

고신뢰 CPS 검증을 위한 정형 검증 기술

유 준 범

Dependable Software Laboratory
(http://dslab.konkuk.ac.kr)

KONKUK University

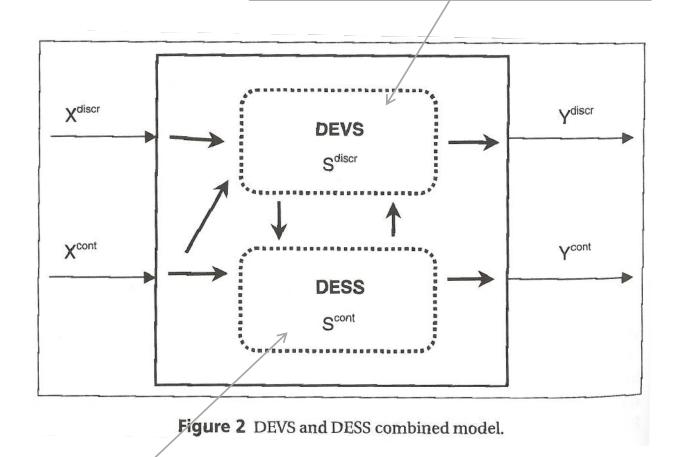
발표 내용

- CPS 모델링 기법
 - DEV&DESS
 - Hybrid Automata
 - ECML(ETRI CPS Modeling Language)
- CPS 정형검증 기법
- ECML을 위한 정형검증 기법 연구
- 향후 연구 방향

CPS 모델링 기법

CPS(Cyber Physical System)

- 이산적인(Discrete) 행위와 연속적인(Continuous) 행위가 결합되어 서로 긴밀히 상호 반응하는 시스템
 - → Hybrid System
- 대표적인 Hybrid System 모델링 기법
 - DEV&DESS (Discrete EVent & Differential Equation Specified System)
 - 목적: 시뮬레이션
 - Low-level modeling (기본 semantics만 정의됨)
 - 시뮬레이션 도구: Simulink 등
 - (Linear) Hybrid Automata
 - 목적: 정형검증/분석 (+ 시뮬레이션)
 - High-level modeling
 - 정형검증/분석 도구: HyTech, SpaceEx, PHAver 등
 - ECML (ETRI CPS Modeling Language)
 - ETRI 개발
 - DEV&DESS를 기반으로 다양한 모델링 편의 사항 및 시뮬레이션 구현 (EcoSIM, EcoPOD)
 - 정형검증/분석 도구: HyTech, SpaceEx 사용 가능



