
A BEHAVIOR-PRESERVING TRANSLATION FROM FBD
DESIGN TO C IMPLEMENTATION FOR REACTOR
PROTECTION SYSTEM SOFTWARE

JUNBEOM YOO1*, EUI-SUB KIM1, and JANG-SOO LEE2

1 Konkuk University, Division of Computer Science and Engineering
1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea

2 Korea Atomic Energy Research Institute, Man-Machine Interface System Team
989-111 Deadeok-daero Yuseong-gu, Daejeon, 305-353, Republic of Korea

*Corresponding author. E-mail : jbyoo@konkuk.ac.kr

Received November 30, 2012
Accepted for Publication February 12, 2013

1. INTRODUCTION

Safety [1] is an important property for nuclear power
plants in order to obtain permission from government au-
thorities for their operation and possible export of power
plant construction technology. As the nuclear reactor protec-
tion system (RPS) makes decisions for emergent reactor
shutdown, RPS software should be verified throughout the
entire software development life cycle (SDLC). Recent
commercial digital I&Cs (Instrumentation & Controls) use
a safe-level PLC (Programmable Logic Controller) as a
common hardware platform for RPS, e.g., Shin Ulchin 1/2
NPPs in Korea. The RPS software is first modeled with IEC-
61131-3 FBD (Function Block Diagram) [2] in the design
phase. In implementation, the FBD programs are translated
into C programs and then compiled into executable machine
code for RPS hardware - PLC. Compiler expert companies
typically provide C compilers in which functional correctness
is thoroughly verified and demonstrated. Translators from
FBDs to C programs are usually developed by PLC vendors.
They should sufficiently demonstrate correctness and func-
tional safety [3] of the so-called 'FBD-to-C' translator.

Vendors such as AREVA1, invensys2 and POSCO ICT3

have provided PLCs and software engineering tool-sets.
'SPACE' [4] is a software engineering tool-set for AREVA's

PLC 'TELEPERM XS' [5]. It stores FBD programs into a
database 'INGRES' and generates ANSI C programs for
code-based testing and simulation ('TXS SIVAT' [6]). ISTec
GmbH4 has also developed a reverse engineering tool
'RETRANS' [7] for checking the consistency between FBD
programs and generated C programs. The mechanical
translator in 'SPACE' has been validated in such ways, and
the software engineering tool-sets have been used success-
fully for more than a decade. It is worth noting that 'SPACE'
does not use a common C translator for 'RETRANS' and
executable PLC code generation. ('TXS SIVAT' uses two
ones for different use.) PLCs of invensys have also been
widely used. 'TriStation 1131' [8] is its software engineering
tool-set. It provides enhanced emulation-based testing and
real-time simulation of FBDs, but does not include a trans-
lator into C programs.

KNICS (Korea Nuclear Instrumentation and Control
System R&D Center) project [9] and POSCO ICT in Korea
have recently developed a safety-level PLC 'POSAFE-Q'

Software safety for nuclear reactor protection systems (RPSs) is the most important requirement for the obtainment of
permission for operation and export from government authorities, which is why it should be managed with well-experienced
software development processes. The RPS software is typically modeled with function block diagrams (FBDs) in the design
phase, and then mechanically translated into C programs in the implementation phase, which is finally compiled into
executable machine codes and loaded on RPS hardware - PLC (Programmable Logic Controller). Whereas C Compilers are
fully-verified COTS (Commercial Off-The-Shelf) software, translators from FBDs to C programs are provided by PLC
vendors. Long-term experience, experiments and simulations have validated their correctness and function safety. This paper
proposes a behavior-preserving translation from FBD design to C implementation for RPS software. It includes two sets of
translation algorithms and rules as well as a prototype translator. We used an example of RPS software in a Korean nuclear
power plant to demonstrate the correctness and effectiveness of the proposed translation.
KEYWORDS : Behavior-Preserving Translation, Programmable Logic Controller, Translator, Function Block Diagram, C Program

489NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

http://dx.doi.org/10.5516/NET.04.2012.085

1 AREVA (http://www.areva.com)
2 invensys (http://iom.invensys.com)
3 PONU Tech (http://www.ponu-tech.co.kr) for PLC segment was

split from POSCO ICT (http://www.poscoict.co.kr)
4 ISTec GmbH (http://www.istec.de)

and its software engineering tool-set 'pSET' [10]. The tool-
set provides a graphical editor for FBD and LD (Ladder
Diagram) programming languages [2], and also automati-
cally generates the ANSI C program. However, sufficient
demonstration of the correctness and functional safety of
the so-called 'FBD-to-C' translator is still in progress as it
is considered to be one of the most critical obstacles that
must overcome in order to obtain permission for the export
of the new Korean nuclear power plant [11] as a whole, i.e.,
including control software - I&C (Instrumentation & Control).

This paper presents a technique for the development
of an 'FBD-to-C' translator, guaranteeing their fundamental
behavioral equivalence without the aid of simulation and
testing techniques. We propose two sets of algorithms and
rules, which translate FBDs in the design phase into ANSI
C programs in the implementation phase. The proposed
translations use only a restricted subset of C programming
language and do not need a full-scale verification, typically
used in the discipline of programming [12]. We also imple-
mented a prototype of the 'FBD-to-C' translator and per-
formed a case study with an example of RPS recently
developed in Korea. It is not the final version of the RPS
software, against which government authorities have been
evaluating for years, but a preliminary one developed for
the purpose of diversity and prototyping. We generated
FBD programs mechanically from formal requirement
specifications [13,14] as explained in [15]. The example,
however, is sufficient to demonstrate that the proposed
translation techniques work on all types of shutdown logics
to which the RPS should give consideration.

The paper is organized as follows: Section 2 gives an
introduction to a typical development process for RPS
software and several techniques for validating 'FBD-to-C'
translators. We focus on AREVA, France and POSCO ICT,
Korea. In section 3, we briefly introduce formal definitions
of FBDs, which are pertinent to our discussion. Section 4

explains translation algorithms and rules from FBDs into
a subset of ANSI C programs. In order to aid understanding,
we explain the rules with an example, a basic shutdown
logic; 'fixed set-point rising trip.' Section 5 presents the
result of the case study, encompassing all shutdown logics
of a preliminary version of Korean APR-1400 RPS. It also
demonstrates that our translation can apply to all logics of
RPSs efficiently and sufficiently. Finally, Section 6 con-
cludes the paper and provides remarks on future research
extension and direction.

2. THE RPS SOFTWARE DEVELOPMENT
PROCESS

RPS (Reactor Protection System) is a real-time embed-
ded system, implemented on the hardware - PLC (Program-
mable Logic Controller). The RPS software is designed in
FBD/LD languages and then translated into C programs
which will be compiled and loaded on PLCs. Fig.1 ex-
plains a typical software development process for RPSs
as well as the techniques used for validating the 'FBD-to-
C' translator.

