NuSCR BEHAAAE Argsl= STPA Ad =+ A

3ok AAA 7

Az ohet 73 E 3ot

hyoonal202@naver.com

jsjj0728 @gmail.com

jibyoo@konkuk.ac.kr

NuSTPA 2.0: A Tool to Perform the STPA
Using NuSCR Formal Specification

Yoona Heo©

Sejin Jung Junbeom Yoo

Konkuk University, Division of Computer Science and Engineering

Abstract
Systems-Theoretic Process Analysis (STPA) is one of the hazard analysis techniques, which focuses on
identifying unsafe controls between components. STPA takes a lot of time and effort to perform, since it is usually
done manually by analysts and relies much on their experiences. To perform STPA more efficiently, we proposed
a formal approach to support STPA in previous study. This paper proposes a tool to apply STPA process supported
by NuSCR formal specification, which follows the proposed formal approach.

1. Introduction

Hazard analysis should be performed in safety-critical systems to
identify and mitigate hazards. Systems-Theoretic Process Analysis
(STPA) is one of the hazard analysis techniques based on causality
model called Systems-Theoretic Accident Model and Processes
(STAMP) [1]. It focuses on identifying unsafe controls between
components.

However, STPA takes a lot of time and effort to perform, since it is
usually done manually by analysts and relies much on their
experiences. Therefore, many researchers tried to support STPA by
proposing formal approaches and developing tools to perform STPA
more efficiently. Like other researches, we proposed a formal
approach to support STPA in previous study [2]. And we need to
implement a tool to efficiently perform the proposed formal
approach.

This paper proposes a tool, NuSTPA 2.0, which supports an
application of the formal approach proposed in previous studies
[2][3]. With NuSTPA 2.0, we can apply STPA process supported by

Nuclear Software Cost Reduction (NuSCR) formal specification.

2. Background
2.1 NuSCR

NuSCR [4] is a formal software requirements specification method
for digital plant protection system in nuclear power plants. It is
composed of Function Overview Diagrams (FODs), which represent
overview of system components and dependencies to show data
flow. It contains nodes called Structured Decision Table (SDT), Finite
State Machine (FSM), Timed Transition System (TTS) to represent

requirements of a system. Each of these nodes is connected to other

related nodes and to related input and output variables. <Fig. 1>
shows a <g_LO_SG1_LEVEL> module of NuSCR specification.

 LO_SG1_LEVEL_P
1_0_SG1_LEVEL_MT_Ya

1_{0_SG1_LEVEL_AT Val
0_SG1_LEVEL_PT.)
=

0_SG1_LEVEL_Val_ut

0
ot TS
th_LQ ag
2D_SG1_LEVEL_Ptrp_{.ogic
th_L{_SG1_LEVEL_Trip ®p_SG1_LEVEL_Trip_{ogic
! 1 0_SG1_LEVEL_PV_Err

D_SG1_LEVEL_Ptrp_put

|

A

|

RD0_SG1_LEVEL_Trip_|

put

Figure 1. <g LO_SG1_LEVEL> module of NuSCR specification

NuFTA [3] is a tool to perform fault tree analysis on NuSCR. While
analyzing NuSCR, NuFTA draws a fault tree and generates a minimal
cut-sets (MCSs). Analysts can set top event for the fault tree and get
MCS values.

2.2 Related Work

There have been several tools to support application of STPA. A
STAMP tools page at STAMP Workshop site introduces various tools
to support STPA. In [5], authors implemented a tool called XSTAMPP
(eXtensive STAMP Platform) 2.0, which helps analysts to apply CAST
accident analysis and perform extended approach to STPA. Authors
in [6] proposes a tool to support STPA process by drawing mind

maps to perform STPA step 1 and designing hierarchical control

structures in STPA step 2. Mind maps drawn for STPA step 1 can be
later used to analyze traceability. Also, there are more tools
introduced in STAMP tools page, such as RM Studio, STAMP
Workbench, SafetyHAT, etc.

3. An overview of NuSTPA 2.0

We introduce NuSTPA 2.0, which is implemented to apply the
formal approach proposed in previous study. A process to be
followed by NuSTPA 2.0 is shown in <Fig. 2>. NuSTPA 2.0 is
developed under JavaFX 11.0.2 and JDK 1.8.0 environment.
Requirements that NuSTPA 2.0 follows are represented in <Table 1>.