DEV&DESS

Discrete Dynamics

시스템의 operation mode (즉, state)를 표현

Continuous Dynamics

시스템 내부간 및 시스템과 외부의 상호작용을 표현

Rate of Change

미분방정식(Differential equation)으로 표현

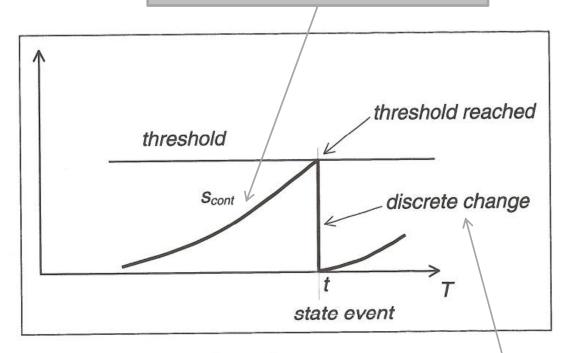
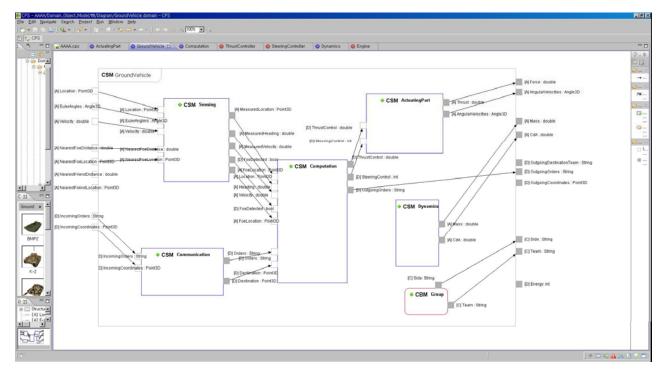
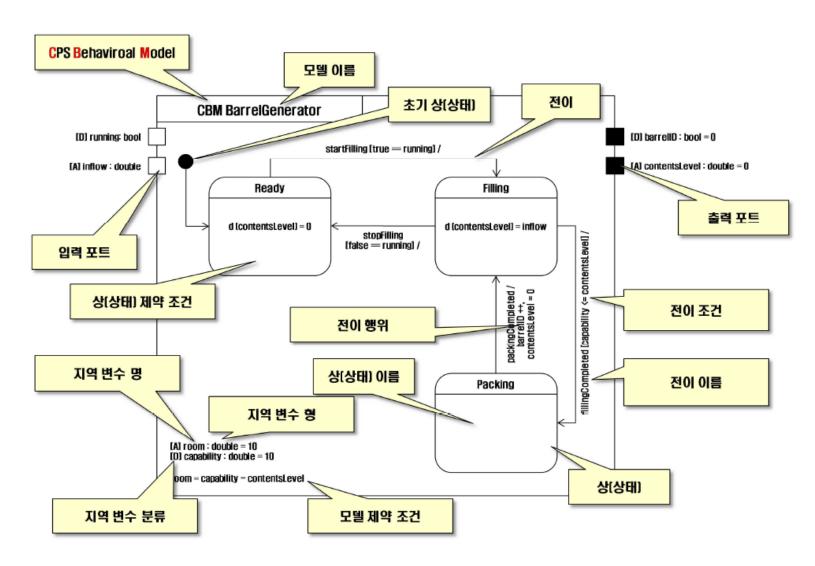


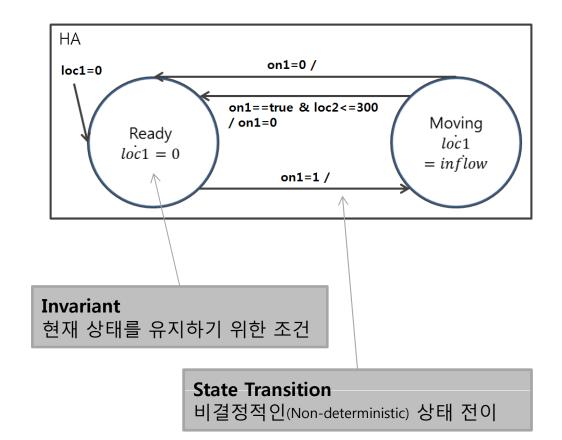
Figure 3 State event.

State Change


Continuous variables이 특정 조건(threshold)을 만족하면, Discrete change가 발생.

ECML(ETRI CPS Modeling Language)


- 구성
 - CSM(CPS Structural Model)
 - 시스템의 전체 구조를 표현
 - Hierarchy를 가짐
 - CBM(CPS Behavioral Model)
 - CSM의 행위를 정의
- 지원도구
 - EcoPOD
 - EcoSIM


CBM(CPS Behavioral Model)