The upper part describes a typical software development
process as a waterfall model [16]. The SRS (Software
Requirements Specification) is written in natural languages
or formal specification languages [15,17,18]. Experts on
PLC programming languages then translate the requirement
specifications manually into design models programmed
in FBD or LD. PLC vendors provide their own automatic
translators from FBD/LD programs into ANSI C programs,
while typically using COTS (Commercial Off-the-Shelf)
software such as 'TMS320C55x' of Texas Instruments [19]
for C compilers. The COTS compilers were well verified
and sufficiently certified to be used for implementing the
RPS software without additional effort.

490 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Fig. 1. A Software Development Process for RPS

491NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

The lower part of the figure shows V&V (Verification
and Validation) techniques which have been used to dem-
onstrate the correctness and functional safety of the 'Auto-
matic Translator.' The 'TXS SIVAT' [6] from AREVA's
'TELEPERM XS' is an example of the C code-based simu-
lation technique, while the 'RETRANS' [7] is that of the bi-
simulation technique. Structural testing techniques with
coverage criteria [20] can also be applied into the auto-
matically translated C programs. The KNICS project also
used the tool 'IBM Rational Rhapsody' [21] to mechanically
generate test cases from UML models. Equivalence check-
ing is a verification technique recently proposed by our
research team [22]. It uses a model checker HW-CBMC [23],
which reads a Verilog program and an ANSI C program
and thoroughly checks their behavioral equivalence [24].
These various techniques spanning from simulation and
testing to formal verification all have been used to guarantee
the correct functioning of the PLC vendor-specific 'Auto-
matic Translator,' i.e., the 'FBD-to-C' translator. This paper
proposes to use a well-verified translator from FBD to C.
It can solve the fundamental consistency problem between

the FBD and C programs, since the FBDtoC translator
can guarantee their behavioral consistency from the view-
point of transformation theory.

3. FUNCTION BLOCK DIAGRAM

3.1 Overview
An FBD (Function Block Diagram) consists of an

arbitrary number of function blocks, 'wired' together in a
manner similar to a circuit diagram. The international
standard IEC 61131-3 [2] defined 10 categories and all
corresponding function blocks. Fig.2 illustrates 5 basic
categories. For example, the function block ADD performs
the arithmetic addition of n+1 for IN values and stores
the result in the OUT variable. Others are interpreted in a
similar way.

A part of preliminary FBD programs for the KNICS
RPS BP (Bistable Processor) can be found in Fig.3. It
was developed by domain experts from a formal
requirements specification [13], and this paper uses the

Fig. 2. Function Blocks and Categories Defined in IEC 61131-3

Fig. 3. An FBD for th_X_Pretrip Logic, Developed by Domain Experts Manually

FBD as an example throughout the paper in order to remain
consistent with our former research work and aid under-
standing. It creates a signal 'th_X_Pretrip' when a trip condi-
tion remains true for k_Trip_Delay time units as imple-
mented with the TOF function block. It is a warning signal
fired before the real one (i.e., th_X_Trip). The number in
parenthesis above each function block denotes its execution
order. Therefore, GE_INT numbered (12) is the first func-
tion block executed, while MOVE numbered (18) is the
last one. The output th_Prev_X_Pretrip from MOVE stores
the current value of th_X_Pretrip to use at the next execution
cycle. A large number of FBDs similar to Fig.3 are as-
sembled hierarchically and executed according to a prede-
fined sequential execution order. The following subsection
formally defines FBDs to aid in developing translation
algorithms and rules from FBDs to C programs in Section 4.

3.2 Formal Definition of FBDs
This subsection formally defines FBDs in accordance

with the guide of denotational/operational semantics [25]
of programming languages, of which more details can be
found in [26]. We define the FBD programming language
as a state transition system consisting of sub-components
including basic blocks in a bottom-up manner, since an
FBD is a network of function blocks sequentially executed.

A Function Block is defined as a tuple composed of
a name Name, input ports IP, output ports OP and its be-
havior description BD, as defined below. It is a basic unit
for defining more complex blocks. A function block FB
is defined [25] as a function fFB from input values IFB to
output values OFB, fFB: IFB → OFB.

Definition 1 (Function Block) A function block is defined
as a tuple FB = < Name, IP, OP, BD >, where

• Name : a name of function block
• IP : a set of input ports
• OP : a set of output ports, usually one

• BD : behavioral description ∑(pFB, aFB), where
- pFB : a predicate on IP
- aFB : assignments on OP

Fig.4 shows definitions of ADD, SEL and TOF
function blocks. We do not restrict the form of predicates
and assignments on ports in BD. In case of the TOF timer
function block, we used the TTS (Timed Transition System)
[27] description, but any other formalisms such as Boolean
expression, propositional logic and timed automata [28]
may be used. Timer function blocks such as TOF and TON
require internal storage for calculating elapsed times, and
the TTS description can express it implicitly. It, however,
will be defined explicitly with a local clock (internal timer)
when defining a whole software system. When developing
the translator from FBD to C, TOF and TON will use C
library functions to get current time and do synchronized
operations.

A Component FBD is a logically interconnected set
of function blocks, showing an independent logical func-
tionality. The so-called 'user-defined function block' in the
PLC industry corresponds to the component FBD. There
is no strict rule for dividing FBDs into smaller elements.
We should depend on our own experience, and the trans-
lation rules and algorithm can be coped with any dividing
schemes. In case of the KNICS APR-1400 RPS BP, each
shutdown logic (about 20 in total) can correspond to a
component FBD. A component FBD is defined as a tuple
composed of 4 elements: a set of function block FBs, a
set of transitions T between the function blocks, a set of
input ports I and a set of output ports O. Inputs to a com-
ponent FBD, VComp_FBD-I come from other component FBDs
or system input variables. VComp_FBD-O denotes a set of output
variables outgoing from the component FBD. The FBD
depicted in Fig.3 models a fixed set-point pretrip logic
for th_X_ Pretrip output, and the definition below regards
it as a component FBD.

492 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Fig. 4. Definitions of ADD, SEL, TOF Function Blocks

Definition 2 (Component FBD) A component FBD is
defined as a tuple Component_FBD = < FBs, T, I, O >,
where

• FBs : a set of function blocks FBs
• T :

- a set of transition (FBi.OPm, FBj.IPn) between
function block FBi and FBj in FBs (provided
that i ≠ j, and FBj.IPn means the n-th input
port of function block FBj)

- (FBi.OPm, FBj.IPn)∈ T, FBi has a sequential
execution precedence on FBj

• I : a set of input ports FB.IP, which do not appear
in T and are assigned by Vcomp_FBD-I

• O : a set of output ports FB.OP, which do not ap-
pear in T and are assigned by Vcomp_FBD-O

Behavior of a component FBD is defined as a function
from a set of input variables to output variables of the
component FBD. Variables in VComp_FBD-I are assigned to
input ports in I, and those in VComp_FBD-O are also assigned
to output ports in O. Suppose that IComp_FBD is a set of input
domains of input variables in VComp_FBD-I and OComp_FBD is
that of VComp_FBD-O, respectively, then the component FBD
is defined as a function: fComponent_FBD: IComp_FBD → OComp_FBD.

A whole software programmed in FBD is structured
with a number of component FBDs and their implicit inter-
connections. A System FBD defines the entire software as
a tuple composed of 4 elements: component FBDs Compo-
nent_FBDs, a set of transitions T between component
FBDs, a set of input ports I, and a set of output ports O as
follows. VSys_FBD-I denotes a set of system input variables,
while VSys_FBD-O denotes a set of system output variables.