W NusToA o ox

file Help Overview

Process Overview

STPA Process

Step 1. Define Step 3. Identif
P Step 2. Model the p v
Purpose of the — —+ Unsafe Control
. Control Structure .
Analysis Actions

Step 4. |dentify
—
Loss Scenarios

NuSCR Support Process ------1 le---n '

(Step 1) Identify output
variables concerning CAs

(Step 5) Generate
Combinations of PMV
+ for CT
(Step 2) Extract the T
information needed to
create process model

*
(Step 3) Construct a

Control Structure 1

(Step 4) Analyze with
NuFTA to Produce MCSs

L]
Controller

Centrol
Algorithm

Process |
Model

Controlled Pracess

Figure 2. A main screen of NuSTPA 2.0

Table 1. Requirements to be satisfied by NuSTPA 2.0

The tool should be able to draw control structure and to
Req. 1 .
show process models in control structure.

The tool should be able to open and parse NuSCR file to
automatically obtain process model variables. And it
should be able to identify each FODs, variables and SDT,
FSM, TTS nodes inside FOD to parse them.

Req. 2

Process model variables and values should be able to be
Req.3 | added manually. Generated process model variables

should be able to be deleted, modified, and merged.

Red. 4 The tool should be able to open and parse MCS file to
eq.
d automatically obtain context table.

Red. S Contexts should be able to be added manually. Items from
eq.
q context table should be able to be modified and deleted.

The tool should be able to automatically generate an
Req. 6 unsafe control action (UCA) table from the context table.
eq.
d The UCA table should only show contexts that cause

control actions to be unsafe.

Req. 1 - NuSTPA 2.0 provides editor to draw control structure as
shown in <Fig. 3>. Process model variables added in NuSCR support
process step 2 are automatically added to the control structure.
Req. 2 - NuSTPA 2.0 uses file chooser and DOM xpath parser to open
and parse NuSCR file and follows <Extracting Variable Information>
algorithm in [2] to obtain process model variables. The tool contains
ArrayLists for each FODs, variables and SDT, FSM, TTS nodes, so that
they can be independently handled, and process models can be
extracted properly.

Req. 3 - NuSTPA 2.0 contains manual adding function by entering
value into a textField of a popup to add new process model. It also
contains deleting, modifying, and merging functions which are
enabled with context menu of JavaFX.

Req. 4 - NuSTPA 2.0 uses file chooser and bufferedReader to open
and parse MCS file and obtain contexts to fill context table according
to <Generating Context Table> algorithm in [2]. If process model
variables are merged, then related context values are also merged
into one cell. Each row in context table consists of hazardous
contexts which can cause control action to be unsafe.

Req. 5 - NuSTPA 2.0 enables manual adding of contexts using
textField of JavaFX. NuSTPA 2.0 contains deleting function which is
enabled with context menu of JavaFX. Modification of contexts can
be done by double clicking the cell to modify the value.

Req. 6 - In STPA step 3, NuSTPA 2.0 generates UCA table using
context table in previous step of NuSCR Support process. Each UCA
in UCA table is generated by combining hazardous contexts in each

row of context table.

Step 2. Model the Control Structure

Operator

Controller
h %
5o
Information J
wual

Control rod location

Control
Action

Core Protection Calculator

t Trip signal x

CEDMCS

Variable over
Variable over power value,
Text power value | High Logarithmic
T Power Level

Pressurizer info.
Reactor Steam generator info.
power value Control rod Reactor coolant info
position contral

ENFMS

The explanation of how NuSTPA 2.0 satisfies the requirements is

as follows:

Figure 3. Control Structure of a ‘RPS’ controller

4. Case Study

We performed a case study on a preliminary version of Reactor
Protection System (RPS) Bistable Processor (BP) in a Korean nuclear
power plant. We applied same example from previous study [2] to
see if the tool works as expected. Nodes inside the module and input
variables connected to the module are shown in <Fig. 1>.

<Fig. 4> contains process model variables generated from an
output variable <f LO_SG1_LEVEL_Trip_Out> and connected nodes
and input variables which are extracted from selected module
<g LO_SG1_LEVEL>.

B husTra [= IS

File [RERE Overview

Process Model

[dit Context Table new tab Coniroller

RPS

RPS- [Trip sianal]
1 0_SG1_LFVFL_Trip_Our

Cantrol Action

[¥rip signall

I 0_SG1_I FUFI_MJA/PT_Query Add Process Model
£ Mod_Crr

{10_SG1_IFVFI_Chan_Fre

open NuSCH file

h LO SU1 LEVEL Firp Logic
[L0_SG1_LEVEL_PV_Err
110 SG1_LEVEL Trip Gut
1h_LO_SG1_LEVEL Trip_Logic
L0 SG1 LEVEL val Qut
[_L0_SG1_LEVEL Pup_Out

f-LOSGI _LIVEL PY_Err
h_l 0_SG1_I FVFI_Trip_l ogic_state

Extract Frecess madel

Figure 4. Extracted Process Models for ‘RPS’ controller

As we follow step 5 in NuSCR support process, we can construct a
context table from MCS generated by NuFTA. <Fig. 5> shows a
context table automatically extracted from MCS of a selected output
variable <f LO_SG1_LEVEL_Trip_Out>.