(Linear) Hybrid Automata

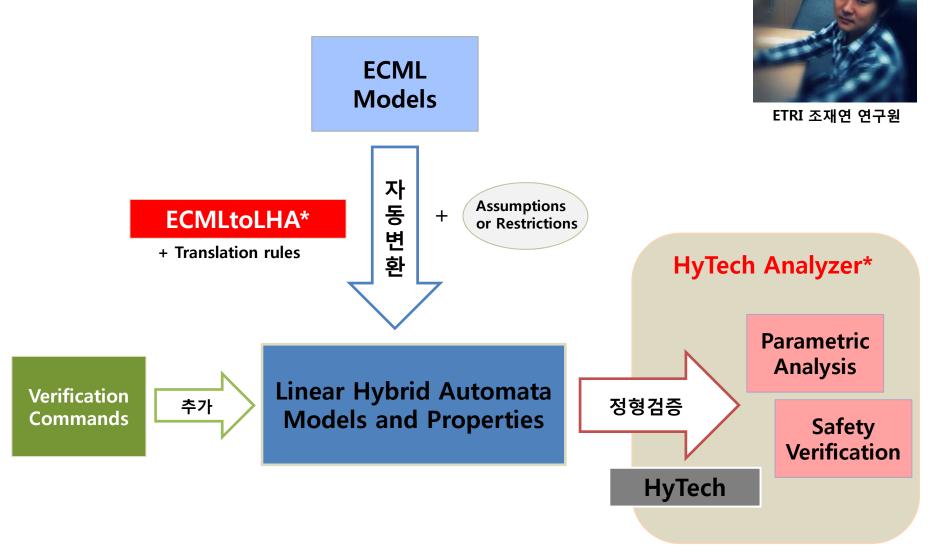
Input/Output Variables

없음 → Closed System

- $A = (\vec{x}, V, inv, dif, E, act, L, syn)$
 - $\vec{x} = (x_1, \dots, x_n)$
 - · Real-valued variables
 - v is valuation, V is set of Valuation
 - \dot{x} is differential inclusion
 - x' is new value after transition
 - V Set of Control location
 - Inv Convex data predicate
 - dif Rate predicate
 - -E
 - · Set of transitions
 - · Optionally be assigned asap
 - Act Discrete actions
 - L- Synchronization label
 - syn Labeling function

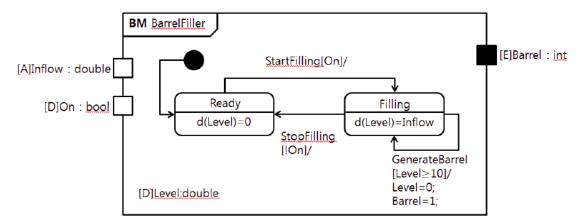
CPS 정형검증 기법

Name	Year (Update)	Tool Support	Execution Environment	Functions (M/S/A/V/Tr)	Verifiability	Input Front-End	Verification Technique
CHARON	2001	Yes	JAVA	M / S	N/A	Automata	N/A
CheckMate	-	No	MATLAB	V	MATLAB	MATLAB	Approximate quotient transition systems
d/dt	2001	Yes	Linux	M/S	N/A	d/dt input language	Forward reachability analysis
Ellipsoidal Toolbox	2006	Yes	MATLAB	V	MATLAB	MATLAB	Forward and backward reachability analysis
GBT	2004	Yes (Commercial)	MATLAB	Α	MATLAB	MATLAB	Convex hull
HSIF	2002	Yes	Windows	M / S	N/A	GME model	N/A
HSolver	2005	Yes	Linux	V	Manual	Input program	Theorem proving (Rsolver)
HyTech	2000	Yes	Linux	V	Automatic	Linear hybrid automata	Polyhedral model checking
HyVisual	2000 (2005)	Yes	JAVA	M / S	N/A	Ptolemy plug-in	N/A
Hybrid ToolBox	2004 (2011)	Yes	MATLAB	M/S/V	MATLAB	HYSDEL language, MATLAB	LP/QP Solver
HYSDEL	2002 (2011)	Yes	Windows, Linux, Solaris	Tr	N/A	HYSDEL language	N/A
KeYmaera	2006 (2011)	Yes	JAVA	V	Manual	Differential dynamic logic formula	Theorem Proving (KeY)
Level Set Toolbox	2004 (2011)	Yes	MATLAB	S / V	MATLAB	MATLAB	Set of Algorithms
MATISSE	2005	Yes	MATLAB	V	MATLAB	MATLAB	Bi-simulation, reachable analysis
MultiParametric Toolbox	2004 (2006)	Yes	MATLAB	M/A/V	MATLAB	MATLAB	Forward and backward reachability analysis
PHAVer	2004 (2007)	Yes	Windows, Linux, Mac	V	Automatic	Linear hybrid automata	Forward and backward reachability analysis
Ptolemy	2002 (2010)	Yes	JAVA	M/A/V	Automatic MATLAB(확인 중)	UML (in XML), Java code, MATLAB	SMV
SHIFT	1999	Yes	Linux	M / Tr	N/A	Shift language	N/A
SpaceEx	2010 (2011)	Yes	Linux	V	Automatic	SX language	LeGuernic-Girard Algorithm
STeP	1994 (1998)	Yes	Linux	V	Automatic	STeP language	Deductive model checking