Definition 3 (System FBD) A system FBD is defined as
a tuple System_FBD = < Component_FBDs, T, I, O >,
where

- Component_FBDs : a set of component FBDs compo-
nent_FBDs

- T :
- a set of transitions (FBD1.Oi, FBD2.Ij) between

Component FBDs FBD1 and FBD2 in FBDs
(provided that FBD1.Oi is an i-th output port of
FBD1 and FBD2.Ij is a j-th input port of FBD2)

- (FBD1.Oi, FBD2.Ij)∈ T, FBD1 has a sequential
execution precedence on FBD2

- I : a set of FBD's input ports FBD.I, which do not
appear in T and are assigned by VSys_FBD-I

- O : a set of FBD's output ports FBD.O, which do not
appear in T and re assigned by VSys_FBD-O

Similarly, a system FBD is defined as a function from
a set of system input variables VSys_FBD-I to a set of system
output variables VSys_FBD-O. Suppose that ISys_FBD is a set of
input domains of the input variables in VSys_FBD-I, and OSys_FBD

is that of VSys_FBD-O, then the system FBD is defined as a
function: fSystem_FBD: ISys_FBD → OSys_FBD. A whole FBD pro-
gram is now defined as a function from inputs to outputs,
but we need to take into account a couple of factors in order

to define the FBD system precisely.
We finally define the FBD Software System on the

basis of the System FBD. In order to precisely define the
entire behavior, we have to consider the PLC’s system clock
and a number of local clocks for timer function blocks,
since it is real-time embedded software. An FBD Software
System accepts inputs ISys_FBD from the external environment,
performs calculations on them, and emits outputs OSys_FBD

to the environment. Its behavior is the same as the system
FBD. We define the behavior of an FBD software system
with the function fSystem_FBD, and there exists a transition
relation R between system states, corresponding to OSys_FBD

= fSystem_FBD(ISys_FBD). For each time an FBD software system
emits outputs, it changes its internal system states according
to its behavior defined in the system FBD. An FBD software
system operates periodically with system scan cycle time
d. The execution repeats in every time interval d as defined
below.

Definition 4 (FBD Software System) An FBD software
system is defined as a tuple FBD_Software_System = <
S, S0, R, d >, where

- S : a set of system states, σ [VSys_FBD-O-Internal

VTimer]
- VSys_FBD-O-Internal : a set of internal output

variables in VSys_FBD-O

- VTimer : a set of timer function blocks
- S0 : an initial state in S
- R : a set of transition relation S ISys_FBD→ S '

OSys_FBD

- OSys_FBD = fSystem_FBD(ISys_FBD)
- d : a system scan cycle time

The variable th_Prev_X_Pretrip in Fig.3 is an ex-
ample of the VSys_FBD-O-Internal, while th_X_Pretrip belongs
to VSys_FBD-O. It is not a variable in VSys_FBD-O-Internal as it is an
external output outgoing to the environment. It is worth
noting that timer function blocks have numerous internal
states, so the state space of [VTimer] could extend exponen-
tially. To avoid state explosion in formal verification, we
may appropriately abstract the maximum state space of
timer function blocks as introduced in [26]. In case of this
paper, however, the state explosion problem does not matter,
since the C programming language has more expressive
power than the FBD programming language. Besides timer
function blocks, there are several other IEC 61131-3 catego-
ries which have internal states to store information, e.g.,
Bistable and Counter function blocks. They can be defined
and used in a similar manner as the timer function blocks
above.

4. TRANSLATIONS FROM FBD TO C

This paper proposes two ways to translate FBDs into
C programs, i.e., 'forward translation' and 'backward
translation.' The translated C programs are then compiled

493NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

494 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

into executables and loaded on PLC hardware. Fig.5
overviews the translation algorithms in flowchart form.
The two algorithms all start with defining C functions for
all individual function blocks used in the FBD programs.
Two major points make them different from each other.

The one is the direction of calling C functions - forward or
backward against the execution order of function blocks.
The other is whether they use temporary output variables
(TOVs) or not. We explain the backward translation first.

4.1 The Backward Translation
An FBD performs a data flow-based calculation accord-

ing to a predefined execution order of function blocks
consisting of the FBD. As the example of Fig.3, each
function block has its own execution order. GE_INT num-
bered (12) is the function block first executed while MOVE
numbered (18) is the last one. The backward translation
algorithm basically works from the last function block
executed to the one first executed. However, it may result
in poor readability and understandability, since an FBD
is composed of a number of function blocks interconnected
sequentially, hierarchically and compositionally. It, however,
produces more compact C programs than the forward
translation.

4.1.1 Translation of Function Blocks
The rules in Fig.6 define how to translate a function

block into a corresponding C function. For each function
block, a matching C function is defined and called in main
() or higher level functions several times according to its
sequential execution order. The [type] of a function Name
corresponds to the type of output variable in OP. The output
will be returned at the end of the function definition. The
value of the output variable is assigned by the behavioral
description BD in three ways according to their types (i.e.,
arithmetic and logical, selection, and timer operation) as
defined in rules 2 ~ 4, respectively.Fig. 5. An Overview of the FBDtoC Translation Algorithms

Fig. 6. Translation Rules for Function Blocks

The timer operation defined in Rule 4 has more complex
controls than others. Since it generates 0 value of op0 only
if ip0 has the value of 0 for at least ip1 time, it needs internal
variables such as 'timer started' to store the current status
and elapsed time. User defined functions such as 'start timer
()' and 'elapsed time ()' should be defined concretely for
industrial use. The rule above shows only the basic control
flow required.

Fig.7 shows an example translating ADD and SEL
function blocks. We added a type of output (such as INT
for integer) to the function blocks. In practice, PLC software
engineering tools provided by PLC vendors keep different
function blocks for different output types, e.g., ADD_INT
and ADD_BOOL. The number of inputs can also differently
define the same function blocks. For example, ADD_INT_2
indicates the ADD_INT for 2 inputs, while ADD_INT_4
does the same for 4 inputs. Other function blocks which
are not introduced in Fig.2 can be translated into corres-
ponding C functions in a similar manner.

4.1.2 Translation of Component FBDs
Function blocks are composed into a component FBD

according to their sequential execution orders. The FBD
presented in Fig.3 is a simple case of component FBD,
composed of 7 function blocks. A component FBD is trans-
lated into a C function, which calls C functions of basic
function blocks sequentially according to their execution
orders while passing inputs and outputs. The rules in Fig.8
define the translation of component FBDs.

A component FBD has one external output and several
internal outputs, as defined in Section 3. Even if internal
output variables look similar to external outputs, their usage
and purpose are different from external outputs. They are
commonly used to store information and to be used in later
execution cycles. Rule 5 translates internal output variables
into global variables which are defined out of the scope of

the component’s definition, since they are used and called
across multiple executions.

