);
to_61 = OR_BOOL(lto_79, MDL E, AT_E, to_64):
struct_FIX RISING.TRIP = AND_BOOL(to_61, !0B_INIT_STA):
struct_FIX_RISING.TRIP_LOGIC = AND_BOCL(to_61, !OB_INIT_STA):
ruct_FTX_RISING.TRIP_CNT = SEL_INT(to_31, 0, to_42):

return struct_FIX_RISING;
¥

Al Figure 5 The result of the translation from FBD into
S W o C

Figure4A part of 't he F BDpoipt

rising tripéo

3.2 The FPGA Implementation

4 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014

An Integrated Software Development FramewforkPLC & FPGA lased Digital 1&Cs

&BDtoVerilog 2.06 i s gimulationeohFBD progmams; stéghsimaldtion of h e
translated Verilog program needs pteanslated C programs; ste8) comparison of results of the
library modules, while &BDt oVer i | otgo sirdulatiods from stepl and stef2. The
translates all elements <#hefly. We used validation of FBD versus Verilogs a similar
&BDtoVerilog 2.060 wi t hmethod &frilog iprograms take the seaohde step
developed byexperts in KAERI for the case study. instead of C programs.
Using the library moduleblelps the translator only
focuses on the translation about tper o g r a Iis éssential that pairs of the programs have to take
interfaceand block6 connecti ons . the sameinput sequencesto validate if they

performe qui val ent beG@Garwermat o roc
(Figghshows transl| at i opointr ermeghanicallp dgenetateseanpub sequences fertFBD, C,
risingt rip l ogicd wusing t &and Verioof praytamsV @ig.8) ldapigts s@eerd durdp
Module callstatements, which refer modules in the o f 6Scenario Generator 6 a
library, are at themiddle of the transformed code, Scenariosare able to be fully random or take
such as statements start wWitBE_INT_2 and several constraints, e.g., initial value, ratelvdnge
LT_INT_2. The pulse signal is a unigieature to and maximum/minimum values.
copy cyclic execution behavior of FBD programs. 6 FBD Si mul at or, 6 which we
Verilog programs wait to store and read values ofsimulation of FBD programs automatically. The
former execution result as input values simulation executes tons of scenarin a way of

synchronizing with the pulssignals. batch processing. We performed the simulation of
the two FBD programs with 1006cenarios for
3.3The Equivalence Validation each. The scenarios are automatically generated

We validated the behavioral equivalence between

FBD versus C and FBDversus Verilog using
T ———— |

simulation. It consistsof three steps for the * Scenario Generator *
. . Model input ansole
Valldatlon Of FBD versus C programstepl) Input P {DeskopiOrginal EXFIXC RISING-TRIPFIX RISING TRP xmil [Open | 4236 et P BIOHG-TRIP i
| Generation Start
POU List Generation OK
Generation Start
© FIX_RISNG Generation OK
module FIX RISING (zst, clk, pulse, F¥_OUT, RNG E, MDL E, AI E, input Variable List
©0B_INIT_STA, TSP, TRIP_CNT, TRIF_LOGIC, TRIF): Scenaic name e nifalValue _ Rate
1 PV_ouT mr 27800 [100
input clk: 1 RNG_E BoOL o o
input rst; 1 WDLE BOOL 0 lo
. 1 HE BOOL o [o
input OB_INIT_STA; 1 OB_INIT_STA BOOL o o
output [15:0] TSP: reg [15:0] TSE:
output [15:0] TRIP_CNT; reg [15:0] TRIE_CNT: o 160
. Num 0
parameter [15:0] MEXCNT = e e
wire GE_INT 2_wire 8 OUT:
wire GE_INT 2_wire 10_OUT: Scenario Generator
wire LT_IN ¥
wire LT_INT 2_wire 28_OUT:
wire LT_INT_2_wire_29_OUT;
wire [15:0] SEL_INT_2_wire_63_OUT;
wire SEL_BOOL_2_wire_64_OUT;
wire [15:0] SEL_INT_2_wire_65_OUT;

wire AND_BOOL_2 wire_71_OUT:
wire AND_BOOL_2 wire_79_OUT:

GE_INT_2 GE_INT_2_9(rst, clk, BV _OUT, TSP, GE_INT_2 wire 9_OUT):
2 GE_INT_2_10(rst, clk, SEL INT 2 wire 63 OUT, MAXCNT, GE INT 2 wire_10 OUT);

2 LT INT 2 , BV_CUT, SEL_INT 2 _wire $8_OUT, LT_INT 2 wire 12 CUT):
ouT) ;

2 LT INT_2_28(rst, clk, RNG MIN, PV _OUT, LT_INT 2 _wire 28 (

2 LT_INT 2 29(zst, clk, FV_OUT, RNG MAX, LT INT 2 wire 29 OUT):
assign TRIF = AND_BOOL_2_wire 71 _OUT;

always @(posedge st or posedge clk or posedge pulse)
begin
if(rst) begin
TSP <= ;
TRIP_CNT <= 0
TRIP_LOGIC <= 0;
end else if (clk) begin
end
if (pulse) begin
TSP <= SEL_INT_2_wire_65_OUT;
TRIP_LOGIC <= AND_BCOL_2_wire_71_OUT:
TRIP_CNT <= SEL_INT_2_wire_63_OUT:

end

end

enamodnle Scenario
Figure 6 The result of the translation from FBD into Figuue7¢F BD Si mul ator &6 and
Verilog

ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 5

Junbeom Yoo, Ex$ub Kim, @ng Ah Lee, and Jor@yun Choi

usingd@cenario Generatdr under s ome
% Simulation 7__ 75] :A
* Massive Simulation *
Model input console

InputFile : |ub\Desktop\Original EXVFIX-RISING-TRIPFIX-RISING-TRIP.xml | Open

Model Input : FIX-RISII|
Selection : FIX_RISING
Simulation Start

| POU List

®) FIX_RISING

| Simulation

Model File w\DeEk‘tnp\OriginalEX\F\X-RIS\NG—TR\P\F\X—R\S\NG—TR\F’xml Open
Senario File . \Desktop\Original EX\FIX-RISING-TRIP\Scenario\Scenario.bd| Open

Simulation

Simulation result & &

C:Users\Sub\Desktoy]

<« [m »

Massive Simulator for FBD [rmeeio s

Bcenario_1_0
pnd

utputs begin

[SP TRIP TRIP_CNT TRIP_LOGIC
pnd
Feedback begin
s TRZE‘_CHT TRIE’_:OGI:
pnd
Result begin
g7870 0 0
0 0]
. . 1] 1 U]
FBD Simulation Result > 0oz o
o - 3 o
0 4 o
0 s o
] 13 o
] 7]
7] 8 o
787 0 9 0
757 1 10 1
757 1 0 1
757 1 0 1
57 1 o 1
nd
Figue8&BD Si mul ator 6 and
(& Simulation =)
* C Simulator * ‘
FBD input console

Input File : |CWsers\Sub\Deskiop\Original EXWFD-RISING-TRIPWIX-RISING-TRIP xml Open

Scenario input
Input File : |C:\Users\Sub\Desitop\Original EXFIX-RISING-TRIP\Scenario l“‘ Open
C files input

Software_FBD: sktop\Original EX¥FIX-RISING-TRIP\Software_FBD.(] Open

System_FBD: |rs\S dop\Original EXFIX-RISING-TRIP\System_FBD.c Open

Model Input : FIX-RISH
o Input - Scend

Component_FBD : [1b\Deskop\Oniginal EXFIX-RISING-TRIP\Component_FBD.c| Open
o Simulation OK
Function_Biock : \Sub' pIOriginal EXWIX-RISING-TRIP\Functiol lock Open
Header_FBD: rs\S top\Original EXFIX-RISING-TRIP\Header_FBD.h| Open
Simulation: |sers\Sub\Deskiop\Original EXFIX-RISING-TRIP\Simulation.c| | Generation
Simulation
B
C Simulator