ECML을 위한 정형검증 기법 연구

건국대: 2011.04 ~ 2013.02

ETRI: 2013.03 ~ 현재


KU KONKUK UNIVERSITY

1. HyTech을 이용한 ECML 정형검증

Fig. 1. A graphical representation of the *Barrelfiller* system

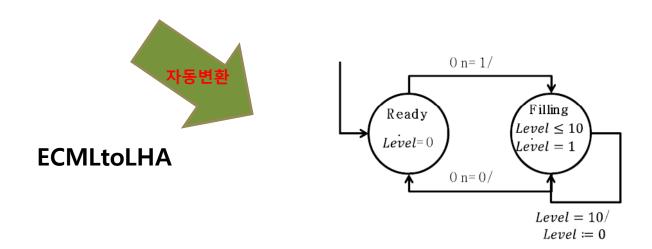
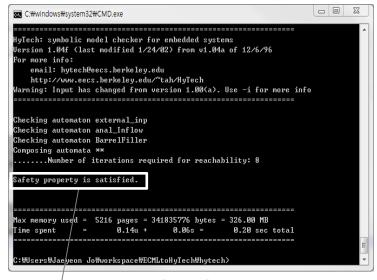


Fig. 2. A graphical representation of the Barrelfiller using linear hybrid automata



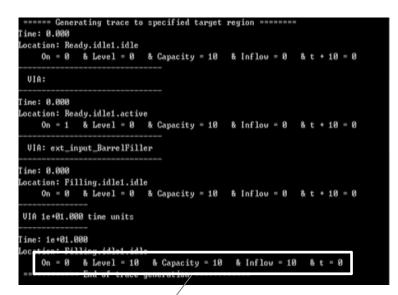
Safety Verification: 검증이 성공했을 경우 성공 메시지 출력

Ex) "BarrelFiller 모델의 Level 값이 10을 초과하지 않는가?"

HyTech Analysis Command

검증 결과

Safety property is satisfied.



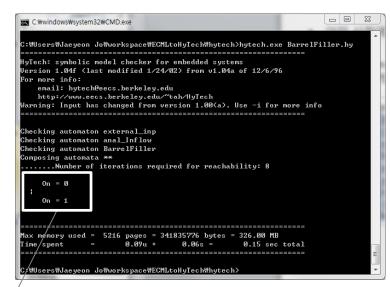
Safety Verification : 검증이 실패했을 경우 Counter-example을 생성

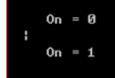
Ex) "BarrelFiller 모델의 Level 값이 9를 초과할 수 있는가?"