(S
[e overview
RS [710 stanal

. . bxec. | Ediwon. || G

4 FL0.. 0 105GT. 116 SC1LOVIL ValOut | 1L |£10 SG1 LIVEL /A% | I'Mo.. 110,110 .. h L0 SG1 LEVIL Trig L
ERTTIET P P

B
5

5

st

£

e

B e
5

.

st

ssc

.

[T Ry
e N THUEAFASEZEASES TRUE MR NA
i NP RAISHE IS SEMSS KUE MR N
s A RAISEREAISERTAUES TRUE WA A

s V32 TALSEATALSCGTALSE. TIUE WPA e

ATRLSTRUCE TRUE WA WA

TRUE&FALSEE TRUE NfA N/A

WA HUEAEMSE & IKUER IR MR NA

0t s

TUE s

o s

12900< % @30000 N4 TASCATRUCETAUCE TRUL MA A

S TRUE D= WA N TUEAFASESERSES TRUE MR NGA

[
e
[
&
I
e
W
u
[t
"
[t
e
e
&
e
&

WA AW
[
n
e
w
e
e
e
W
e
W
e
[
e
[
bt

TR ST NP RAISHE IS SEMSS KUE MR A

Figure 5. Generated Context Table for ‘Trip Signal’ CA

As we choose contexts that cause control action to be unsafe, these
contexts can be now added to UCA table. An example of a UCA table
which has ‘Trip Signal’ as a control action is shown in <Fig. 6>. These
UCAs are using contexts extracted from MCS in previous step and
automatically added to UCA table.

5. Conclusion and Future Work
In this paper, we introduced a tool called NuSTPA 2.0 to apply
STPA process supported by NuSCR Formal Specification. It supports

B NusTPA - o x

File Help Overview
Step 3. Identify Unsafe Control Actions

RPS = | [Trip signal] Edit Loss Scenario Edit Context Table Get data from Context Table
[Trip signal]

cA Pro... Nat Providing Causes Hazard Incorr... stopped Toa Soan/Applied Too Long Link
EVEL_Trip_Out = TRUE & f
EVEL Chan Err = TRUE &

Trip signal]

[Trip signal] f.LO_SG1_LEVEL Trip_Out = TRUE & W2 -
th L LEVEL FALSE &

1.10.5G1 < 0 &
LEVEL_M/A/PT_Query = FALSE & FALSE & FALSE & &
TRUE &

LEVEL Trip_Logic_state = Normal at t
&

W -

<= 30000 &
RUE & TRUE & TRUE & &

ate = Waiting at t

Figure 6. Generated UCA Table for ‘Trip Signal’ CA

typical STPA process and NuSCR supporting process. It provides
editor to draw control structure in STPA step 2 and automatically
generates process model by extracting required components from
NuSCR specification. Also, it automatically generates context table
by extracting components from MCS. Generated contexts can be
used to generate UCA table in STPA step 3.

We are planning to improve algorithms to edit control structure,
and to generate context tables and UCA tables. We are also planning
to enable analyzing system into hierarchical control structure and

showing traceability of total process.

Acknowledgements

This paper was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT)
(No.2021R1F1A1047246).

References

[1] N. G. Leveson, “Engineering a safer world: Systems thinking
applied to safety”, The MIT Press, 2016.

[2] S. Jung, Y. Heo, and]. Yoo, “A Formal Approach to Support the
Identification of Unsafe Control Actions of STPA for Nuclear
Protection Systems”, Nuclear Engineering and Technology (NET),
Accepted, 2021.

[3] S. Jung, J. Yoo, and Y.]. Lee, “A software fault tree analysis
technique for formal requirement specifications of nuclear reactor
protection systems”, Reliability Engineering & System Safety, vol.
203, p. 107064, 2020.

[4] J. Yoo, T. Kim, S. Cha,]. S. Lee, and H. S. Son, “A formal software
requirements specification method for digital nuclear plant
protection systems,” Journal of Systems and Software, vol. 74, no. 1,
pp. 73-83,2005.

[5] A. Abdulkhaleq and S. Wagner, “XSTAMPP 2.0: new
improvements to XSTAMPP including CAST accident analysis and an
extended approach to STPA,” 2016 STAMP Workshop. MIT, 2016.

[6] S. S. Krauss, M. Rejzek, C. Senn, and C. Hilbes, “SAHRA - an
integrated software tool for STPA” in 4th European STAMP
Workshop. Ziircher Hochschule fiir Angewandte Wissenschaften
(ZHAW), 2016. [Online].

Available: https://digitalcollection.zhaw.ch/handle/11475/13635