C Simulation Result >

7570
End

Figure96 C Si mu | airhutatiod results d

alooot the togica (Fig.9) shows the screen dump of

@&BD simulatob and a part of si mi
text.
& Simulatob per forms simul ati or

automatically. It simulates compiled executable

code not C programs just asst We compiled the
transformed C programs using GCC compiler and
simul at ed CtShmelator @s iTmg & i mu l
takes exactly the &BDme sc
Simulatod does. The simul ati o
executed 1000 scenario and generated tesiso

in text (Fig. 10) s ICows t
simulato® and a part of simul at
& simulation T

* FBD & C Simulation Comparator *

Open | [NOT Okm -
scenario_name =
output_name =TS

InputFile : | C:\WUsers\Sub\Deskiop\Original EXFIX-RISING-TRIP\FBD-ResultResult bt

Simulation Resuit (C)

cycle =0
Input File : |C:\Users\Sub\Deskiop\Original EXWFIX-RISING-TRIP\C-fileiResult tt Open | |noT oK
scenario_name=: _
Comparator | Cancel it nama — TS

TSP M TRIP M TRIP_CNT W TRIP_LOGIC

FBD Graph C Graph
10 1 10 r
9 . 9 L]
B8 . 8 .
. 7 +
6 . 6]
5 ® 51 L]
4] 4 .
3 . 3]
2 . 2 ‘.
1 e 1 *
0]
- Cycle - - Cycle-

Figure 10A

= TRIP - TRIP_CNT + TRIP_LOGIC

screen dump of OF

(Fig.1l) isascreedump of FBD&Ct ool
Comparator 6 t o c¢ oimpaton eesultstofe s
the two programsfFBD and C, with the same
scenarios. It read a number of simulation results

e x e ¢ (FBeSimulatod a@ 8imufator 6 and
compares them. The comparison makes results in
True (sequentially equivalent) or Falsequentially
NOT equivalent). If all simulation results are
sequentially equivalent then it will make a graph of
the last comparison result. On the other hand, if
there is a simulation result which is not equivalent
then the simulator will make a graph @f We
performed simulations with 1000 scenario for each
and found that the all simulation results are

sequentially equivalent.

6 ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014

An Integrated Software Development FramewforkPLC & FPGA lased Digital 1&Cs

We also validated sequential equivalentwsen simulation re ul t s FBD &imulatdd and
FBD and Verilog. We usethe ModelSim,which is ModelSim. It also produces True or False whether

a simulator developed by Mentdéraphics, to the two are sequentially equivalent or not likewise
simulate Verilog programs. Simulation of Verilog &BD & C Comparator 6 (Fi g. 1-@ump i s a
programs, however, takes a different form of inputo f FB® & Verilog Comparatod and compar
scenari os ¢ alScenatio Genetatds t resblts. Mioehresults of the 1000 comparisons with

also provides test benches, which is the same inputhe 1000 input scenias were True.

scenarios thaFBD Simulato6 a @ Simulatob

takes, forModelSim Naturally, we performed the

simulation of the two Verilog programs with 1000

scenarios. The simulator provides the simulation

results in wave and text forms. (Fig.12) shows an

example of the simulation results in the two

different forms.

Figure 12 A screen dump of
Comparator b

Verilog Simulation Result (Wave)

JL

4 Conclusion and Future Work

This paper introduced ONucL
integrated software development framework for

two kinds of digital 1&C platform, PLC and
FPGA. ONuUDE 2.06 includes
not only for software development but also
language translation, translation validation, etc.

We performed a case study with two logics in a
preliminary version of an FBD program in order

to demonstrate the sequential equivalence
between two programsFBD and C; FBD and

Verilog.

2 : e We are nowplanningto increase confidence and
Verlog Simulation Resut (Test) thorougmess of the process to implement FPGA
Figure 11 Verilog simulation using ModelSim from Verilog. Various techniques, cu as formal
verification, simuation, testing, etc., are in
&BD & \Verilog Comparator 6 w hvasc h consideration to validate equivalence between
developed for autoatic comparison, takes the two development steps or to evaluate suitability of

ISOFIC/ISSNP 2014, Jeju, Korea, August 24~28, 2014 7