HyTech Analysis Command

검증 결과 및 Counter-example

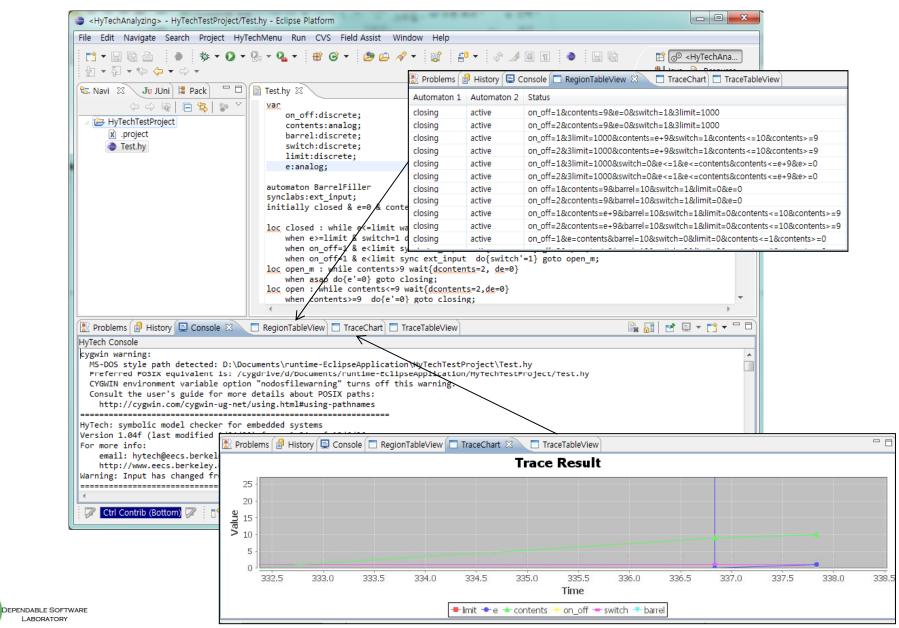
(Level 값이 10이 된 상황)



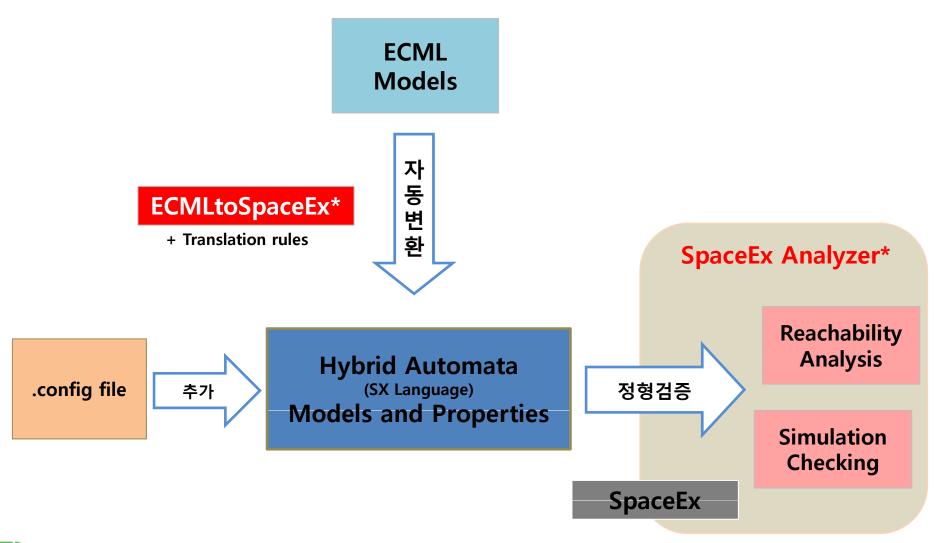

Parametric Analysis : 어떤 상황에서 특정 변수가 가질 수 있는 범위를 분석

Ex) "Barrel의 Level=10이고, Ready 상태일 때, 입력 변수 On이 가질 수 있는 범위는?"

HyTech Analysis Command


Parametric Analysis 결과

HyTech Analyzer : HyTech 사용 지원·자동화 도구


HyTech을 이용한 ECML 정형검증의 특징

- 자체 개발한 'ECMLtoLHA 변환기' 및 '변환규칙'
 - ECML을 LHA로 자동 변환
 - 여러 가정과 제약사항 有
 - I/O변수 관련 (Open system → Closed system)
 - Linearity 관련 (Non-linear system → Linear system)
 - Determinism 관련 (Deterministic system → Non-deterministic system)
 - 기타 다수
- 정형검증 결과
 - Model Checking과 유사한 형태(i.e., Counter example)로 제공돼, 유용하게 사용 가능
- HyTech Analyzer
 - HyTech은 GUI가 제공되지 않음
 - 검증 과정 자동화
 - 검증 결과를 효과적으로 확인 가능