The behavior of a component FBD is defined as the
sequential backward calls of all function blocks as defined
in T. For example, the component FBD in Fig.3 consists of
7 function blocks with 6 transition relations in T. The last
function block executed is the MOVE generating
th_Prev_X_Pretrip, and the first one is GE_INT with two
inputs, i.e., f_X and k_X_Pretrip_Setpoint. The output
from the last function block looks like an external output,
however it is an internal output in this case and defined
separately next to the 'real'’ external output (in this example,
th_X_Pretrip) as explained in rules 6 and 7. In the compo-
nent FBD above, therefore, the last function block executed
for the external output variable is SEL. [26] proposed a
couple of criteria for internal outputs and external outputs,
and we can differentiate them mechanically.

Fig.9 is a translation example for the component
FBD depicted in Fig.3. We assumed that all basic func-
tion blocks consisting of the FBD were defined prior to it.
For convenience, we also defined all constants with ‘#define.’
The FBD’s internal output variable (th_Prev_X_Pretrip)
is defined as a global variable in line 04, and the function
definition corresponding to the external output variable
(th_X_Pretrip) is then followed in line 06. Line 09 defines
the external output variable, and from line 11 to 13 the
value of the external output variable is assigned through
a set of function calls from the last to the first. The definition
for the internal output variable is followed in line 15. The
value of the external output variable is returned in line 17.

4.1.3 Translation of System FBDs
A system FBD is a set of component FBDs connected

according to their sequential execution orders. Translation

495NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Fig. 8. Translation Rules for Component FBDs

Fig. 7. An Example of Function Block Translation for ADD and
SEL

rules for system FBDs are basically the same as those of
component FBDs, but the former is composed of sequential
function calls of component FBDs not individual function
blocks. If the outputs of component FBDs are used as inputs
of other component FBDs, as defined in T, they are called
according to their execution orders in a reverse order. If the
whole software system is structured with only one system
FBD, then the C function for the system FBD corresponds
to the 'main' function of the C program. If a system FBD
has many external outputs, all C functions for other com-
ponent FBDs, which do not produce external outputs of
the system FBD, should be executed according to their
execution orders. Of course, in practice, we may have to
implement the set of external outputs as a 'structure' data
type in C programming language. The translated C program
for a fixed set-point shutdown logic f_LO_SG1_LEVEL_
Ptrp_Out in the Appendix explains the above cases well.
Fig.10 below summarizes the translation rules for system
FBDs.

It is worth noting that the actual translation in practice
may be different from the rules above and the algorithm

in Fig.5. The rules above do not use temporary output
variables, but just call all C functions for component FBDs
backwardly. Our experiment and case study in Section 5,
however, found that in-depth recursive function calls of
the so-called ‘pure’ backward translation makes the C
program almost impossible to read and understand. We
suggest using temporary variables for component FBDs
and input variables for convenience. The translated C pro-
gram in the Appendix shows how difficult it is to understand
the ‘pure’ backward calls.

4.1.4 Correctness of the Backward Translation
Correctness of the proposed translation algorithm and

rules can be proven by showing that the FBD software
system (Definition 4) has the same I/O behavior with the
translated C program for all inputs.

Theorem 1. [Correctness of the Backward Translation]
The FBD software system always shows the same I/O be-
havior with the C program translated in accordance with
the backward translation rules.
Proof. The FBD program and C program have the same
inputs and outputs. For all inputs, they both have the same
procedures for calculating outputs, since the C program
translates all the transition relations defined in T of compo-
nent FBDs and a system FBD, backwardly. Therefore, both
are equivalent and demonstrate the same I/O behavior
through bi-simulation [29].

4.2 The Forward Translation
Forward translation of FBDs into C programs is quite

similar with the backward translation, but uses temporary
output variables (TOVs) additionally. The backward trans-
lation is intuitive to understand since it follows the execution
flow backwardly from outputs to inputs. However, several
depths of recursive function calls make it difficult to thor-
oughly understand. The forward translation uses sufficient
temporary variables to understand the C programs more
easily.

4.2.1 Translation of Function Blocks
Translation of function blocks is the same as the back-

ward translation, as shown in Fig.5.

4.2.2 Translation of Component FBDs
Fig.11 defines rules for component FBDs. These are

basically the same as the backward translation, but the
output value is calculated and assigned forwardly as
defined in Rule 5-1. For each function block, we define a
TOV (i.e., toi) which stores the value only for the purpose
of interconnection. Each function block is executed accord-
ing to its execution order and an output value is then stored
in its own TOV, as defined in Rule 6-1. The external output
variable’s value can be assigned with one of an appropriate
TOV. Internal output variables are also defined similarly
as defined in Rule 7-1.

496 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Fig. 9. An Example of Translating the Component FBD in
Fig.3

Fig. 10. Translation Rules for System FBDs

Fig.12 is an example of the C program translated
forwardly according to the rules 5-1 ~ 7-1. It uses 7 TOVs
(such as to0 ~ to6) as it is structured with 7 function blocks.
All function blocks are executed according to predefined
execution orders as lines 11 ~ 17. In case of the FBD
depicted in Fig.3, the natural number in parentheses is
the block’s execution order. After sequentially executing
all interconnected function blocks, one external output
variable and possibly several internal output variables are
simply assigned with values as line 19 and 21.

The forward translation of component FBDs requires
more lines of codes than the backward translation (e.g., 25
lines vs. 19 lines for the Fixed_Setpoint_Rising_Trip()
function). However, it is more understandable and readable
than the backward translation, since it uses enough auxiliary
variables to aid understanding and is defined according
to the execution flow of the component FBD. Section 5
compares these two approaches experimentally through
translating a full-set of RPS logics. These RPS logics had
been developed for a trial purpose in Korea.

4.2.3 Translation of System FBDs
A system FBD is structured with a sequential set of

interconnected component FBDs. The translation rules
for system FBDs are similar with those for component
FBDs, but they call the component FBDs according to their
execution order forwardly and store their output values in
TOVs. A detailed example of the forward translation can
be found in the Appendix. Fig.13 defines the rules.

4.2.4 Correctness of the Forward Translation
Correctness of the proposed translation algorithm and

rules in Section 4.2 can be proven by showing that the FBD
software system (Definition 4) has the same I/O behavior
for all inputs with the C program translated.

Theorem 2. [Correctness of the Forward Translation]
The FBD software system always shows the same I/O be-
havior with the C program translated in accordance with
the forward translation rules.

497NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Fig. 11. Translation Rules for Component FBDs
(Forward Translation)

Fig. 12. An example of Forward Translation of the Component
FBD in Fig.3

Fig. 13. Translation Rules for System FBDs
(Forward Translation)

Proof. The FBD program and C program have the same
inputs and outputs. For all inputs, they both have the same
procedures for calculating outputs, since the C program
translates all the transition relations defined in T of compo-
nent FBDs and a system FBD, forwardly. Therefore, both
are equivalent and demonstrate the same I/O behavior
through bi-simulation [29].

4.3 Practical Considerations on the Proposed
Translations
When applying the translations to large and complex

real-world systems such as RPSs in nuclear power plants,
the following guidelines would be helpful.

