
NuSCR 정형명세언어를 사용하는 STPA 지원 도구 개발

허윤아 O 정세진 유준범

건국대학교 컴퓨터공학과

hyoona1202@naver.com jsjj0728@gmail.com jbyoo@konkuk.ac.kr

NuSTPA 2.0: A Tool to Perform the STPA

Using NuSCR Formal Specification

Yoona HeoO Sejin Jung Junbeom Yoo

Konkuk University, Division of Computer Science and Engineering

Abstract

 Systems-Theoretic Process Analysis (STPA) is one of the hazard analysis techniques, which focuses on

identifying unsafe controls between components. STPA takes a lot of time and effort to perform, since it is usually

done manually by analysts and relies much on their experiences. To perform STPA more efficiently, we proposed

a formal approach to support STPA in previous study. This paper proposes a tool to apply STPA process supported

by NuSCR formal specification, which follows the proposed formal approach.

1. Introduction

Hazard analysis should be performed in safety-critical systems to

identify and mitigate hazards. Systems-Theoretic Process Analysis

(STPA) is one of the hazard analysis techniques based on causality

model called Systems-Theoretic Accident Model and Processes

(STAMP) [1]. It focuses on identifying unsafe controls between

components.

However, STPA takes a lot of time and effort to perform, since it is

usually done manually by analysts and relies much on their

experiences. Therefore, many researchers tried to support STPA by

proposing formal approaches and developing tools to perform STPA

more efficiently. Like other researches, we proposed a formal

approach to support STPA in previous study [2]. And we need to

implement a tool to efficiently perform the proposed formal

approach.

This paper proposes a tool, NuSTPA 2.0, which supports an

application of the formal approach proposed in previous studies

[2][3]. With NuSTPA 2.0, we can apply STPA process supported by

Nuclear Software Cost Reduction (NuSCR) formal specification.

2. Background

2.1 NuSCR

NuSCR [4] is a formal software requirements specification method

for digital plant protection system in nuclear power plants. It is

composed of Function Overview Diagrams (FODs), which represent

overview of system components and dependencies to show data

flow. It contains nodes called Structured Decision Table (SDT), Finite

State Machine (FSM), Timed Transition System (TTS) to represent

requirements of a system. Each of these nodes is connected to other

related nodes and to related input and output variables. <Fig. 1>

shows a <g_LO_SG1_LEVEL> module of NuSCR specification.

Figure 1. <g_LO_SG1_LEVEL> module of NuSCR specification

NuFTA [3] is a tool to perform fault tree analysis on NuSCR. While

analyzing NuSCR, NuFTA draws a fault tree and generates a minimal

cut-sets (MCSs). Analysts can set top event for the fault tree and get

MCS values.

2.2 Related Work

There have been several tools to support application of STPA. A

STAMP tools page at STAMP Workshop site introduces various tools

to support STPA. In [5], authors implemented a tool called XSTAMPP

(eXtensive STAMP Platform) 2.0, which helps analysts to apply CAST

accident analysis and perform extended approach to STPA. Authors

in [6] proposes a tool to support STPA process by drawing mind

maps to perform STPA step 1 and designing hierarchical control

structures in STPA step 2. Mind maps drawn for STPA step 1 can be

later used to analyze traceability. Also, there are more tools

introduced in STAMP tools page, such as RM Studio, STAMP

Workbench, SafetyHAT, etc.

3. An overview of NuSTPA 2.0

We introduce NuSTPA 2.0, which is implemented to apply the

formal approach proposed in previous study. A process to be

followed by NuSTPA 2.0 is shown in <Fig. 2>. NuSTPA 2.0 is

developed under JavaFX 11.0.2 and JDK 1.8.0 environment.

Requirements that NuSTPA 2.0 follows are represented in <Table 1>.

Figure 2. A main screen of NuSTPA 2.0

Table 1. Requirements to be satisfied by NuSTPA 2.0

Req. 1
The tool should be able to draw control structure and to

show process models in control structure.

Req. 2

The tool should be able to open and parse NuSCR file to

automatically obtain process model variables. And it

should be able to identify each FODs, variables and SDT,

FSM, TTS nodes inside FOD to parse them.

Req. 3

Process model variables and values should be able to be

added manually. Generated process model variables

should be able to be deleted, modified, and merged.

Req. 4
The tool should be able to open and parse MCS file to

automatically obtain context table.

Req. 5
Contexts should be able to be added manually. Items from

context table should be able to be modified and deleted.

Req. 6

The tool should be able to automatically generate an

unsafe control action (UCA) table from the context table.

The UCA table should only show contexts that cause

control actions to be unsafe.

The explanation of how NuSTPA 2.0 satisfies the requirements is

as follows:

Req. 1 – NuSTPA 2.0 provides editor to draw control structure as

shown in <Fig. 3>. Process model variables added in NuSCR support

process step 2 are automatically added to the control structure.