2. SpaceEx를 이용한 ECML 정형검증



Fig. 1 A barrel-filler model for ECML

ECMLtoSpaceEx

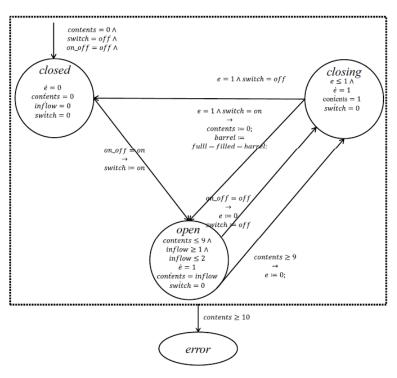
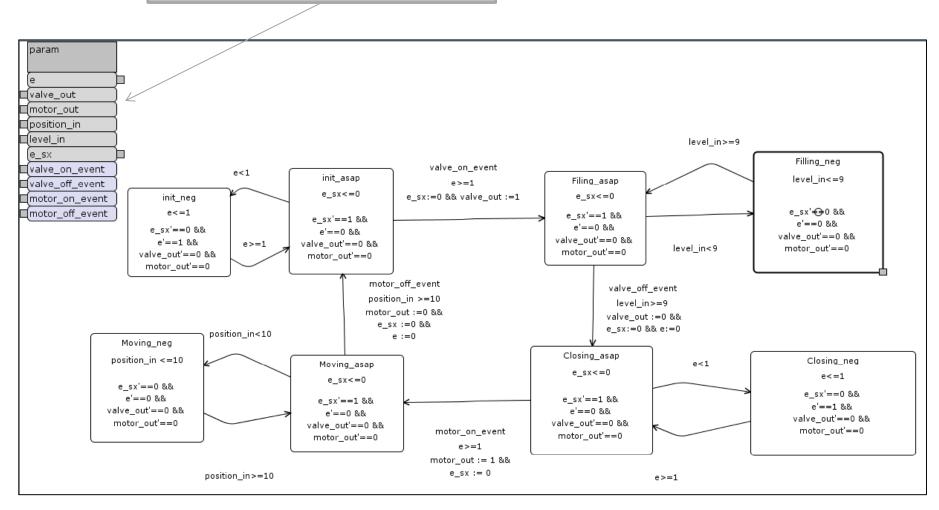
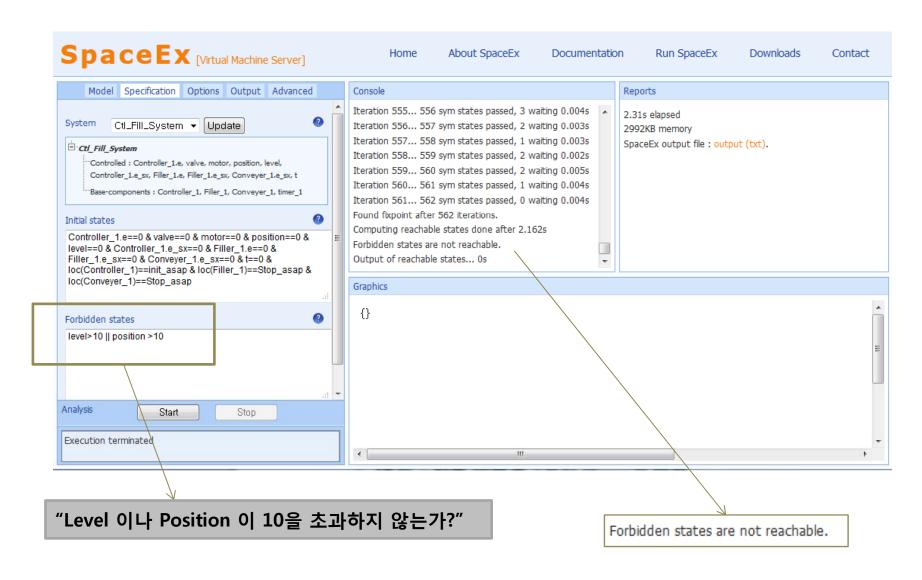
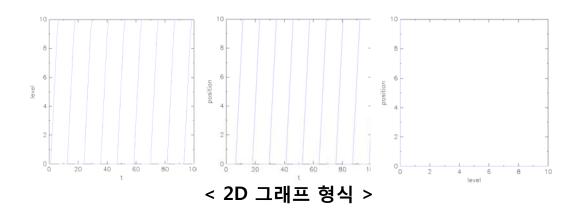
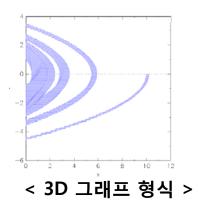