• C code optimization: The translated C program does
not require code optimization since it intends to be
implemented into PLC hardware not for formal verifi-
cation purposes. The C programming language is more
powerful and expressive than the design language
FBD, and even more than the hardware description
language such as Verilog and VHDL. Our former
worker [26] for formal verification of FBD programs,
the bit (space) optimization of translated code, was
important to avoid the 'state explosion problem' [30]
which make the algorithmic verification easily infea-
sible. This case intends behavior-preserving code
generation for implementation purposes, not formal
verification. Code optimization, therefore, would be
better to focus on readability and understandability
of the code for manual inter-checking rather than on
code efficiency such as LOC (Line number Of Code)
and execution time. The C compilers and the target
hardware PLC are typically fast enough to load trans-
lated C programs without any optimization.

• C code-based structural testing: The C program
translated by the proposed technique is not useful
for typical C code-based structural testing, especially
for control flow coverage-based testing [20]. As it
calls sub-functions sequentially according to a prede-
fined execution order, forwardly or backwardly, it
has no complex control loops such as 'for,' 'while'
and 'goto.' Therefore, the typical control-flow based
testing and coverage criteria (e.g., statement, branch,
condition and MC/DC) are not effective for testing
the translated C programs. A data-flow based testing
and coverage criteria will be more helpful as analyzed
in [31].

• C code execution: The translated C program requires
supplementary codes to be compiled, loaded and
executed on PLC hardware. For example, an FBD
software system (Definition 4) has a set of local
timers and a global timer which synchronizes with a
number of local clocks, and the translated C programs
should take into account their synchronization. The
internal output variables in Definition 4 are translated
into global variables for component FBDs, (e.g.,

th_Prev_X_Pretrip in Fig.9 and Fig.12). The scoping
of global variables generated for component FBDs
should also be considered.

• Extending to C++: Some important ideas of the object-
oriented programming language [16] can be usefully
adopted for translating basic function blocks. Devel-
opment of real-world systems is apt to use various
instances of a basic function block. For example, in
case of ADD, we have to distinguish their variant,
such as ADD with 2 integer inputs, 3 integer inputs
and 2 Boolean inputs. A different C function should
be defined and used for each variation. If we use an
object-oriented programming language C++, variations
can be defined more effectively. However, the choice
of a programming language for PLCs depends not
only on the efficiency and convenience of the language
but also the correctness and safety level of its compiler,
which has been proven.

• Vendor-specific FBDs: PLC vendors such as AREVA
and POSCO ICT maintain their own format and usage
of FBD programming language. For example, the
software engineering tool-set of POSCO ICT does
not allow separated (i.e., not interconnected FBDs),
but rather all connected FBDs only. It also uses inter-
changeably a mixture of FBD and LD. We should be
able to take into account the software program which
is a mixture of FBD and LD programming languages.

5. CASE STUDY

We applied the proposed translation techniques to a
set of FBD programs for APR-1400 RPS BP in Korea.
The RPS was developed by KNICS [9] project consortium
and several export contracts have been undergoing. We use
as an example of our case study the FBDs, which were
mechanically generated from a formal requirement speci-
fication [13] written in NuSCR [18]. The project used the
formal requirement specification for modeling RPSs effi-
ciently and correctly as well as achieving diversity of soft-
ware requirement specifications. The formal specification
and its supporting tool-set generate FBD programs mechan-
ically [32], and several formal verification techniques
(e.g., model checking and equivalence checking) can also
be applied to both the requirements and FBDs [15].

The mechanically generated FBDs in our case study
are not the real ones used for developing the current (official)
version of APR-1400 RPS, and were used when developing
a prototype. They include approximately 50% more function
blocks than the one developed manually by experts. How-
ever, they include all important and fundamental shutdown
logics for the RPS. This case study sufficiently demonstrates
that the translations proposed can work on real versions
of FBDs as well as the mechanically translated ones.

Fig.14 shows the NuSCR specification while Fig. 15
depicts FBD programs mechanically translated from the

498 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

formal requirements specification. The directory info-
rmation window at the left part of the tool-sets shows 8
shutdown logics for the RPS BP, which are categorized
as follows. The whole RPS BP is composed of 18 logics,
but the category below encompasses all the logics.

• Fixed set-point logic: It has a fixed set-point of firing
a shutdown signal. If an input value crosses the point
in a rising or falling manner, the shutdown signal gets
fired.
(e.g., g_LO_SG1_LEVEL, g_HI_LOG_POWER)

• Variable set-point logic: It has a variable set-point
of firing a shutdown signal, varying with the same
(rising or falling) rate of the change of the input
variable until a predefined fixed limit. If the varying
rate of the input variable is more than the fixed limit,
then the shutdown signal gets fired.
(e.g., g_VAR_OVER_PWR, g_SG1_LO_FLOW)

• Manual reset logic: It has a fixed set-point of firing
a shutdown signal, but an operator can delay the
shutdown by moving the set-point to an upper point
(in case of rising input flow) by pushing a reset button.
The operator can push the reset button several times
for specific purposes.
(e.g., g_LO_PZR_PRESS)

We applied the two translation techniques (the forward
and backward translations) to the 6 logics of FBD programs
shown in Fig.15, and compared them statically. We first
developed a prototype of the FBD-to-C translator as de-
picted in Fig.16. Then we performed the forward and
backward translations, and calculated detailed information
such LOC and number of function blocks defined. It in-
cludes 4 windows; one for command information and
others for three levels of translated C programs (i.e., function
blocks, component FBDs and a system FBD). Table 1

499NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Fig. 14. NuSRS: A Tool for Supporting NuSCR Specification, Verification and FTA (ver. 2.1)

Fig. 15. NuSCRtoFBD: A Tool for Generating FBDs from NuSCR Specification (ver. 2.0)

presents the features of FBD programs in the RPS BP, which
will be translated into C programs. As described in the
table, the fixed set-point shutdown logic is a simple logic
with relatively small function blocks, while the manual-
reset shutdown logic is the most complicated one with about
2.5 times more function blocks than the former one. The
number of external outputs for all logics in Table 1 is two,
i.e., trip and pre-trip signals. The FBDs, which we used
as a case study, generate more than two external outputs,
for testing purposes, but the actual external outputs are
only the two outputs.

Table 2 compares the two translation techniques. The
LOC demonstrates that the forward translation requires
more codes than the backward translation, since the latter
uses multi-level function calls. The Maximum depth of

nested function calls points their difference out clearly.
The forward translation calls function at most in a depth
of three (3), while the backward translation calls function
at most in a depth of six (6). The one needs more lines to
unroll the nested function calls while the other needs more
endurance for reading and understanding. The Number of
the 18 temporary variables used can be understood in a
similar way.

'The Number of functions defined' shows the same
number for both. It reflects well on the nature of the me-
chanical translations. The C programs are translated from
the FBD program, therefore all structure information of the
higher abstraction level (i.e., FBD program) are preserved
in the lower level (i.e., C program). For example, since
the FBD for the logic g_LO_SG1_LEVEL is structured

500 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Fig. 16. A screen-dump of the FBD-to-C Translator (Forward Translation)

Table 1. Information of the FBDs

Category # of FBs # of Comp.
FBDs

of Sys.
FBDs # of EOs # of IOs # of timer

FBs

g_LO_SG1_LEVEL

g_HI_LOG_POWER

g_VAR_OVER_PWR

g_SG1_LO_FLOW

g_LO_PZR_PRESS

Fixed set-point

Fixed set-point

Variable set-point

Variable set-point

Manual reset

70

82

167

167

191

31

27

45

45

53

1

1

1

1

1

2(6)

2(8)

2(9)

2(9)

2(12)

2

2

3

2

4

1

2

2

1

3

with 12 different function blocks, 31 component FBDs
and 1 system FBD, the C program is also composed of
44 functions in total.