Req. 2 – NuSTPA 2.0 uses file chooser and DOM xpath parser to open

and parse NuSCR file and follows <Extracting Variable Information>

algorithm in [2] to obtain process model variables. The tool contains

ArrayLists for each FODs, variables and SDT, FSM, TTS nodes, so that

they can be independently handled, and process models can be

extracted properly.

Req. 3 – NuSTPA 2.0 contains manual adding function by entering

value into a textField of a popup to add new process model. It also

contains deleting, modifying, and merging functions which are

enabled with context menu of JavaFX.

Req. 4 – NuSTPA 2.0 uses file chooser and bufferedReader to open

and parse MCS file and obtain contexts to fill context table according

to <Generating Context Table> algorithm in [2]. If process model

variables are merged, then related context values are also merged

into one cell. Each row in context table consists of hazardous

contexts which can cause control action to be unsafe.

Req. 5 – NuSTPA 2.0 enables manual adding of contexts using

textField of JavaFX. NuSTPA 2.0 contains deleting function which is

enabled with context menu of JavaFX. Modification of contexts can

be done by double clicking the cell to modify the value.

Req. 6 – In STPA step 3, NuSTPA 2.0 generates UCA table using

context table in previous step of NuSCR Support process. Each UCA

in UCA table is generated by combining hazardous contexts in each

row of context table.

Figure 3. Control Structure of a ‘RPS’ controller

4. Case Study

We performed a case study on a preliminary version of Reactor

Protection System (RPS) Bistable Processor (BP) in a Korean nuclear

power plant. We applied same example from previous study [2] to

see if the tool works as expected. Nodes inside the module and input

variables connected to the module are shown in <Fig. 1>.

<Fig. 4> contains process model variables generated from an

output variable <f_LO_SG1_LEVEL_Trip_Out> and connected nodes

and input variables which are extracted from selected module

<g_LO_SG1_LEVEL>.

Figure 4. Extracted Process Models for ‘RPS’ controller

As we follow step 5 in NuSCR support process, we can construct a

context table from MCS generated by NuFTA. <Fig. 5> shows a

context table automatically extracted from MCS of a selected output

variable <f_LO_SG1_LEVEL_Trip_Out>.

Figure 5. Generated Context Table for ‘Trip Signal’ CA

As we choose contexts that cause control action to be unsafe, these

contexts can be now added to UCA table. An example of a UCA table

which has ‘Trip Signal’ as a control action is shown in <Fig. 6>. These

UCAs are using contexts extracted from MCS in previous step and

automatically added to UCA table.

5. Conclusion and Future Work

 In this paper, we introduced a tool called NuSTPA 2.0 to apply

STPA process supported by NuSCR Formal Specification. It supports

Figure 6. Generated UCA Table for ‘Trip Signal’ CA

typical STPA process and NuSCR supporting process. It provides

editor to draw control structure in STPA step 2 and automatically

generates process model by extracting required components from

NuSCR specification. Also, it automatically generates context table

by extracting components from MCS. Generated contexts can be

used to generate UCA table in STPA step 3.

We are planning to improve algorithms to edit control structure,

and to generate context tables and UCA tables. We are also planning

to enable analyzing system into hierarchical control structure and

showing traceability of total process.

Acknowledgements

This paper was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea government (MSIT)

(No.2021R1F1A1047246).

References

[1] N. G. Leveson, “Engineering a safer world: Systems thinking

applied to safety”, The MIT Press, 2016.

[2] S. Jung, Y. Heo, and J. Yoo, “A Formal Approach to Support the

Identification of Unsafe Control Actions of STPA for Nuclear

Protection Systems”, Nuclear Engineering and Technology (NET),

Accepted, 2021.

[3] S. Jung, J. Yoo, and Y. J. Lee, “A software fault tree analysis

technique for formal requirement specifications of nuclear reactor

protection systems”, Reliability Engineering & System Safety, vol.

203, p. 107064, 2020.

[4] J. Yoo, T. Kim, S. Cha, J. S. Lee, and H. S. Son, “A formal software

requirements specification method for digital nuclear plant

protection systems,” Journal of Systems and Software, vol. 74, no. 1,

pp. 73–83,2005.

[5] A. Abdulkhaleq and S. Wagner, “XSTAMPP 2.0: new

improvements to XSTAMPP including CAST accident analysis and an

extended approach to STPA,” 2016 STAMP Workshop. MIT, 2016.

[6] S. S. Krauss, M. Rejzek, C. Senn, and C. Hilbes, “SAHRA – an

integrated software tool for STPA,” in 4th European STAMP

Workshop. Zu rcher Hochschule fu r Angewandte Wissenschaften

(ZHAW), 2016. [Online].

Available: https://digitalcollection.zhaw.ch/handle/11475/13635