Fig. 3 A barrel-filler model for hybrid automata


Input / Output Variables 이 있음!

A hybrid automaton for the Barrel Filling System (in SpaceEx Model Editor)





SpaceEx 검증 결과 출력 방식 (4가지)

- 도달 가능한 변수 2개의 상태를 그래프로 표현하는 2D
- 도달 가능한 변수 3개의 상태를 그래프로 표현하는 3D
- 변수의 Boundary를 표현하는 inv 형식
- 모든 도달 가능한 region을 표현

Bounds on the variables over the entire set:

system.x: [-0,10.205]

system.v: [-4.575,3.43125]

Location-wise bounds on the variables:

Location: loc(ball) == always

system.x: [-0,10.205]

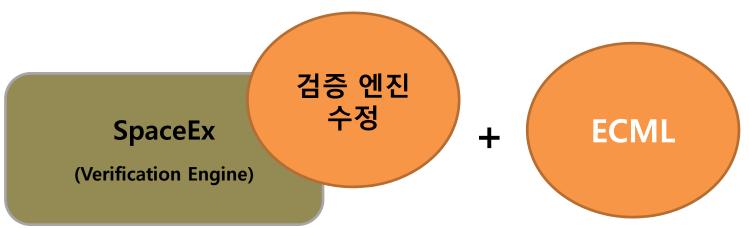
system.v: [-4.575,3.43125]

{(loc(ball)==always & {[

-9.895,-9.78,-9.655,-9.52,-9.375,-9.22,-9.055,-8.88,-8.695,-8.5,-9.995,-9.98,-9.955,-9.92,-9.875,-9.82,-9.755,-9.68,-9.595,-9.5,-10,-10.095,-10.18,-10.255,-10.32,-10.375,-10.42,-10.455,-10.48,-0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.70,-0.1,-0.2,-0.3,-0.4,-0.5,-0.6,-0.7,-0.8,-0.9,-1,-1.1,-1.2,-1.3,10.305,10.39,10.465,10.53,10.585,10.63,10.665,10.69,10.705,10.71,10.205,10.195,10.18,10.155,10.12,10.075,10.02,9.955,9.88,9.795,9.10.2,10.095,9.98,9.855,9.72,9.575,9.42,9.255,9.08,8.895,8.7,8.4951}{variable to dimension map: [x,v]

< inv 형식 >

< region 형식 >


SpaceEx를 이용한 ECML 정형검증의 특징

- 자체 개발한 'SpaceExtoHA 변환기' 및 '변환규칙'
 - 모델링의 가정이나 제약 없이, ECML 모델을 그대로 HA 모델로 변환 가능
 - 현재 '변환 규칙'의 수정 및 보완 中
- 정형검증 결과
 - HyTech과는 다르게 reachability analysis 형태로 표현됨 (region 중심)
 - Counter-example과 같은 명확한 형태로 나오지 않아, 정형검증의 유용성이 상당 히 감쇄됨
- SpaceEx
 - 유용한 모델링 및 검증결과 출력 용 GUI 제공
- SpaceEx Analyzer
 - region 형태의 검증결과를 보다 compact하게 정리하기 위한 도구
 - ETRI 개발 中

향후 연구 방향

or

감사합니다.

http://dslab.konkuk.ac.kr