The Appendix presents two C programs translated from
the FBD of the g_LO_SG1_LEVEL logic. We present only
parts corresponding to two component FBDs and a system
FBD for the pre-trip signal, due to a lack of space. Exam-
ining these two C programs convinces us of the comparison
result summarized in Table 2. Comparison of these two
translations from a point of dynamics, such as execution
time, requires compiling and executing them on real PLC
hardware. We are now planning to co-work with a PLC
vendor in Korea, and also have a plan to develop a prototype
translator, which is independent of specific target PLCs
and compilers. Their dynamic comparison should be
accompanied by a specific C compiler and target PLC
hardware, and we are now planning to co-work with a
PLC vendor in Korea.

6. CONCLUSION AND FUTURE WORK

Embedded software for a nuclear reactor protection
system requires rigorous demonstration of safety. This
paper proposes two sets of translation algorithms and rules,
which translate FBD programs in the design phase into C
programs in the implementation phase, while preserving
their behavioral equivalence. We used an example of RPS
software in a Korean nuclear power plant to demonstrate
correctness and to compare the proposed translations.

We are now planning to develop a translator for a specific
PLC vendor to evaluate the proposed translation techniques
dynamically as well as statically. It, however, will require
more elaboration on the translations which this paper pro-
poses, since vendor-specific features should be reconsidered.
In addition, we are also planning to embed a prototype of

the translator, which does not take into account vendor-
specific factors, into our software development framework
for RPSs, NuDE (Nuclear Development Environment) [15].

ACKNOWLEDGEMENT
This research was supported by Basic Science Research

Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (2010-0002566). It was also supported
by the MKE (The Ministry of Knowledge Economy), Korea,
under the Development of Performance Improvement
Technology for Engineering Tool of Safety PLC (Program-
mable Logic Controller) program supervised by the KETEP
(Korea Institute of Energy Technology Evaluation And
Planning)" (KETEP-2010-T1001-01038) and a grant from
the Korea Ministry of Strategy, under the development of
the integrated framework of I&C conformity assessment,
sustainable monitoring, and emergency response for nuclear
facilities.

APPENDIX
A translation example: C programs for fixed set-point

shutdown logic

A. The Forward Translation

/*component FBDs*/
...

/*f_LO_SG1_LEVEL_PV_Err*/
BOOL PV_Err_CondA(unsigned int f_LO_SG1_
LEVEL_Val_Out){

return LT_BOOL(f_LO_SG1_LEVEL_Val_Out, k_LO_SG1
_LEVEL_PV_Max);

}

BOOL PV_Err_CondB(unsigned int f_LO_SG1_ LEVEL
_Val_Out){

501NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

Table 2. A comparison of the Forward and Backward Translations

Translation
techniques LOC # of functions

defined # of func. calls Max. depth of
nested func. calls

of temporary
variable used

g_LO_SG1_LEVEL

g_HI_LOG_POWER

g_VAR_OVER_PWR

g_SG1_LO_FLOW

g_LO_PZR_PRESS

Forward

Backward

Forward

Backward

Forward

Backward

Forward

Backward

Forward

Backward

467

541

547

509

645

523

669

543

653

535

12+31+1

12+31+1

14+36+1

14+36+1

13+45+1

13+45+1

14+45+1

14+45+1

12+53+1

12+53+1

75

78

87

90

170

175

170

175

195

198

3

6

3

7

3

10

3

10

3

10

45

6

55

7

137

9

145

9

158

12

return GT_BOOL(f_LO_SG1_LEVEL_Val_Out, k_LO
_SG1_LEVEL_PV_Min);

}

BOOL f_LO_SG1_LEVEL_PV_Err(unsigned int f_ LO_
SG1_LEVEL_Val_Out){

BOOL to_0;

to_0 = AND2_BOOL(!PV_Err_CondB(f_LO_SG1_
LEVEL_Val_Out), !PV_Err_CondA(f_LO_SG1_ LEVEL
_Val_Out));

return SEL_(to_0, false, true);
}

/*f_LO_SG1_LEVEL_Ptrp_Out*/
BOOL Ptrp_Out_CondA(unsigned int th_LO_SG1_LEVEL
_Ptrp_Logic){

return EQ_BOOL(true, th_LO_SG1_LEVEL_Ptrp _Logic);
}

BOOL Ptrp_Out_CondB(BOOL f_LO_SG1_ LEVEL_Op
_Byp_Init){

return EQ_BOOL(false, f_LO_SG1_LEVEL_Op_ Byp
_Init);

}

BOOL Ptrp_Out_CondC(BOOL f_Mod_Err){
return EQ_BOOL(true, f_Mod_Err);

}

BOOL Ptrp_Out_CondD(BOOL f_LO_SG1_LEVEL_ Chan
_Err){

return EQ_BOOL(true, f_LO_SG1_LEVEL_Chan _Err);
}

BOOL Ptrp_Out_CondE(BOOL f_LO_SG1_LEVEL_ PV
_Err){

return EQ_BOOL(true, f_LO_SG1_LEVEL_PV_ Err);
}

BOOL f_LO_SG1_LEVEL_Ptrp_Out(unsigned int th_LO_
SG1_LEVEL_Ptrp_Logic, BOOL f_Mod_Err, BOOL f_LO
_SG1_LEVEL_Op_Byp_Init, BOOL f_LO_ SG1_LEVEL
_Chan_Err, BOOL f_LO_SG1 _LEVEL_ PV_Err){

BOOL to_0, to_1, to_2, to_3, to_4;

to_0 = AND2_BOOL(Ptrp_Out_CondB(f_LO_ SG1_
LEVEL_Op_Byp_Init), Ptrp_Out_CondA (th_ LO
_SG1_LEVEL_Ptrp_Logic));

to_1 = OR2_BOOL(Ptrp_Out_CondE(f_LO_SG1_
LEVEL _PV_Err), Ptrp_Out_CondD(f_LO_
SG1_LEVEL_Chan_Err));

to_2 = OR2_BOOL(to_1, Ptrp_Out_CondC(f_Mod _Err));
to_3 = AND2_BOOL(to_2, to_0);
to_4 = SEL_(to_3, false, true);

return to_4;
}

...

typedef struct{
BOOL trip;
BOOL ptrp;

}Trip_signal;

/*system FBD*/
Trip_signal get_signal(unsigned int IN0, BOOL IN1, BOOL
IN2, BOOL IN3, BOOL IN4, BOOL IN5, BOOL IN6, BOOL
IN7, BOOL IN8, BOOL IN9, unsigned int IN10, unsigned
int IN11, unsigned int IN12, unsigned int IN13){

Trip_signal *signal;

/*external input*/
unsigned int f_LO_SG1_LEVEL_PV;
BOOL f_LO_SG1_LEVEL_MT_Query, f_LO_ SG1_
LEVEL_AT_Query, f_LO_SG1_LEVEL_PT _Query;
BOOL f_LO_SG1_LEVEL_PT_Val, f_LO_SG1_L
EVEL_AT_Val, f_LO_SG1_LEVEL_MT_Val;
BOOL f_LO_SG1_LEVEL_Op_Byp_Init, f_Mod_ Err,
f_LO_SG1_LEVEL_Chan_Err;

/*external output variables for testing purposes*/
unsigned int Val_Out;
unsigned int Ptrp_Logic, Trip_Logic;
BOOL PV_Err;

/*assignment for external input values*/
f_LO_SG1_LEVEL_PV = IN0;
f_LO_SG1_LEVEL_MT_Query = IN1;
f_LO_SG1_LEVEL_AT_Query = IN2;
f_LO_SG1_LEVEL_PT_Query = IN3;
f_LO_SG1_LEVEL_PT_Val = IN4;
f_LO_SG1_LEVEL_AT_Val = IN5;
f_LO_SG1_LEVEL_MT_Val = IN6;
f_LO_SG1_LEVEL_Op_Byp_Init = IN7;
f_Mod_Err = IN8;
f_LO_SG1_LEVEL_Chan_Err = IN9;

/*executions of component FBDs*/
Val_Out = f_LO_SG1_LEVEL_Val_Out(f_LO_SG1

_LEVEL_MT_Query, f_LO_SG1 _LEVEL
_AT_Query,
f_LO_SG1_LEVEL_PT_Query, f_LO_SG1_
LEVEL_PV, f_LO_SG1 _LEVEL_PT_Val,
f_LO_SG1_LEVEL _AT_Val,
f_LO_SG1_LEVEL_MT_Val);

Ptrp_Logic = th_LO_SG1_LEVEL_Ptrp_Logic (Val_Out);
Set_Ptrp_Logic_Status(Val_Out);

PV_Err = f_LO_SG1_LEVEL_PV_Err(Val_Out);

signal->trip = f_LO_SG1_LEVEL_Trip_Out (Trip_Logic,
f_LO_SG1_LEVEL _Op_Byp_Init, f_Mod
_Err,
f_LO_SG1_LEVEL_Chan_Err, PV _Err);

signal->ptrp = f_LO_SG1_LEVEL_Ptrp_Out (Ptrp_ Logic,
f_LO_SG1_LEVEL_Op_ Byp_Init, f_Mod
_Err,
f_LO_SG1_LEVEL_Chan_Err, PV_ Err);

return signal;
}

B. The Backward Translation

/*component FBDs*/

502 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

...

/*f_LO_SG1_LEVEL_PV_Err*/
BOOL PV_Err_CondA(unsigned int f_LO_SG1_LEVEL
_Val_Out){

return LT_BOOL(f_LO_SG1_LEVEL_Val_Out, k_LO
_SG1_LEVEL_PV_Max);

}

BOOL PV_Err_CondB(unsigned int f_LO_SG1_LEVEL
_Val_Out){

return GT_BOOL(f_LO_SG1_LEVEL_Val_Out, k_LO
_SG1_LEVEL_PV_Min);

}

BOOL f_LO_SG1_LEVEL_PV_Err(unsigned int f_LO
_SG1_LEVEL_Val_Out){

return SEL_(AND2_BOOL(!PV_Err_CondB(f_LO_
SG1_LEVEL_Val_Out), !PV_Err_CondA(f_LO_ SG1
_LEVEL_Val_Out)), false, true);

}

/*f_LO_SG1_LEVEL_Ptrp_Out*/
BOOL Ptrp_Out_CondA(unsigned int th_LO_SG1_ LEVEL
_Ptrp_Logic){

return EQ_BOOL(true, th_LO_SG1_LEVEL_Ptrp _Logic);
}

BOOL Ptrp_Out_CondB(BOOL f_LO_SG1_LEVEL_Op
_Byp_Init){

return EQ_BOOL(false, f_LO_SG1_LEVEL_Op_ Byp
_Init);

}

BOOL Ptrp_Out_CondC(BOOL f_Mod_Err){
return EQ_BOOL(true, f_Mod_Err);

}

BOOL Ptrp_Out_CondD(BOOL f_LO_SG1_LEVEL_
Chan_Err){

return EQ_BOOL(true, f_LO_SG1_LEVEL_Chan _Err);
}

BOOL Ptrp_Out_CondE(BOOL f_LO_SG1_LEVEL_PV
_Err){

return EQ_BOOL(true, f_LO_SG1_LEVEL_PV_ Err);
}

BOOL f_LO_SG1_LEVEL_Ptrp_Out(unsigned int th_LO
_SG1_LEVEL_Ptrp_Logic, BOOL f_Mod_ Err, BOOL f_
LO_SG1_LEVEL_Op_Byp_Init, BOOL f_LO_SG1_LEVEL
_Chan_Err, BOOL f_LO_SG1_LEVEL _PV_Err){

return SEL_(AND2_BOOL(OR2_BOOL(OR2_ BOOL
(Ptrp_Out_CondE(f_LO_SG1_LEVEL_PV_Err),

Ptrp_Out_CondD(f_LO_SG1_LEVEL_Chan_Err)),
Ptrp_Out_CondC(f_Mod_Err)),
AND2_BOOL(Ptrp_Out_CondB(f_LO_SG1_LEVEL_
Op_Byp_Init),
Ptrp_Out_CondA(th_LO_SG1_LEVEL_Ptrp_Logic))),
false, true);

...

typedef struct{
BOOL trip;

BOOL ptrp;
}Trip_signal;

/*system FBD*/
Trip_signal get_signal(unsigned int IN0, BOOL IN1,
BOOL IN2, BOOL IN3, BOOL IN4, BOOL IN5, BOOL
IN6, BOOL IN7, BOOL IN8,BOOL IN9){

Trip_signal *signal;

/*external input*/
unsigned int f_LO_SG1_LEVEL_PV;
BOOL f_LO_SG1_LEVEL_MT_Query, f_LO_S G1_
LEVEL_AT_Query, f_LO_SG1_LEVEL_PT_Query;
BOOL f_LO_SG1_LEVEL_PT_Val, f_LO_SG1_LEVEL
_AT_Val, f_LO_SG1_LEVEL_MT_Val;
BOOL f_LO_SG1_LEVEL_Op_Byp_Init, f_Mod_ Err,
f_LO_SG1_LEVEL_Chan_Err;

/*assignments for external input values*/
f_LO_SG1_LEVEL_PV = IN0;
f_LO_SG1_LEVEL_MT_Query = IN1;
f_LO_SG1_LEVEL_AT_Query = IN2;
f_LO_SG1_LEVEL_PT_Query = IN3;
f_LO_SG1_LEVEL_PT_Val = IN4;
f_LO_SG1_LEVEL_AT_Val = IN5;
f_LO_SG1_LEVEL_MT_Val = IN6;
f_LO_SG1_LEVEL_Op_Byp_Init = IN7;
f_Mod_Err = IN8;
f_LO_SG1_LEVEL_Chan_Err = IN9;

/*executions of component FBDs*/
Ptrp_Logic = th_LO_SG1_LEVEL_Ptrp0 _Logic (Val

_Out);
Set_Ptrp_Logic_Status(Val_Out);
PV_Err = f_LO_SG1_LEVEL_PV_Err(Val_Out);

/*assignments for external output variables*/
signal->trip = f_LO_SG1_LEVEL_Trip_Out(...);

signal->ptrp = f_LO_SG1_LEVEL_Ptrp_Out(th_
LO_SG1_LEVEL_Ptrp_Logic(

f_LO_SG1_LEVEL_Val_Out(
f_LO_SG1_LEVEL_MT_Query,
f_LO_SG1_LEVEL_AT_Query,
f_LO_SG1_LEVEL_PT_Query,
f_LO_SG1_LEVEL_PV,
f_LO_SG1_LEVEL_PT_Val,
f_LO_SG1_LEVEL_AT_Val,
f_LO_SG1_LEVEL_MT_Val)),

f_Mod_Err,f_LO_SG1_LEVEL_Chan_Err, f_LO
_SG1_LEVEL_PV_Err(
f_LO_SG1_LEVEL_Val_Out(

f_LO_SG1_LEVEL_MT_Query,
f_LO_SG1_LEVEL_AT_Query,
f_LO_SG1_LEVEL_PT_Query,
f_LO_SG1_LEVEL_PV,
f_LO_SG1_LEVEL_PT_Val,
f_LO_SG1_LEVEL_AT_Val,
f_LO_SG1_LEVEL_MT_Val)));

return signal;
}

503NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

REFERENCES_______________________________
[1] N. G. Leveson, SAFEWARE, System safety and Computers,

Addison Wesley, (1995).
[2] International Electrotechnical Commission, International

standard for programmable controllers: Programming
languages, part 3 (1993).

[3] IEC, IEC 61508, Functional safety of electrical, electronic
and programmable electronic (E/E/PE) safety-related systems,
(2000).

[4] SIEMENS, Space, engineering system of teleperm xs plc,
Tech. Rep. KWU NLL1-1026-76-V1.0/11.96, Germany
(1996).

[5] SIEMENS, Teleperm xs, brief description, Tech. Rep. KWU
NLL1-1004-76-V2.2/04.98, Germany (1998).

[6] S. Richter, J. Wittig, "Verification and validation process
for safety I&C systems", Nuclear Plant Journal, vol. 21
(3), pp.36–40 (2003)

[7] ISTec, RETRANS, reverse engineering tool for fbd program-
ming of teleperm xs plc, Tech. rep., Germany (1997).

[8] invensys, Safety software suite, TriStation 1131 (TS1131),
http://iom.invensys.com/.

[9] KNICS, Korea nuclear instrumentation and control system
R&D center, http://www.knics.re.kr/english/eindex.html.

[10] S. Cho, K. Koo, B. You, T.-W. Kim, T. Shim, J. Lee, "Devel-
opment of the loader software for PLC programming",
Proceedings Conference of the Institute of Electronics
Engineers of Korea, Vol. 30 (1), pp. 959–960, (2007).

[11] WIKIPEDIA, Nuclear power in south korea, http://en.
wikipedia.org/wiki/Nuclear power in South Korea.

[12] T. Hoare, "The verifying compiler: A grand challenge for
computing research", Journal of the ACM, vol. 50 (1), pp.
63–69 (2003).

[13] Korea Atomic Energy Rearch Institute, SRS for Reactor
Protection System, KNICS-RPS-SRS101 Rev.00 (2003).

[14] KAERI(Korea Atomic Energy Rearch Institute), Fromal
SRS for Reactor Protection System, KNICS-RPS-SVR131
-01 Rev.00 (2005).

[15] J. Yoo, E. Jee, S. S. Cha, "Formal Modeling and Verification
of Safety-Critical Software", IEEE Software, vol. 26 (3),
pp. 42–49 (2009).

[16] I. Sommerville, "SOFTWARE ENGINEERING", 9th
Edition, Addison Wesley, (2010).

[17] C. L. Heitmeyer, R. D. Jeffords, B. G. Labaw, "Automated
consistency checking of requirements specifications", IEEE

Transactions on Software Engineering, vol. 5 (3), pp. 231
–261 (1996).

[18] 18 J. Yoo, T. Kim, S. Cha, J.-S. Lee, H. S. Son, "A Formal
Software Requirements Specification Method for Digital
Nuclear Plants Protection Systems", Journal of Systems
and Software, vol. 74 (1), pp. 73–83 (2005).

[19] TEXAS INSTRUMENTS, TMS320C55x optimizing c/c++
compiler users guide, Tech. Rep. SPRU281F, TEXAS
INSTRUMENTS (2003).

[20] 20 M. Pezze, M. Young, "Software Testing and Analysis",
WILEY (2008).

[21] IBM Rational, Rational rhapsody, http://www-01.ibm.com
/software/awdtools/rhapsody/.

[22] D.-A. Lee, J. Yoo, J.-S. Lee, "Equivalence checking between
function block diagrams and c programs using HW-CBMC",
The 30th International Conference on Computer Safety, Relia-
bility and Security (SAFECOMP 2011), pp. 397-408 (2011).

[23] E. M. Clarke, D. Kroening, "Hardware verification using
ANSI-C programs as a reference", Proceedings of the 2003
Asia and South Pacificc Design Automation Conference,
pp. 308–311 (2003).

[24] S.-Y. Huang, K.-T. Cheng, "Fromal Equivalence Checking
and Debugging", Kliwer Academic Publishers (1998).

[25] R. Tennent, "The denotational semantics of programming
languages", Communicatin of the ACM, vol. 19 (8), pp.
437–453 (1976).

[26] J. Yoo, S. Cha, E. Jee, "Verificatin of PLC Programs written
in FBD with VIS", Nuclear Engineering and Technology,
vol. 41 (1) pp. 79–90 (2009).

[27] T. Henzinger, Z. Manna, A. Pnueli, "Timed transition
systems", REX Workshop, pp. 226–251 (1991).

[28] R. Alur, D. L. Dill, "A theory of timed automata", Theoretical
Computer Science vol. 126 (2), pp. 183-235 (1994)

[29] J. Davoren, "Topologies, continuity and bisimulations",
Theoretical Informatics and Applications, vol. 33, pp. 357
–381 (1999).

[30] E. M. Clarke, O. Grumberg, D. A. Peled, "Model Checking",
MIT Press, (1999).

[31] E. Jee, J. Yoo, S. Cha, D. Bae, "A data flow-based structural
testing technique for fbd programs", Information and
Software Technology, vol. 51 (7), pp. 1131–1139 (2009).

[32] J. Yoo, S. Cha, C. H. Kim, D. Y. Song, "Synthesis of FBD
based PLC Design from NuSCR Formal Specification",
Reliability Engineering and System Safety, vol. 87 (2), pp.
287–294 (2005).

504 NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.45 NO.4 AUGUST 2013

YOO et al., A Behavior-Preserving Translation from FBD Design to C Implementation for Reactor Protection System Software

